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Abstract
LZ-End is a variant of the well-known Lempel-Ziv parsing family such that each phrase of the
parsing has a previous occurrence, with the additional constraint that the previous occurrence must
end at the end of a previous phrase. LZ-End was initially proposed as a greedy parsing, where
each phrase is determined greedily from left to right, as the longest factor that satisfies the above
constraint [Kreft & Navarro, 2010]. In this work, we consider an optimal LZ-End parsing that has
the minimum number of phrases in such parsings. We show that a decision version of computing
the optimal LZ-End parsing is NP-complete by showing a reduction from the vertex cover problem.
Moreover, we give a MAX-SAT formulation for the optimal LZ-End parsing adapting an approach
for computing various NP-hard repetitiveness measures recently presented by [Bannai et al., 2022].
We also consider the approximation ratio of the size of greedy LZ-End parsing to the size of the
optimal LZ-End parsing, and give a lower bound of the ratio which asymptotically approaches 2.
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3:2 Optimal LZ-End Parsing Is Hard

1 Introduction

In the context of lossless data compression, various repetitiveness measures – especially those
based on dictionary compression algorithms – and relations between them have recently
received much attention (see the excellent survey by Navarro [12, 13]). One of the most
fundamental and well-known measures is the LZ77 parsing [15], in which a string is parsed
into z phrases such that each phrase is a single symbol, or the longest substring which has a
previous occurrence. LZ-End [9, 10] is a variant of LZ77 parsing with the added constraint
that a previous occurrence of the phrase must end at the end of a previous phrase. More
formally, the LZ-End parsing is a factorization q1, . . . , qze

of a given string that can be
greedily obtained from left to right: each phrase qi is either (1) a symbol that is the leftmost
occurrence of the symbol or (2) the longest prefix of the remaining suffix qi · · · qze

that is a
suffix of q1 · · · qj for some j < i. It is known that LZ-End parsing can be computed in linear
time [6], and there exists a space-efficient algorithm [5].

While there is no known data structure of O(z) size that provides efficient random access
to arbitrary positions in the string, it was recently shown that Õ(1) time access could
be achieved with O(ze) space [8]. Furthermore, concerning the difference between z and
ze, an upper bound of ze = O(z log2(n/z)) was shown [8], where n is the length of the
(uncompressed) string. On the other hand, there is an obvious bound of ze = Ω(z log n) for
the unary string, since a previous occurrence of an LZ-End phrase cannot be self-referencing,
i.e., overlap with itself, while an LZ77 phrase can. Notice that z ≤ zno ≤ ze holds for
any string, where zno is the number of phrases in the LZ77 parsing that does not allow
self-referencing. A family of strings such that the ratio ze/zno asymptotically approaches 2
(for large alphabet [10], for binary alphabet [4]) is known, and it is conjectured that ze ≤ 2zno

holds for any strings [10].
While the phrases in the parsings described above are chosen greedily (i.e., longest), we

can consider variants which do not impose such constraint, e.g., in an LZ-End-like parsing,
each phrase qi is either (1) a symbol that is the leftmost occurrence of the symbol or (2) a (not
necessary longest) prefix of the remaining suffix which is a suffix of q1 · · · qj for some j < i. We
refer to an LZ-End-like parsing with the smallest number zend of phrases, an optimal LZ-End
parsing [12], and call the original, the greedy LZ-End parsing.1 Thus z ≤ zno ≤ zend ≤ ze

holds.
Interestingly, zend ≤ g holds, where g is the size of the smallest context free grammar

that derives (only) the string, while a similar relation between ze and g does not seem to be
known [12].

This brings us to two natural and important questions about the measure zend:
How efficiently can we compute zend?
How much smaller can zend be compared to ze?

In this work, we answer a part of the above questions. Namely:
1. We prove the NP-hardness of computing zend.
2. We present an algorithm for exact computation by MAX-SAT.
3. We give a lower bound of the maximum value of the ratio ze/zend.

