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Abstract
We classify the functions f : Nd → N that are stably computable by leaderless, output-oblivious
discrete (stochastic) Chemical Reaction Networks (CRNs). CRNs that compute such functions
are systems of reactions over species that include d designated input species, whose initial counts
represent an input x ∈ Nd, and one output species whose eventual count represents f(x). Chen et
al. showed that the class of functions computable by CRNs is precisely the semilinear functions. In
output-oblivious CRNs, the output species is never a reactant. Output-oblivious CRNs are easily
composable since a downstream CRN can consume the output of an upstream CRN without affecting
its correctness. Severson et al. showed that output-oblivious CRNs compute exactly the subclass of
semilinear functions that are eventually the minimum of quilt-affine functions, i.e., affine functions
with different intercepts in each of finitely many congruence classes. They call such functions the
output-oblivious functions. A leaderless CRN can compute only superadditive functions, and so a
leaderless output-oblivious CRN can compute only superadditive, output-oblivious functions. In
this work we show that a function f : Nd → N is stably computable by a leaderless, output-oblivious
CRN if and only if it is superadditive and output-oblivious.
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1 Introduction

Chemical Reaction Networks (CRNs) have proven to be very valuable as a programming
language for describing how computations can ensue when molecules react. There is now a
rich complexity theory of computation with the CRN model, as well as the closely related
population protocol model of distributed computing [2, 4, 7, 10, 11, 17]. This theory helps
us understand what types of computational or engineered dynamic processes are possible
with molecules, since CRNs can be “compiled” down to DNA strand displacement systems,
which in turn can be implemented with real DNA strands in a test tube [5, 15, 18, 19].
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3:2 Composable Leaderless CRN Computation

It is natural to ask: If CRNs C and C ′ compute functions f and f ′, respectively, can
we compose the CRNs to compute the composition f ′ ◦ f? In this paper we study this
question for leaderless, discrete CRNs, resolving an open question of Chugg et al. [9], Severson
et al. [16], and Chalk et al. [6]. Here we first describe the CRN model, background and
motivation for the work, and then describe our result in more detail.

We focus on discrete CRNs (also called stochastic CRNs), which are described as a finite
set of chemical reactions among abstract species. Discrete CRNs stably compute functions
f : Nd → N in the following sense. An input x = (x1, . . . , xd) ∈ Nd is represented by initial
counts of d designated molecular species. A single copy of a so-called leader molecule may
also be present initially. Reactions of the CRN ensue, changing the species counts over time.
Eventually, regardless of the order of reactions, the count of a designated output species
Y equals f(x) and does not subsequently change. See Figure 1. Here and throughout, we
assume without loss of generality that the range of f is N, since functions that map Nd to Nl

for some l > 1 can be computed by first cloning l distinct copies of the inputs, and then for
each 1 ≤ i ≤ l, computing the ith output from the ith copy of the inputs.

X ′
1 +X ′

1 → 2Y ′

X ′
1 +X ′

2 → 2Y ′

X ′
2 +X ′

2 → 2Y ′
X ′′

2 → 2Y ′′
X1 → X ′

1 +X ′′
1

X2 → X ′
2 +X ′′

2
Y ′ + Y ′′ → Y

(a) (b) (c)

Figure 1 Examples of Chemical Reaction Networks (CRNs) for stable function computation.
(a) A CRN C1 for f(x1, x2) = x1 + x2 + ((x1 + x2) mod 2), with inputs X ′

1, X
′
2 and output Y ′.

(b) A CRN C2 for f ′(x1, x2) = 2x2, with inputs X ′′
1 , X

′′
2 and output Y ′′. (The input X ′′

1 does not
appear in the reaction.) (c) A CRN C for the function min{f(x1, x2), 2x2}. C converts its inputs
X1, X2 to those needed by CRNs C1 and C2 of parts (a) and (b), and then computes the function
min{f(x1, x2), 2x2} from the outputs of C1 and C2, demonstrating function composition. All three
CRNs are leaderless.

Exactly the semilinear predicates and functions are stably computable by discrete CRNs
[2, 7]. Such functions are linear on each of a finite number of semilinear domains – subsets of
Nd that are defined using ≥ or mod. See Figure 2.

