23 research outputs found

    Rational Behavior in Committee-Based Blockchains

    Get PDF
    We study the rational behaviors of participants in committee-based blockchains. Committee-based blockchains rely on specific blockchain consensus that must be guaranteed in presence of rational participants. We consider a simplified blockchain consensus algorithm based on existing or proposed committee-based blockchains that encapsulates the main actions of the participants: voting for a block, and checking its validity. Knowing that those actions have costs, and achieving the consensus gives rewards to committee members, we study using game theory how strategic players behave while trying to maximizing their gains. We consider different reward schemes, and found that in each setting, there exist equilibria where blockchain consensus is guaranteed; in some settings however, there can be coordination failures hindering consensus. Moreover, we study equilibria with trembling participants, which is a novelty in the context of committee-based blockchains. Trembling participants are rational that can do unintended actions with a low probability. We found that in presence of trembling participants, there exist equilibria where blockchain consensus is guaranteed; however, when only voters are rewarded, there also exist equilibria where validity can be violated

    Liveness Checking of the HotStuff Protocol Family

    Full text link
    Byzantine consensus protocols aim at maintaining safety guarantees under any network synchrony model and at providing liveness in partially or fully synchronous networks. However, several Byzantine consensus protocols have been shown to violate liveness properties under certain scenarios. Existing testing methods for checking the liveness of consensus protocols check for time-bounded liveness violations, which generate a large number of false positives. In this work, for the first time, we check the liveness of Byzantine consensus protocols using the temperature and lasso detection methods, which require the definition of ad-hoc system state abstractions. We focus on the HotStuff protocol family that has been recently developed for blockchain consensus. In this family, the HotStuff protocol is both safe and live under the partial synchrony assumption, while the 2-Phase Hotstuff and Sync HotStuff protocols are known to violate liveness in subtle fault scenarios. We implemented our liveness checking methods on top of the Twins automated unit test generator to test the HotStuff protocol family. Our results indicate that our methods successfully detect all known liveness violations and produce fewer false positives than the traditional time-bounded liveness checks.Comment: Preprint of a paper accepted at IEEE PRDC 202

    From Symmetric to Asymmetric Asynchronous Byzantine Consensus

    Get PDF
    Consensus is arguably one of the most important notions in distributed computing. Among asynchronous, randomized, and signature-free implementations, the protocols of Most\'efaoui et al. (PODC 2014 and JACM 2015) represent a landmark result, which has been extended later and taken up in practical systems. The protocols achieve optimal resilience and takes, in expectation, only a constant expected number of rounds of quadratic message complexity. Randomization is provided through a common-coin primitive. In traditional consensus protocols, all involved processes adhere to a global, symmetric failure model, typically only defined by bounds on the number of faulty processes. Motivated by applications to blockchains, however, more flexible trust assumptions have recently been considered. In particular, with asymmetric trust, a process is free to choose which other processes it trusts and which ones might collude against it. This paper revisits the optimal asynchronous protocol of Most\'efaoui et al. and shows how to realize it with asymmetric trust. The paper starts by pointing out in detail why some versions of this protocol may violate liveness. Then it proposes a fix for the protocol that does not affect its properties, but lets it regain the simplicity of its original version (PODC 2014). At the same time, the paper shows how to realize randomized signature-free asynchronous Byzantine consensus with asymmetric quorums. This results in an optimal consensus protocol with subjective, asymmetric trust and constant expected running time. It is suitable for applications to blockchains, for instance

    Remove-Win: a Design Framework for Conflict-free Replicated Data Collections

    Full text link
    Internet-scale distributed systems often replicate data within and across data centers to provide low latency and high availability despite node and network failures. Replicas are required to accept updates without coordination with each other, and the updates are then propagated asynchronously. This brings the issue of conflict resolution among concurrent updates, which is often challenging and error-prone. The Conflict-free Replicated Data Type (CRDT) framework provides a principled approach to address this challenge. This work focuses on a special type of CRDT, namely the Conflict-free Replicated Data Collection (CRDC), e.g. list and queue. The CRDC can have complex and compound data items, which are organized in structures of rich semantics. Complex CRDCs can greatly ease the development of upper-layer applications, but also makes the conflict resolution notoriously difficult. This explains why existing CRDC designs are tricky, and hard to be generalized to other data types. A design framework is in great need to guide the systematic design of new CRDCs. To address the challenges above, we propose the Remove-Win Design Framework. The remove-win strategy for conflict resolution is simple but powerful. The remove operation just wipes out the data item, no matter how complex the value is. The user of the CRDC only needs to specify conflict resolution for non-remove operations. This resolution is destructed to three basic cases and are left as open terms in the CRDC design skeleton. Stubs containing user-specified conflict resolution logics are plugged into the skeleton to obtain concrete CRDC designs. We demonstrate the effectiveness of our design framework via a case study of designing a conflict-free replicated priority queue. Performance measurements also show the efficiency of the design derived from our design framework.Comment: revised after submissio