In Section 3, we give the hardness result. Our reduction is from the vertex cover problem:
finding a minimum set U of vertices such that every edge in a graph is incident to some
vertex in U . In Section 4, we show a MAX-SAT formulation for computing the optimal

1 Notice that we do not need the distinction for LZ77, since the greedy LZ77 parsing is also an optimal
LZ77-like parsing.
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LZ-End parsing that follows an approach by Bannai et al. that allows computing NP-hard
repetitiveness measures using MAX-SAT solvers [1]. In Section 5, we consider the ratio
ze/zend. We give a family of binary strings such that the ratio asymptotically approaches 2.
Note that we can easily modify this result to a larger alphabet. Since (ze/zend) ≤ (ze/zno),
the bound is tight, assuming that the conjecture by Kreft and Navarro [10] holds.

Related work
The LZ77 and LZ78 are original members of the LZ family [15, 16]. It is well-known that the
(greedy) LZ77 parsing produces the optimal version of the parsing [11]. The LZ78 parsing
satisfies that each phrase can be represented as a concatenation of a previous phrase and
a symbol. The NP-hardness of computing the optimal version of the LZ78 variant was
shown [2]. This hardness result is also given by a reduction from the vertex cover problem.
However, our construction of the reduction for the LZ-End differs from that for the LZ78
since these parsings have very different structures. The smallest string attractor [7] is one
of the most fundamental repetitiveness measures. It is also known that computing the
smallest string attractor of a given string is NP-hard [7]. The hardness result was proven by
a reduction from the set-cover problem.

2 Preliminaries

2.1 Strings
Let Σ be an alphabet. An element of Σ∗ is called a string. The length of a string w is denoted
by |w|. The empty string ε is the string of length 0. Let Σ+ be the set of non-empty strings,
i.e., Σ+ = Σ∗ \ {ε}. For any strings x and y, x · y denotes the concatenation of two strings.
We will sometimes abbreviate “·” (i.e., x · y = xy). For a string w = xyz, x, y and z are
called a prefix, substring, and suffix of w, respectively. They are called a proper prefix, a
proper substring, and a proper suffix of w if x ̸= w, y ̸= w, and z ̸= w, respectively. The i-th
symbol of a string w is denoted by w[i], where 1 ≤ i ≤ |w|. For a string w and two integers
1 ≤ i ≤ j ≤ |w|, let w[i..j] denote the substring of w that begins at position i and ends at
position j. For convenience, let w[i..j] = ε when i > j. We will sometimes use w[i..j) to
denote w[i..j − 1]. For any string w, let w1 = w and let wk = wwk−1 for any integer k ≥ 2,
i.e., wk is the k-times repetition of w.

2.2 LZ-End parsing
We give a definition of the LZ-End parsing, which is a variant of the Lempel-Ziv family.

▶ Definition 1 ((Greedy) LZ-End parsing). The LZ-End parsing of a string w is the parsing
LZEnd(w) = q1, . . . , qze

of w such that qi is either a symbol that is the leftmost occurrence of
the symbol or the longest prefix of qi · · · qze that occurs as a suffix of q1 · · · qj for some j < i,
which we call a source of the phrase.

We refer to each qi as a phrase. This definition, used in [8], is slightly different from the
original version [9, 10] where a symbol is added to each phrase. The results in this paper
hold for the original version as well (which we will show in the full version of the paper), but
here we use this definition for simplicity. In this paper, we consider a more general version
of the LZ-End parsing: a parsing q1, . . . , qzend of a string w such that qi is a (not necessary
longest) suffix of q1 · · · qj for some j < i. We call such a parsing with a minimum number
zend of phrases an optimal LZ-End parsing of w. We give an example of the greedy LZ-End
parsing and the optimal LZ-End parsing in Figure 1.