Let C and C ′ be discrete CRNs that stably compute functions f : Nd → N and f ′ : N→ N.
Suppose furthermore that C is output-oblivious: That is, the output species of C is not a
reactant of any reaction of C. This condition ensures that outputs produced by C can be
consumed as inputs by a downstream CRN, without affecting the correctness of C. Then if
the output species of C is the input species of C ′, and there is no other species common to
C and C ′, the CRN C ∪ C ′ computes f ′ ◦ f .

More generally, suppose that CRNs C1, C2, . . . , Cd′ stably compute the functions f1, f2,
. . ., fd′ : Nd → N, and CRN C ′ stably computes f ′ : Nd′ → N. Suppose also that the Ci

are output-oblivious, the output of Ci is the ith input to C ′ and there is no other species
common to the CRNs. Then C1 ∪ C2 . . . Cd′ ∪ C ′ computes f ′(f1(x), f2(x), . . . , fd′(x)). For
example, combining the reactions of the CRN of Figure 1 parts (a), (b) and (c) results in a
CRN to compute the function f ′(x1, x2) = min{f(x1, x2), 2x2}.

If a function f is stably computable by an output-oblivious CRN with a leader, we say that
f is obliviously-computable. Obliviously-computable functions must be nondecreasing, because
a CRN on input x + x′ can produce f(x) Y’s (by ignoring inputs representing x′), and if Y ’s
are never consumed, the stable output f(x + x′) that is eventually produced must then be at
least f(x). However, not all nondecreasing semilinear functions are obliviously-computable,
the max function being an interesting counterexample. Chugg et al. [9] characterized the
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(a) (b)

(c) (d)

Figure 2 Illustrations of quilt-affine functions with domain N2. (a) The function h(x) =
x1 + x2 − ((x1 + x2) mod 2). (b) Domains of the function h of part (a). h(x) = x1 + x2 on
the domain Dom1 = {x ∈ N2 | x1 + x2 = 0 (mod 2)}, shown in blue. Dom1 is linear since it
equals {α1(2, 0) + α2(0, 2) + α3(1, 1) + (0, 0) | α1, α2, α3 ∈ N}. Also, h(x) = x1 + x2 − 1 on
the domain Dom2 = {x ∈ N2 | x1 + x2 = 1 (mod 2)}, shown in red. The domain Dom2 is
the union of two linear sets, namely {α1(2, 0) + α2(0, 2) + α3(1, 1) + (0, 1) | α1, α2, α3 ∈ N} and
{α1(2, 0) +α2(0, 2) +α3(1, 1) + (1, 0) | α1, α2, α3 ∈ N}. (c) The function f(x) = min{h(x1, x2), 2x2}.
(d) Domains of the function f of part (c). f(x) = 2x2 on the domain Dom3 = {x ∈ N2 | x2 +1 ≤ x1},
shown in green. Dom3 is linear since it equals {α1(1, 0) + α2(1, 1) + (1, 0) | α1, α2 ∈ N}. Also,
f(x1, x2) = h(x1, x2) on the semilinear domains Dom′

1 = Dom1 ∩ {x ∈ N2 | x1 ≤ x2} and
Dom′

2 = Dom2 ∩ {x ∈ N2 | x1 ≤ x2}, shown in red and blue.

subclass of obliviously-computable functions with two inputs, i.e., functions f : N2 → N.
Severson et al. [16] gave a general characterization of obliviously-computable functions
f : Nd → N, for any d; such functions are eventually the min of quilt-affine functions, defined
as nondecreasing linear functions with a periodic intercept, see Figure 2. See Section 2 for
formal definitions of quilt-affine and obliviously-computable functions.

The results of Chugg et al. and Severson et al. described so far concern discrete, output-
oblivious CRNs with leaders. What about leaderless CRNs? Output-oblivious functions
computed by a leaderless CRN C must be superadditive, i.e., f(x) + f(x′) ≥ f(x + x′). This
is because on input x + x′, reactions of a leaderless CRN could be used to independently
compute both f(x) and f(x′), resulting in f(x) + f(x′) output molecules, so this quantity
must be less than or equal to the eventual stable output, namely f(x + x′). This raises the
question: Is the class of functions f : Nd → N that can be stably computed by leaderless
output-oblivious CRNs exactly the superadditive obliviously-computable functions? Severson
et al. showed that this is indeed the case when d = 1, but the more general case was left as
an open problem. In this paper we show that the answer is “yes” for all d:

DNA 26



3:4 Composable Leaderless CRN Computation

I Theorem 1. Functions that are stably computable by leaderless output-oblivious CRNs are
exactly the superadditive obliviously-computable functions.

