320 research outputs found

    Modeling of IoT devices in Business Processes: A Systematic Mapping Study

    Full text link
    [EN] The Internet of Things (IoT) enables to connect the physical world to digital business processes (BP). By using the IoT, a BP can, e.g.: 1) take into account real-world data to take more informed business decisions, and 2) automate and/or improve BP tasks. To achieve these benefits, the integration of IoT and BPs needs to be successful. The first step to this end is to support the modeling of IoT-enhanced BPs. Although numerous researchers have studied this subject, it is unclear what is the current state of the art in terms of current modeling solutions and gaps. In this work, we carry out a Systematic Mapping Study (SMS) to find out how current solutions are modelling IoT into business processes. After studying 600 papers, we identified and analyzed in depth a total of 36 different solutions. In addition, we report on some important issues that should be addressed in the near future, such as, for instance the lack of standardization.This research has been funded by Internal Funds KU Leuven (Interne Fondsen KU Leuven) and the financial support of the Spanish State Research Agency under the project TIN2017-84094-R and co-financed with ERDF.Torres Bosch, MV.; Serral, E.; Valderas, P.; Pelechano Ferragud, V.; Grefen, P. (2020). Modeling of IoT devices in Business Processes: A Systematic Mapping Study. IEEE. 221-230. https://doi.org/10.1109/CBI49978.2020.00031S22123

    How Advanced Change Patterns Impact the Process of Process Modeling

    Get PDF
    Process model quality has been an area of considerable research efforts. In this context, correctness-by-construction as enabled by change patterns provides promising perspectives. While the process of process modeling (PPM) based on change primitives has been thoroughly investigated, only little is known about the PPM based on change patterns. In particular, it is unclear what set of change patterns should be provided and how the available change pattern set impacts the PPM. To obtain a better understanding of the latter as well as the (subjective) perceptions of process modelers, the arising challenges, and the pros and cons of different change pattern sets we conduct a controlled experiment. Our results indicate that process modelers face similar challenges irrespective of the used change pattern set (core pattern set versus extended pattern set, which adds two advanced change patterns to the core patterns set). An extended change pattern set, however, is perceived as more difficult to use, yielding a higher mental effort. Moreover, our results indicate that more advanced patterns were only used to a limited extent and frequently applied incorrectly, thus, lowering the potential benefits of an extended pattern set

    Software modelling languages: A wish list

    Full text link
    © 2015 IEEE. Contemporary software engineering modelling tends to rely on general-purpose languages, such as the Unified Modeling Language. However, such languages are practice-based and seldom underpinned with a solid theory-be it mathematical, ontological or concomitant with language use. The future of software modelling deserves research to evaluate whether a language base that is compatible with these various elements as well as being philosophically coherent offers practical advantages to software developers

    Verifying goal-oriented specifications used in model-driven development processes

    Get PDF
    [EN] Goal-oriented requirements engineering promotes the use of goals to elicit, elaborate, structure, specify, analyze, negotiate, document, and modify requirements. Thus, goal-oriented specifications are essential for capturing the objectives that the system to be developed should achieve. However, the application of goal oriented specifications into model-driven development (MDD) processes is still handcrafted, not aligned in the automated flow from models to code. In other words, the experience of analysts and designers is necessary to manually transform the input goal-oriented models into system models for code generation (models compilation). Some authors have proposed guidelines to facilitate and partially automate this translation, but there is a lack of techniques to assess the adequacy of goal-oriented models as starting point of MDD processes. In this paper, we present and evaluate a verification approach that guarantees the automatic, correct, and complete transformation of goal-oriented models into design models used by specific MDD solutions. In particular, this approach has been put into practice by adopting a well-known goal-oriented modeling approach, the i* framework, and an industrial MDD solution called Integranova.This work has been developed with the support of FONDECYT under the projects AMoDDI 11130583 and TESTMODE 11121395.This work is also supported by EOSSAC project, funded by the Ministry of Economy and Competitiveness of the Spanish government (TIN2013-44641-P).Giachetti Herrera, GA.; Marín, B.; López, L.; Franch, X.; Pastor López, O. (2017). Verifying goal-oriented specifications used in model-driven development processes. Information Systems. 64:41-62. https://doi.org/10.1016/j.is.2016.06.011S41626

    Lifecycle Management for Business Process Variants

    Get PDF
    This chapter deals with advanced concepts for the configuration and management of business process variants. Typically, for a particular business process, different variants exist. Each of them constitutes an adjustment of a master process (e.g., a reference process) to specific requirements building the process context. Contemporary Business Process Management tools do not adequately support the modeling and management of such process variants. Either the variants have to be specified in separate process models or they are expressed in terms of conditional branches within the same process model. Both methods can result in high model redundancies, which make model adaptations a time-consuming and error-prone task. In this chapter, we discuss advanced concepts of our Provop approach, which provides a flexible and powerful solution for managing business process variants along their lifecycle. Such variant support will foster more systematic process configuration as well as process maintenance

    Designing the Didactic Strategy Modeling Language (DSML) From PoN: An Activity Oriented EML Proposal

    Full text link
    [EN] This paper presents the design of the didactic strategy modeling language (DSML) according to the principles of Physics of Notations (PoN). The DSML is a visual and activity-oriented language for learning design characterized by the representation of different activities according to the nature of the task. Once the language is designed, a blind interpretation study is conducted to validate the semantic transparency of the learning activity iconography. The results of the paper allow to refine the icons. In addition to this, an authoring tool for DSML, which is integrated to an LMS, is presented. As a result, a model driven course was designed as a DSML pre-validation.Ruiz, A.; Panach Navarrete, JI.; Pastor López, O.; Giraldo-Velásquez, FD.; Arciniegas, JL.; Giraldo, WJ. (2018). Designing the Didactic Strategy Modeling Language (DSML) From PoN: An Activity Oriented EML Proposal. IEEE-RITA: Latin-American Learning Technologies Journal. 13(4):136-143. https://doi.org/10.1109/RITA.2018.2879262S13614313
    corecore