CPM 2023
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

w = a a c b b b b a a b a b b a b b b a
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

w = a a c b b b b a a b a b b a b b b a

greedy

optimal

Figure 1 Let w = aacbbbbaababbabbba. The greedy LZ-End parsing LZEnd(w) of w is illustrated
in the upper part of the figure. For the phrase at position 10, a longer substring w[10..11] = ba
has another previous occurrence at position 7, but there is no phrase that ends at position 8, and
any longer substring does not have a previous occurrence Therefore, the phrase staring at position
10 is b. The lower part of the figure shows an optimal LZ-End parsing (which is smaller than the
greedy one) on the same string. Each phrase has a previous occurrence that ends at the end of some
LZ-End phrase. The size of the greedy parsing is 12 and the size of the optimal parsing is 11.

2.3 Graphs
Let G = (V, E) be a graph with the set of vertices V and the set of edges E. An edge
e = {u, v} is called an incident edge of u. We denote the set of incident edges of v as ΓG(v)
and drop the subscript whenever it is clear from context. For an edge e = {u, v}, vertices
u and v are the end points of e. For a subset of vertices U ⊆ V , U is a vertex cover if for
any e ∈ E, at least one end point of e is contained in U . Let τG be the size of the minimum
vertex cover of G (i.e., τG denotes the vertex cover number of G). Notice that computing τG

is NP-complete [3].

2.4 Maximum Satisfiability (MAX-SAT) problem
Let {x1, . . . , xn} be a set of literals and C be a conjunctive normal form (CNF) formula.
Each variable in C is assigned a Boolean value (i.e., true or false). The goal of the Satis-
fiability (SAT) problem is to compute an assignment of variables that satisfies all clauses
of C. The Maximum Satisfiability (MAX-SAT) problem is a variant of SAT, in which there
are two types of clauses: hard clauses and soft clauses. A solution for MAX-SAT is a truth
assignment of the variables such that all hard clauses are satisfied, and the number of soft
clauses that are satisfied is maximized.

3 NP-hardness of computing the optimal LZ-End parsing

In this section, we consider the problem of computing the optimal LZ-End parsing of a given
string. A decision version of the problem is given as follows.

▶ Problem 2 (Decision version of computing the optimal LZ-End parsing (OptLE)). Given a
string w and an integer k, decide whether there exists an LZ-End parsing of size k or less.

We show the NP-completeness of OptLE in the following and present an algorithm for exact
computation in the next section.

▶ Theorem 3. OptLE is NP-complete.

Proof. We give a reduction from the vertex cover problem to OptLE. Let G = (V, E) be a
graph with a set of vertices V = {v1, . . . , vn} and a set of edges E = {e1, . . . , em}. Suppose
that an input graph G of the vertex cover problem is connected and |Γ(v)| ≥ 2 for any
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v1 v1 v1 # v1 v1 $ # v1 $ $ # v1 $ e1 # v1 $ e3 # e1 e1 v1 # e3 e3 v1 #
v2 v2 v2 # v2 v2 $ # v2 $ $ # v2 $ e1 # v2 $ e2 # e1 e1 v2 # e2 e2 v2 #
v3 v3 v3 # v3 v3 $ # v3 $ $ # v3 $ e2 # v3 $ e3 # e2 e2 v3 # e3 e3 v3 #

e1 e1 e1 # e2 e2 e2 # e3 e3 e3 #

v1 v1 v1 v1 $ e1 e1 e1 v1 v1 $ e3 e3 e3 v1 v1 $ $ #
v2 v2 v2 v2 $ e1 e1 e1 v2 v2 $ e2 e2 e2 v2 v2 $ $ #
v3 v3 v3 v3 $ e2 e2 e2 v3 v3 $ e3 e3 e3 v3 v3 $ $ #

v1 v1 v1 v1 $ e1 e1 e1 v1 v1 $ e3 e3 e3 v1 v1 $ $ #
v2 v2 v2 v2 $ e1 e1 e1 v2 v2 $ e2 e2 e2 v2 v2 $ $ #
v3 v3 v3 v3 $ e2 e2 e2 v3 v3 $ e3 e3 e3 v3 v3 $ $ #