Our proof of Theorem 1 has two parts. First, building on the previous work of Severson
et al. and Chugg et al., we provide in Claim 5 a new characterization of superadditive,
obliviously-computable functions as the minimum of superadditive quilt-affine functions
on well-ordered domains, which we define in Section 2. Then in Claim 14 we construct a
leaderless, output-oblivious CRN for superadditive, obliviously-computable functions, using
the well-ordered domain representation.

Our result has strong parallels with that of Chalk et al. [6] who studied composability of
function-computing CRNs for the continuous (also called mass-action) CRN model. In this
model, real-valued species concentrations, rather than discrete species counts, evolve over
time, according to a finite set of reactions. Earlier, Chen et al. [8] showed that continuous
CRNs can stably (i.e., regardless of actual reaction rates) compute positive-continuous,
piecewise rational linear functions. Chalk et al. showed that such functions are obliviously-
computable by continuous CRNs if and only if they are superadditive. However, the proof
techniques for the discrete and continuous CRN models are quite different.

2 The CRN Model and Obliviously-Computable Functions

Following a summary of useful notation, we describe Chemical Reaction Networks (CRNs),
stable CRN function computation, and output-oblivious function computation. We then
describe the result of Severson et al. [16] that characterizes the class of functions that are stably
computable by output-oblivious CRNs with a leader, i.e., obliviously-computable functions,
in terms of quilt-affine functions. Finally, we provide a new, alternative characterization of
obliviously-computable functions that is useful for our main results.

2.1 Notation
We use N to denote the set of nonnegative integers, N+ the positive integers, Z the integers, Q
the rationals, and Q≥0 the nonnegative rationals. Where d is understood, we use boldface to
represent d-dimensional vectors x ∈ Nd, and xi to denote the ith component of x, 1 ≤ i ≤ d.
We write x ≤ x′ to denote that xi ≤ x′i, for all i, 1 ≤ i ≤ d, and x < x′ to denote that x ≤ x′
and for some i, 1 ≤ i ≤ d, xi < x′i. For 1 ≤ i ≤ d, we let ei denote the d-dimensional unit
vector (ei1, . . . , eid) in which all components are zero except that eii = 1. We denote the
d-dimensional vector of all zero’s by 0.

For d, p ∈ N+, Zd/pZd denotes the additive group of Zd modulo p. Each element of
Zd/pZd is a congruence class of the form {n + pz | z ∈ Zd} for some n ∈ Nd, and we denote
this set by n.

2.2 Chemical Reaction Networks and Stable Function Computation
A discrete Chemical Reaction Network (CRNs) is specified as a finite set Z = {Z1, . . . , Zm}
of species, plus a finite set of R of reactions (s, t) = ((s1, . . . , sm), (t1, . . . , tm)) ∈ NZ × NZ
of the form∑

k:sk>0
skZk →

∑
k:tk>0

tkZk,

where for at least one j, sj 6= tj . The species Zk with sk > 0 are the reactants, which are
consumed, while those with tk > 0 are the products. (A species may be both a reactant and
product of the same reaction). A configuration c ∈ Nm describes counts of species in Z, and
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c(Z) denotes the count of species Z ∈ Z. Reaction (s, t) is applicable to configuration c if
s ≤ c, i.e., sufficiently many copies of each reactant are present. Application of the reaction
to c results in the configuration c′ = c − s + t, and we write c → c′. If c0 → c1 → . . . ct

then we say that ct is reachable from c0 and call c0 → c1 → . . . ct an execution of the CRN.
A CRN C to stably compute a function f : Nd → N has designated input species, say

X1, . . . , Xd, a designated output species, say Y , and may or may not have a designated
leader species, L ∈ Z \ I. Leaderless function computation on input x ∈ Nd starts from a
valid initial configuration c0 = c0(x), where c0(Xi) = xi for 1 ≤ i ≤ d, and the count of any
other species is 0. CRN computation with a leader differs only in that the initial count of
the leader species L is 1, i.e., c0(L) = 1. We say that C stably computes f if for every valid
initial configuration c0 = c0(x) for some x, and for every configuration c reachable from c0,
there exists a stable configuration c′ reachable from c such that f(x) = c′(Y ). Here, c′ is
stable if for every c′′ ∈ Nm reachable from c′, c′(Y ) = c′′(Y ). That is, once configuration
c′ is reached, the count of the output species does not change. Stable computation with
a leader is defined in the same way, except that in the initial configuration the count of a
designated leader species L is 1.