    The Complexity of Symmetry Breaking in Massive Graphs

    Get PDF
    The goal of this paper is to understand the complexity of symmetry breaking problems, specifically maximal independent set (MIS) and the closely related beta-ruling set problem, in two computational models suited for large-scale graph processing, namely the k-machine model and the graph streaming model. We present a number of results. For MIS in the k-machine model, we improve the O~(m/k^2 + Delta/k)-round upper bound of Klauck et al. (SODA 2015) by presenting an O~(m/k^2)-round algorithm. We also present an Omega~(n/k^2) round lower bound for MIS, the first lower bound for a symmetry breaking problem in the k-machine model. For beta-ruling sets, we use hierarchical sampling to obtain more efficient algorithms in the k-machine model and also in the graph streaming model. More specifically, we obtain a k-machine algorithm that runs in O~(beta n Delta^{1/beta}/k^2) rounds and, by using a similar hierarchical sampling technique, we obtain one-pass algorithms for both insertion-only and insertion-deletion streams that use O(beta * n^{1+1/2^{beta-1}}) space. The latter result establishes a clear separation between MIS, which is known to require Omega(n^2) space (Cormode et al., ICALP 2019), and beta-ruling sets, even for beta = 2. Finally, we present an even faster 2-ruling set algorithm in the k-machine model, one that runs in O~(n/k^{2-epsilon} + k^{1-epsilon}) rounds for any epsilon, 0 <=epsilon <=1. For a wide range of values of k this round complexity simplifies to O~(n/k^2) rounds, which we conjecture is optimal. Our results use a variety of techniques. For our upper bounds, we prove and use simulation theorems for beeping algorithms, hierarchical sampling, and L_0-sampling, whereas for our lower bounds we use information-theoretic arguments and reductions to 2-party communication complexity problems

    Composable Computation in Leaderless, Discrete Chemical Reaction Networks

    Get PDF
    We classify the functions f:?^d ? ? that are stably computable by leaderless, output-oblivious discrete (stochastic) Chemical Reaction Networks (CRNs). CRNs that compute such functions are systems of reactions over species that include d designated input species, whose initial counts represent an input x ? ?^d, and one output species whose eventual count represents f(x). Chen et al. showed that the class of functions computable by CRNs is precisely the semilinear functions. In output-oblivious CRNs, the output species is never a reactant. Output-oblivious CRNs are easily composable since a downstream CRN can consume the output of an upstream CRN without affecting its correctness. Severson et al. showed that output-oblivious CRNs compute exactly the subclass of semilinear functions that are eventually the minimum of quilt-affine functions, i.e., affine functions with different intercepts in each of finitely many congruence classes. They call such functions the output-oblivious functions. A leaderless CRN can compute only superadditive functions, and so a leaderless output-oblivious CRN can compute only superadditive, output-oblivious functions. In this work we show that a function f:?^d ? ? is stably computable by a leaderless, output-oblivious CRN if and only if it is superadditive and output-oblivious

    Asynchronous Byzantine Approximate Consensus in Directed Networks

    Full text link
    In this work, we study the approximate consensus problem in asynchronous message-passing networks where some nodes may become Byzantine faulty. We answer an open problem raised by Tseng and Vaidya, 2012, proposing the first algorithm of optimal resilience for directed networks. Interestingly, our results show that the tight condition on the underlying communication networks for asynchronous Byzantine approximate consensus coincides with the tight condition for synchronous Byzantine exact consensus. Our results can be viewed as a non-trivial generalization of the algorithm by Abraham et al., 2004, which applies to the special case of complete networks. The tight condition and techniques identified in the paper shed light on the fundamental properties for solving approximate consensus in asynchronous directed networks.Comment: 25 pages, 2 figure

    SoK: A Consensus Taxonomy in the Blockchain Era

    Get PDF
    Consensus (a.k.a. Byzantine agreement) is arguably one of the most fundamental problems in distributed systems, playing also an important role in the area of cryptographic protocols as the enabler of a (secure) broadcast functionality. While the problem has a long and rich history and has been analyzed from many different perspectives, recently, with the advent of blockchain protocols like Bitcoin, it has experienced renewed interest from a much wider community of researchers and has seen its application expand to various novel settings. One of the main issues in consensus research is the many different variants of the problem that exist as well as the various ways the problem behaves when different setup, computational assumptions and network models are considered. In this work we perform a systematization of knowledge in the landscape of consensus research starting with the original formulation in the early 1980s up to the present blockchain-based new class of consensus protocols. Our work is a roadmap for studying the consensus problem under its many guises, classifying the way it operates in many settings and highlighting the exciting new applications that have emerged in the blockchain era

    TenderTee: Secure Tendermint

    Get PDF
    Blockchain and distributed ledger technologies have emerged as one of the most revolutionary distributed systems, with the goal of eliminating centralised intermediaries and installing distributed trusted services. They facilitate trustworthy trades and exchanges over the Internet, power cryptocurrencies, ensure transparency for documents, and much more. Committee based-blockchains are considered today as a viable alternative to the original proof-of-work paradigm, since they offer strong consistency and are energy efficient. One of the most popular committee based-blockchain is Tendermint used as core by several popular blockchains such Tezos, Binance Smart Chain or Cosmos. Interestingly, Tendermint as many other committee based-blockchains is designed to tolerate one third of Byzantine nodes. In this paper we propose TenderTee, an enhanced version of Tendermint, able to tolerate one half of Byzantine nodes. The resilience improvement is due to the use of a trusted abstraction, a light version of attested append-only memory, which makes the protocol immune to equivocation (i.e behavior of a faulty node when it sends different faulty messages to different nodes). Furthermore, we prove the correctness of TenderTee for both one-shot and repeated consensus specifications
    corecore