$ e1 e1 e1 # $ e2 e2 e2 # $ e3 e3 e3 #

$ e1 e1 e1 # $ e2 e2 e2 # $ e3 e3 e3 #

greedy

optimal

<latexit sha1_base64="pGhtcidXX7XZu9GWnPiBt0TXBKs="></latexit>

P

<latexit sha1_base64="wUz0my4Ry93u6U8HOdoU7AFDKjk="></latexit>

Q

<latexit sha1_base64="2Iv9nuEk0RfsJ1YD5UwU9rAnLe8=">AAACbnichVFdKwRRGH52fI+vRUlJZCNX27vKR0rEjUu7a1FLmhlnmcxXM2e32PwB93KhCEnyM1zwByQ/QW4U5caFd2e3hPBOZ85znvM+73nOe3TPMgNJ9BBRqqprauvqG9TGpuaW1mhb+2Lg5n1DZAzXcv1lXQuEZToiI01piWXPF5qtW2JJ35ot7S8VhB+YrrMgtz2xamsbjpkzDU0ylV2xNblpaFYxtbsWjVGcwuj7CRIVEJu6USe9s3t13o1eYAXrcGEgDxsCDiRjCxoC/rJIgOAxt4oicz4jM9wX2IXK2jxnCc7QmN3i/wavshXW4XWpZhCqDT7F4uGzsg8DdEeX9EK3dEWP9P5rrWJYo+Rlm2e9rBXeWuteV/rtX5XNs8Tmp+pPzxI5jIdeTfbuhUzpFkZZX9g5eElPpAaKg3RKT+z/hB7omm/gFF6N86RIHULlB0h8b/dPsDgcT4zGR5IUm55BOerRjX4Mcb/HMI05zCMTdmwfRziOPCudSo/SW05VIhVNB76EMvQBiW2Rqw==</latexit>

R

<latexit sha1_base64="19gugTxPp7/mpU6HeHP9EaXqUgQ="></latexit>

S

<latexit sha1_base64="2Iv9nuEk0RfsJ1YD5UwU9rAnLe8="></latexit>

R

<latexit sha1_base64="19gugTxPp7/mpU6HeHP9EaXqUgQ="></latexit>

S

Figure 2 Let G = (V, E) be the complete graph of three vertices v1, v2, v3 and e1 = {v1, v2}, e2 =
{v2, v3}, e3 = {v1, v3}. WG and the greedy parsing and an optimal parsing are illustrated in the
figure. The first two parts (P and Q) share the same parsing. The last two parts (R and S) are
different. The upper part in the figure shows the greedy parsing and the lower part shows an
optimal parsing. For instance, in the optimal parsing, we can choose $e3

1 and $e3
3 as phrases by

using non-greedy parsing in R1. In other words, we can reduce two phrases in S-part by adding
one phrase in R1. In this example, the optimal parsing represents a vertex cover {v1, v3} ⊂ V of G

(since R2 selects the greedy parsing and the others are not).

v ∈ V . We identify each vertex vi as a symbol vi and each edge ei as a symbol ei. We also
introduce the symbol $, and a set of symbols that occur uniquely in the string. The latter is
represented, for simplicity, by the special symbol #, i.e., # represents a different symbol each
time it occurs in our description. We consider the string WG defined by graph G as follows.

WG =
∏n

i=1 Pi ·
∏m

j=1 Qj ·
∏n

i=1 Ri ·
∏m

j=1 Sj

Pi = v3
i #v2

i $#vi$2# · Xi · Yi

Qj = e3
j#

Ri = v4
i $

∏
ej∈Γ(vi)(e3

jv2
i $)$#

Sj = $e3
j#

Xi =
∏

ej∈Γ(vi)(vi$ej#)
Yi =

∏
ej∈Γ(vi)(e2

jvi#)
An example of this string is illustrated in Figure 2. Note that we use i for representing
indices of vertices and j for indices of edges.