Chen et al. [7] (building on related work of Angluin et al. [2, 4] on predicate computation
by population protocols) showed that exactly the semilinear functions are stably computable
by CRNs. A semilinear function is the union of partial affine functions on linear domains. A
domain E ⊂ Nd is linear if E = {

∑
z∈F αzz + o : αz ∈ N} for some finite set F ⊂ Nd and

o ∈ Nd. Thus, if E1, E2, . . . , Em are linear sets, ∪m
i=1Ei = Nd, and for 1 ≤ i ≤ m fi : Ei → N

is a partial affine function, then the function f : Nd → N where f(x) = fi(x) if x ∈ Ei is
semilinear. Figure 2 shows examples of linear sets and semilinear functions, illustrating show
the union of linear sets can be defined using ≥ or mod. Doty and Hajiaghayi [11] showed
that leaderless CRNs also stably compute the semilinear functions.

2.3 Obliviously-Computable Functions As Quilt-Affine Functions

A CRN C is output-oblivious if no reaction consumes the output species. A function f is
obliviously-computable if some output-oblivious CRN with a leader stably computes f . A
subclass of the obliviously-computable functions are the leaderless obliviously-computable
functions, that can be stably computed by leaderless output-oblivious CRNs.

Severson et al. [16] defined a quilt-affine function h : Nd → Z to be a nondecreasing
function that is the sum of a rational linear function and a periodic function. That is,
for some ∇h ∈ Qd

≥0, called the gradient of h, some p ∈ N+, called the period, and some
B : Zd/pZd → Q, called the periodic intercept,

h(x) = ∇h · x +B(x).

For example, the 2D function h(x) = x1 + x2 − ((x1 + x2) mod 2) of Figure 2 is quilt-affine,
since it can be written as h(x) = (1, 1) · (x1, x2) + B(x), where B(0, 0) = B(1, 1) = 0 and
B(0, 1) = B(1, 0) = −1. Severson et al. [16] proved the following result.

I Theorem 2. (Severson et al. [16]) A function f : Nd → N is obliviously-computable if and
only if it satisfies the following three properties:
(i) f is nondecreasing, i.e., f(x) ≤ f(x′) for all x ≤ x′.
(ii) There exist (nondecreasing) quilt-affine functions h1, . . . , hm : Nd → N and kf ∈ Nd

such that for all x ≥ kf , f(x) = mini{hi(x)}.
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3:6 Composable Leaderless CRN Computation

(iii) All fixed-input restrictions of f are obliviously-computable. Here, a fixed-input restriction
of f is a function on d− 1 inputs defined as

f[xi→j](x) = f(x1, x2, . . . , xi−1, j, xi+1, . . . , xd),

for some 1 ≤ i ≤ d and j ∈ N.

2.4 Obliviously-Computable Functions As Well-Ordered Quilt-Affine
Functions

Here we adapt Severson et al.’s result to obtain a slightly different characterization of
obliviously-computable functions, as the union of partial quilt-affine functions over well-
ordered domains sets. This result lays the foundation for the rest of the paper. Claim 4
in Section 3 demonstrates that these partial quilt-affine functions may be assumed to be
superadditive which, coupled with Theorem 2, implicitly proves one direction of Theorem 1.
Additionally, the well-ordered domain sets will be further refined by the CRN construction
in Section 4, enabling a quilt-affine function to be expressed simply as a piecewise affine
function. A partial quilt-affine function is simply a quilt-affine function that is defined only
over a subset of Nd.

Next we define well-ordered domain sets. Let w ∈ Nd be fixed and let 0 ≤ o ≤ w. Let

Domo (= Domo,w) = {x ∈ Nd | x ≥ o and xi = oi if oi < wi}. (1)

The sets Domo for 0 ≤ o ≤ w, are disjoint and their union is Nd. We call the set of sets
{Domo | 0 ≤ o ≤ w} a well-ordered domain set, and we denote this set by WOw. The sets
are ordered in the sense that if x ∈ Domo, x′ ∈ Domo′ and x ≤ x′ then o ≤ o′. Figure 3 (b)
shows a well-ordered domain set for N2 where w = (4, 4). We will later use the following
property of well-ordered domains:

I Lemma 3. Let Domo and Domo′ be domains of a well-ordered set defined by w, and
let Domo′′ be the domain containing o + o′. Then for any x ∈ Domo, and x′ ∈ Domo′ ,
x′′ = x + x′ ∈ Domo′′ .

