13 research outputs found

    Promonads and String Diagrams for Effectful Categories

    Full text link
    Premonoidal and Freyd categories are both generalized by non-cartesian Freyd categories: effectful categories. We construct string diagrams for effectful categories in terms of the string diagrams for a monoidal category with a freely added object. We show that effectful categories are pseudomonoids in a monoidal bicategory of promonads with a suitable tensor product.Comment: In Proceedings ACT 2022, arXiv:2307.1551

    Minimality Notions via Factorization Systems and Examples

    Get PDF
    For the minimization of state-based systems (i.e. the reduction of the number of states while retaining the system's semantics), there are two obvious aspects: removing unnecessary states of the system and merging redundant states in the system. In the present article, we relate the two minimization aspects on coalgebras by defining an abstract notion of minimality. The abstract notions minimality and minimization live in a general category with a factorization system. We will find criteria on the category that ensure uniqueness, existence, and functoriality of the minimization aspects. The proofs of these results instantiate to those for reachability and observability minimization in the standard coalgebra literature. Finally, we will see how the two aspects of minimization interact and under which criteria they can be sequenced in any order, like in automata minimization

    A bunch of sessions:a propositions-as-sessions interpretation of bunched implications in channel-based concurrency

    Get PDF
    The emergence of propositions-as-sessions, a Curry-Howard correspondence between propositions of Linear Logic and session types for concurrent processes, has settled the logical foundations of message-passing concurrency. Central to this approach is the resource consumption paradigm heralded by Linear Logic. In this paper, we investigate a new point in the design space of session type systems for message-passing concurrent programs. We identify O’Hearn and Pym’s Logic of Bunched Implications (BI) as a fruitful basis for an interpretation of the logic as a concurrent programming language. This leads to a treatment of non-linear resources that is radically different from existing approaches based on Linear Logic. We introduce a new π-calculus with sessions, called πBI; its most salient feature is a construct called spawn, which expresses new forms of sharing that are induced by structural principles in BI. We illustrate the expressiveness of πBI and lay out its fundamental theory: type preservation, deadlock-freedom, and weak normalization results for well-typed processes; an operationally sound and complete typed encoding of an affine λ-calculus; and a non-interference result for access of resources

    Programming Languages and Systems

    Get PDF
    This open access book constitutes the proceedings of the 31st European Symposium on Programming, ESOP 2022, which was held during April 5-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 21 regular papers presented in this volume were carefully reviewed and selected from 64 submissions. They deal with fundamental issues in the specification, design, analysis, and implementation of programming languages and systems

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 23rd International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2020, which took place in Dublin, Ireland, in April 2020, and was held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The 31 regular papers presented in this volume were carefully reviewed and selected from 98 submissions. The papers cover topics such as categorical models and logics; language theory, automata, and games; modal, spatial, and temporal logics; type theory and proof theory; concurrency theory and process calculi; rewriting theory; semantics of programming languages; program analysis, correctness, transformation, and verification; logics of programming; software specification and refinement; models of concurrent, reactive, stochastic, distributed, hybrid, and mobile systems; emerging models of computation; logical aspects of computational complexity; models of software security; and logical foundations of data bases.

    Proof-theoretic Semantics for Intuitionistic Multiplicative Linear Logic

    Get PDF
    This work is the first exploration of proof-theoretic semantics for a substructural logic. It focuses on the base-extension semantics (B-eS) for intuitionistic multiplicative linear logic (IMLL). The starting point is a review of Sandqvist’s B-eS for intuitionistic propositional logic (IPL), for which we propose an alternative treatment of conjunction that takes the form of the generalized elimination rule for the connective. The resulting semantics is shown to be sound and complete. This motivates our main contribution, a B-eS for IMLL , in which the definitions of the logical constants all take the form of their elimination rule and for which soundness and completeness are established

    Programming Languages and Systems

    Get PDF
    This open access book constitutes the proceedings of the 31st European Symposium on Programming, ESOP 2022, which was held during April 5-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 21 regular papers presented in this volume were carefully reviewed and selected from 64 submissions. They deal with fundamental issues in the specification, design, analysis, and implementation of programming languages and systems

    Programming Languages and Systems

    Get PDF
    This open access book constitutes the proceedings of the 29th European Symposium on Programming, ESOP 2020, which was planned to take place in Dublin, Ireland, in April 2020, as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The actual ETAPS 2020 meeting was postponed due to the Corona pandemic. The papers deal with fundamental issues in the specification, design, analysis, and implementation of programming languages and systems

    Bunched logics: a uniform approach

    Get PDF
    Bunched logics have found themselves to be key tools in modern computer science, in particular through the industrial-level program verification formalism Separation Logic. Despite this—and in contrast to adjacent families of logics like modal and substructural logic—there is a lack of uniform methodology in their study, leaving many evident variants uninvestigated and many open problems unresolved. In this thesis we investigate the family of bunched logics—including previously unexplored intuitionistic variants—through two uniform frameworks. The first is a system of duality theorems that relate the algebraic and Kripke-style interpretations of the logics; the second, a modular framework of tableaux calculi that are sound and complete for both the core logics themselves, as well as many classes of bunched logic model important for applications in program verification and systems modelling. In doing so we are able to resolve a number of open problems in the literature, including soundness and completeness theorems for intuitionistic variants of bunched logics, classes of Separation Logic models and layered graph models; decidability of layered graph logics; a characterisation theorem for the classes of bunched logic model definable by bunched logic formulae; and the failure of Craig interpolation for principal bunched logics. We also extend our duality theorems to the categorical structures suitable for interpreting predicate versions of the logics, in particular hyperdoctrinal structures used frequently in Separation Logic
    corecore