Before we show the detail of the reduction, we start with an intuitive description of our
reduction. The string WG consists of four parts (which are represented by P, Q, R, and S).
(1) The first two parts are non-functional parts. They can only be parsed in a single sensible
way. These parts play a role as sources of the third part (R-part). (2) In the third part, Ri

corresponds to the vertex vi. Roughly speaking, Ri can be parsed in two sensible ways such
that the parsing represents whether the vertex vi is in the vertex cover or not. If a vertex vi

is in the vertex cover, then the parsing of Ri needs one more phrase. (3) In the last part, Si

corresponds to the edge ej . Sj will be parsed into two phrases iff one of the incident vertex
of the edge ej is in the vertex cover. Otherwise, Sj has three phrases. Overall, minimizing
the number of vertices for the vertex cover of a graph G corresponds to minimizing the total
penalties in the R-part such that every Sj will be parsed into two phrases.

CPM 2023
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We show that the number of phrases of the optimal parsing of WG is less than 13n+22m+k

if and only if the vertex cover number τG is less than k.
First, we observe an optimal LZ-End parsing of WG. Let us consider a parsing of

∏n
i=1 Pi.

In this part, the greedy parsing gives 10n + 13m phrases. In the greedy parsing of
∏n

i=1 Pi,
phrases v2

i in v2
i $#, vi$ in vi$2#, vi$ej#, and the second occurrence of e2

j have length 2,
and the other phrases have length 1. It is easy to see that this parsing is a smallest possible
parsing of

∏n
i=1 Pi. Moreover, other parsings of the same size do not affect the parsing of

the rest of the string; candidates for a source cannot be increased by selecting any other
parsings since the phrases of length 2 are preceded by unique symbols #. Hence, we can
choose this greedy parsing as a part of an optimal parsing.

In the second part
∏m

j=1 Qj , the greedy parsing also gives an optimal parsing which has
3m phrases (i.e., each Qj is parsed into three phrases since e2

j occurs in Pi for some i and e3
j

is unique in
∏n

i=1 Pi ·
∏m

j=1 Qj). This parsing is also a smallest possible parsing and does
not affect any parsings of the rest of the string.

The remaining suffix
∏n

i=1 Ri ·
∏m

j=1 Sj is a key of the reduction. The key idea is that Sj

represents whether the edge ej is an incident edge of some vertex in a subset of vertices or
not. $e3

j in Sj has exactly two previous occurrences in the R-part (since each edge is incident
to exactly two vertices). Hence Sj can be parsed into two phrases (i.e., $e3

j , #) if and only if
$e3

j has an occurrence which ends with an LZ-End phrase in the R-part. Now we consider
the greedy parsing of the Ri-part (let Γ(vi) = {e(i,1), . . . , e(i,|Γ(vi)|)}), which is as follows:

v3
i , vi$e(i,1), e2

(i,1)vi, . . . , vi$e(i,|Γ(vi)|), e2
(i,|Γ(vi)|)vi, vi$2, #.

The parsing has 2|Γ(vi)| + 3 phrases. We claim that this parsing is the smallest possible
parsing: If the length of every phrase is at most 3, then 2|Γ(vi)| + 3 is the minimum size
since the length of Ri is 6|Γ(vi)| + 7. On the other hand, we can see that substrings of
length at least 4 which contain a symbol vi are unique in the whole string WG by the
definition. Namely, $e3

j is the only substring of length at least 4 which is not unique. Let
us consider a parsing of Ri such that the parsing has α length-4 phrases. In other words,
we choose α incident edges out of |Γ(vi)| edges. Let (i1, . . . , iα) be the sequence of indexes
of selected edges. We observe that the length of substrings that are covered by length at
most 3 phrases. The length of the prefix of Ri that is succeeded by the first length-4 phrase
$e3

(i,i1) is 6(i1 − 1) + 4. This implies that there are at least 2(i1 − 1) + 2 phrases. The length
of substring between $e3

(i,id−1) and $e3
(i,id) is 6(id − id−1 − 1) + 2. Thus there are at least

2(id − id−1 − 1) + 1 phrases in each middle part. The length of the suffix that is preceded
by the last length-4 phrase $e3