Proof. Since x ∈ Domo and x′ ∈ Domo′ we have that x ≥ o and x′ ≥ o′. Additionally, since
o + o′ ∈ Domo′′ , we have that x + x′ ≥ o + o′ ≥ o′′. So x′′ satisfies the first condition of
membership in Domo′′ .

It remains to show that if o′′i < wi, then xi = o′′i . So suppose that o′′i < wi. Then it must
also be the case that oi < wi and o′i < wi, that o′′i = oi + o′i, and that xi = oi and x′i = o′i.
The result follows. J

A well-ordered quilt-affine function is the finite union of partial quilt-affine functions,
each of which is defined on a domain of a well-ordered domain set.

B Claim 4. Any obliviously-computable function is the minimum of a finite number of
nondecreasing, well-ordered quilt-affine functions.

Proof. First, from the characterization of obliviously-computable functions of Severson et
al. [16] given in Theorem 2 above, we identify a finite set of partial quilt-affine functions H,
as follows. We include in H the functions h1, h2, . . . , hm, each with domain Domhi

= {x ∈
Nd | x ≥ kf}, described in property (ii) of Theorem 2.3. Then we recursively augment H by
considering each of the fixed-input restrictions f[xi→j] of f of part (iii) of the definition, for
each choice of j < kf,i, and adding the functions corresponding to f[xi→j] from property (ii)
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(a) (b)

(c) (d)

Figure 3 (a) A well-ordered, superadditive function f with domain setWOw for w = (4, 4). Here,
f(x, y) = h(x, y) = y− (y mod 2) on the red line and f = 2y− (y mod 2) + 2x− (x mod 2)− 8 on
the large 2 dimensional area. The red line corresponds to the domain Dom(3,4). (b) The well-ordered
domain set for the function f of part (a), with w = (4, 4). There is one 2D domain, eight 1D domains,
and twelve 0D domains, i.e., points. (c) The function hwo obtained from h via the construction of
Claim 4. (d) The three domains Domh (in red), Dombig (in blue) and Domsmall (in green), for the
function h of part (c). Here, wh = (3, 4).

of Theorem 2. There are d levels of recursion; the functions that are recursively added to H
have at least one and up to d fixed inputs, and the remaining (non-fixed) inputs are lower
bounded by some constant. Thus, for each function h added to H, the domain of h has the
form

Domh = {x ∈ Nd | xi = kh,i if i ∈ Dh and xi ≥ kh,i otherwise}, (2)

for some kh ∈ Nd and Dh ⊆ [1, . . . , d]. We can assume without loss of generality that all
functions h ∈ H have the same period, since we can always take the least common multiple
of the periods and redefine each h with respect to this least common multiple.

For each such h ∈ H we will construct a nondecreasing, well-ordered quilt-affine function
hwo : Nd → N such that hwo(x) = h(x) for all x ∈ Domh, and also f(x) ≤ hwo(x) for all
x ∈ Nd −Domh. Then f = min{h∈H} hwo, and the claim follows.

We’ll use the following notation when describing hwo. Let ∇h = (λh,1, λh,2, . . . , λh,k) ∈
Qd be the gradient of h, let λmax = dmaxh∈H,1≤i≤d{λh,i}e and let

∇max = (λmax, . . . , λmax).

DNA 26



3:8 Composable Leaderless CRN Computation

Similarly, let Bh be the periodic intercept of h and let

Bmax =
⌈

max
h∈H,x∈Nd

{Bh(x mod p)}
⌉
.

We partition Nd into three domains:
Domh, defined in Equation (2), where kh ∈ Nd and Dh ⊆ [1, . . . , d].
Domsmall = {x ∈ Nd | xi ≤ kh,i, 1 ≤ i ≤ d} −Domh;
Dombig = Nd −Domsmall−Domh.