(i,iα) is 6(|Γ(vi)| − iα) + 5. Since the last symbol is a unique
symbol #, there are at least 2(|Γ(vi)| − iα) + 3 phrases in the last part. Hence, there are at
least

α + 2(i1 − 1) + 2 +
α∑

d=2
(2(id − id−1 − 1) + 1) + 2(|Γ(vi)| − iα) + 3 = 2|Γ(vi)| + 4

phrases. Thus the minimum number of phrases of Ri is 2|Γ(vi)| + 3 and the above greedy
parsing is the only candidate which is the minimum size. Notice that phrases of this parsing
do not end with $e3

j . Let us consider the other possible parsing of Ri-part as follows:

v2
i , v2

i $, e3
(i,1), . . . , v2

i $, e3
(i,|Γ(vi)|), v2

i $, $, #.

This parsing has 2|Γ(vi)|+4 phrases. Notice that this parsing has phrases which end with $e3
j .

Thus Sj can be parsed into two phrases if we choose a non-greedy parsing such that there
exists a phrase that ends at one of these positions. In other words, if we choose such a parsing
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in the Ri-part, we can reduce at most |Γ(vi)| phrases in the S-part. These observations
imply that Ri is parsed into 2|Γ(vi)| + 3 or 2|Γ(vi)| + 4 phrases in any optimal parsing of
WG.

Let us consider an optimal LZ-End parsing. Let r be the number of substrings Ri which
contain 2|Γ(vi)| + 4 phrases, and s be the number of substrings Sj which contain exactly two
phrases. Then the size of the parsing is

(10n + 13m) + (3m) + (2
n∑

i=1
|Γ(vi)| + 3n + r) + (3m − s) = 13n + 23m + r − s.

We consider a subset V ′ of vertices such that vi ∈ V ′ if and only if Ri is parsed into
2|Γ(vi)| + 4 phrases (i.e., |V ′| = r), and a subset E′ of edges such that ej ∈ E′ if and only if
Sj is parsed into three phrases (i.e., |E′| = m − s). If E′ = ∅ (i.e., s = m), V ′ is a vertex
cover of G. Otherwise, V ′ is not a vertex cover of G. However we can obtain the vertex cover
number by using the parsing. Since the parsing is an optimal parsing, we can observe that
there is no vertex vi in V \ V ′ which has two or more incident edges in E′ (we can reduce
two or more phrases in S-part by adding one phrase in Ri, a contradiction). This implies
that we can obtain a vertex cover by choosing one vertex in V \ V ′ for each edge in E \ E′.
Then there exists an optimal LZ-End parsing of the same size which can directly represent a
vertex cover. In other words, the vertex cover number is r + m − s if there exists an optimal
LZ-End parsing of 13n + 22m + (r + m − s) phrases. It is clear from the above constructions
that there exists an optimal LZ-End parsing of 13n + 22m + k phrases iff the vertex cover
number is k.

Since we can check a parsing is an LZ-End parsing in linear time, OptLE is clearly in
class NP. ◀

4 MAX-SAT Formulation

An approach for exact computation of various NP-hard repetitiveness measures was shown
in [1], where they formulated them as MAX-SAT instances so that very efficient solvers could
be taken advantage of. Here, we show that this approach can be adapted to computing the
optimal LZ-End parsing as well.

Let the input string be T [1..n], and for any i ∈ [2, n], let Mi = {j | 1 ≤ j < i, T [j] = T [i]}.
Below, we use 1 to denote true, and 0 to denote false. We introduce the following Boolean
variables:

pi for all i ∈ [1, n]: pi = 1 if and only if position i is a starting position of an LZ-End
phrase. Note that p1 = 1.
ci for all i ∈ [1, n]: ci = 1 if and only if position i is the left-most occurrence of symbol
T [i].
ri→j for all i ∈ [2, n] and j ∈ Mi: ri→j = 1 if and only if position i references position j

via an LZ-End factor.

Notice that the truth values of ci are all fixed for a given string and are easy to determine.
Furthermore, the left-most occurrence must be beginning of a phrase, so, some values of pi

can also be fixed. For all i ∈ [1, n]:

ci = pi = 1 if i is left-most occurrence of T [i], (1)
ci = 0 otherwise. (2)
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The truth values of pi define the factors, so in order to minimize the number of factors,
we define the soft clauses as ¬pi for all i ∈ [1, n]. Below, we give other constraints between
the variables that must be satisfied, i.e., hard clauses.

The symbol at any position must either be a left-most occurrence, or it must reference
some position to its left. That is, for any i ∈ [1, n]:

ci +
∑

j∈Mi

ri→j = 1. (3)

In order to ensure that references in the same LZ-End phrase are consistent, we have the
following two constraints. The first ensures that if i references j and the symbols at positions
i − 1 and j − 1 are different or do not exist (i.e., j = 1), positions i and i − 1 cannot be in
the same LZ-End phrase. For all i ∈ [2, n] and j ∈ Mi s.t. j = 1 or T [j − 1] ̸= T [i − 1]:

ri→j =⇒ pi, (4)

The second ensures that if position i references position j and i is not a start of an LZ-End
phrase, then, position i − 1 must reference position j − 1. For all i ∈ [2, n] and j ∈ Mi \ {1}
s.t. T [j − 1] = T [i − 1]:

ri→j ∧ ¬pi =⇒ ri−1→j−1. (5)

Finally, the following constraints ensure that the reference of each LZ-End phrase must
end at an end of a previous LZ-End phrase. For all i ∈ [1, n] and j ∈ Mi:{

ri→j ∧ pi+1 =⇒ pj+1 if i ∈ [1, n)
ri→j =⇒ pj+1 if i = n.

(6)

It is easy to see that the truth assignments that are derived from any LZ-End parsing
will satisfy the above constraints.

We now show that any truth assignment that satisfies the above constraints will represent
a valid LZ-End parsing. The truth values for pi implies a parsing where each phrase starts at
a position i if and only if pi = 1. Constraint (1),(2),(3) ensure that each position is either a
left-most occurrence or references a unique previous position. Thus, it remains to show that
the referencing of each position of a given factor is consistent (adjacent positions reference
adjacent positions) and ends at a previous phrase end.

For any position i such that ci = 0, let j ∈ Mi be the unique value such that ri→j = 1.
We can see that any such position i that is not at the beginning of a phrase (i.e., pi = 0) will
reference a position consistent with the reference of position i−1: If j = 1 or T [j−1] ̸= T [i−1],
then Constraint (4) would imply ri→j = 0. Thus, we have j > 1 and T [j − 1] = T [i − 1], and
from Constraint (5), we have that ri−1→j−1, and the referencing inside a factor is consistent.
Finally, from Constraint (6), the last reference in a phrase always points to an end of a
previous LZ-End phrase.

The MAX-SAT instance contains O(n2) variables, and the total size of the CNF is O(n2):
O(n) clauses of O(n) size (Constraint (3) using linear size encodings of cardinality constraints,
e.g. [14]), and O(n2) clauses of size O(1) (the soft clauses, and Constraints (4), (5), (6)).

We note that it is not difficult to obtain a MAX-SAT formulation for the original definition
of LZ-End by minor modifications.
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5 Approximation ratio of greedy parsing to optimal parsing

In this section, we consider an approximation ratio of the size ze of the greedy LZ-End
parsing to the size zend of the optimal LZ-End parsing. Here, we give a lower bound of the
ratio.

▶ Theorem 4. There exists a family of binary strings such that the ratio ze/zend asymptot-
ically approaches 2.

Proof. Let K =
∑k

i=1 2i(= 2k+1 − 2) for any positive integer k ≥ 1. The following binary
string wk over an alphabet {a, b} gives the lower bound:

wk = aa ·
k∏

i=1
(a2i

) · b4 ·
K∏

i=1
(aib3).

It is easy to see that K is the length of the substring
∏k

i=1(a2i). First, we show the greedy
parsing of wk. Let W0 = aa ·

∏k
i=1(a2i) · b4 (i.e., a prefix of wk) and Wj = Wj−1 · ajb3 for

any 1 ≤ j ≤ K. Notice that WK = wk. We show that

LZEnd(Wj) = LZEnd(Wj−1), ajb2, b (7)

by induction on j. Initially, we consider the greedy parsing of W0. The greedy parsing of the
first run (i.e., maximal substring with a unique symbol) is a, a, a2, . . . , a2k of size k + 2. The
second run is parsed into three phrases b, b, b2. Thus

LZEnd(W0) = a, a, a2, . . . , a2k

, b, b, b2.

Moreover, we can see that the greedy parsing of W1 is

LZEnd(W1) = a, a, a2, . . . , a2k

, b, b, b2, ab2, b.

Hence Equation 7 holds for j = 1. Suppose that Equation 7 holds for any j ≤ p for some
integer p ≥ 1. We show that Equation 7 holds for j = p + 1. Assume that there exists a
phrase x of LZEnd(Wp+1) which begins in Wp and ends in a new suffix ap+1b3 of Wp+1. By
the induction hypothesis, phrases of LZEnd(Wp) which end with a are only in the first a’s
run. This implies that x cannot end with a and x can be written as x = x′bap+1bℓ for some
prefix x′ of x and some positive integer ℓ. However, ap+1 only occurs in the first a’s run.
Thus LZEnd(Wp+1) cannot have such a phrase x, namely LZEnd(Wp+1) = LZEnd(Wp), S

for some factorization S of the remaining suffix ap+1b3. It is easy to see that the remaining
suffix ap+1b3 of Wp+1 is parsed into ap+1b2, b. Hence Equation 7 holds for j = p + 1, and it
also holds for any j. Notice that |LZEnd(wk)| = 2K + k + 5 holds.

Finally, we give a smaller parsing of wk. We consider the same parsing for the first run
and a different parsing for the second run as b, b, b, b. In the greedy parsing, ajb3 cannot be
a phrase since the only previous occurrence does not have an LZ-End phrase. We can use
a substring ajb3 as a new phrase of Wj (see also Figure 3). Thus there exists an LZ-End
parsing

a, a, a2, . . . , a2k

, b, b, b, b, a1b3, . . . , aKb3.

The size of the parsing is K + k + 6.
Therefore the ratio ze/zend asymptotically approaches 2 for this family of strings. ◀

Note that this family of strings also gives a lower bound of the ratio ze/zno since
(ze/zend) ≤ (ze/zno) holds.
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wk = a a a a ... a2k b b b b a b b b ... aj b b b ... aK b b b

wk = a a a a ... a2k b b b b a b b b ... aj b b b ... aK b b b

k + 2 phrases 2K phrases

K phrases

greedy

optimal

Figure 3 Illustration for two variants of LZ-End parsings of a string wk (Theorem 4). In the
optimal parsing, we can choose ajb3 (dotted lines) as a phrase for each j (1 ≤ j ≤ K) by adding a
single letter phrase b.

6 Conclusions

In this paper, we first studied the optimal version of the LZ-End variant. We showed the
NP-completeness of the decision version of computing the optimal LZ-End parsing and
presented an approach for exact computation of the optimal LZ-End by formulating as
MAX-SAT instances. We also gave a lower bound of the possible gap (as the ratio) between
the greedy LZ-End and the optimal LZ-End. Finally, we note possible future work in the
following.

Our reduction from the vertex cover problem uses a polynomially large alphabet. How
can we construct a reduction with a small alphabet?
The most interesting remaining problem is an upper bound of the ratio discussed in
Section 5. We conjecture that there exists a constant upper bound (i.e., ze/zend ≤ c

for any strings where c is a constant). This implies that the greedy parsing gives a
constant-approximation of the optimal parsing. On the other hand, if there exists a
family of strings which gives c > 2 or non-constant ratio, then the conjecture ze ≤ 2zno

does not stand.
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