Also, for x ∈ Nd, we let

pr(x) = (pr(x1),pr(x2), . . . ,pr(xd)),

where pr(xi) = ki if xi ≤ ki and pr(xi) = xi otherwise. Note that for x ∈ Domsmall we have
pr(x) ∈ Domh. We can now define hwo as follows.

hwo(x) =


h(x), for all x ∈ Domh,

∇max · x +Bmax, for all x ∈ Dombig, and
h(pr(x)), for all x ∈ Domsmall.

Figure 3 shows an example of the construction of hwo from h.
First we show that f(x) ≤ hwo(x) for all x ∈ Nd. There are three cases, depending on

whether x is in Domh, Dombig, or Domsmall. (1) By definition, for x ∈ Domh we have f(x) ≤
h(x) = hwo(x). (2) For x ∈ Domsmall, we know that x ≤ pr(x) and so f(x) ≤ f(pr(x)).
Also, pr(x) ∈ Domh, and so we know from case (1) that f(pr(x)) ≤ hwo(pr(x)). (3) For
x ∈ Dombig we know that f(x) = h′(x) for some h′ ∈ H, and also by our choice of ∇max and
Bmax we have that h′(x) ≤ ∇max ·x +Bmax = hwo(x). Putting these together, we have that

f(x) = h′(x) ≤ hwo(x).

Next we show that hwo is non-decreasing, that is, hwo(x) ≤ hwo(x′) for all x,x′ ∈ Nd

with x ≤ x′. We consider the possible cases for the domains of x and x′:
1. x ∈ Domh and x′ ∈ Domh. Then hwo(x) ≤ hwo(x′) since hwo = h on Domh and h is

nondecreasing.
2. x ∈ Dombig and x′ ∈ Dombig. Then

hwo(x) = ∇max(x) +Bmax ≤ ∇max(x′) +Bmax = hwo(x′).

3. x ∈ Domh and x′ ∈ Dombig. Then

hwo(x) = ∇h(x) +B(x) ≤ ∇max(x) +Bmax ≤ ∇max(x′) +Bmax = hwo(x′).

4. x ∈ Domsmall and x′ ∈ Domsmall. Then pr(x) ≤ pr(x′) and both pr(x) and pr(x′) are in
Domh, so

hwo(x) = hwo(pr(x)) ≤ hwo(pr(x′)) = hwo(x′),

where the inequality holds because of case 1.
5. x ∈ Domsmall and x′ ∈ Domh. Then pr(x) ∈ Domh and pr(x) ≤ x′, so

hwo(x) = hwo(pr(x)) = h(pr(x)) ≤ h(x′) = hwo(x′).

6. x ∈ Domsmall and x′ ∈ Dombig. Then

hwo(x) = hwo(pr(x)) ≤ ∇max(x) +Bmax ≤ ∇max(x′) +Bmax = hwo(x′).
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Finally, we show that hwo is a well ordered quilt-affine function with offset wh, where we
define wh ∈ Nd as wh,i = kh,i if i ∈ Dh and wh,i = kh,i + 1 otherwise. Consider any o ≤ wh.
We need to show that hwo is quilt-affine on the domain Domo (defined in Equation (1)).
There are three cases:
1. If o = kh (≤ wh) then Domo = Domh. By construction, hwo = h on Domh, and h is

quilt-affine.
2. If o ≤ kh but o 6= kh, then o is in Domsmall. Let o = kh − k′h, where k′h ∈ Nd. For each

x ∈ Domo we have x ∈ Domsmall, and so also pr(x) = x + k′h ∈ Domh. Therefore,

hwo(x) = hwo(pr(x))
= h(pr(x))
= h(x + k′h)
= ∇h · (x + k′h) +B(x + k′h)
= ∇h · x +∇h · k′h +B(x + k′h)
= ∇h · x +B′(x),

where B′(x) = ∇h · k′h +B(x + k′h). Thus hwo is quilt-affine.
3. If o ∈ Dombig, then since all x ≥ o are in Dombig, the function hwo on Domo is affine

and therefore quilt-affine with period p. C

3 Superadditive, Obliviously-Computable Functions as Quilt-Affine
Functions

In Claim 4, we showed that an obliviously-computable function f can be represented as the
min of finitely many well-ordered quilt-affine functions. However, even if f is superadditive,
the quilt-affine functions constructed in Claim 4 may not be superadditive. In this section
we strengthen that result to show in Claim 5 that if f is superadditive, then f is the min of
finitely many superadditive well-ordered quilt-affine functions, thereby proving the first half
of our main result, Theorem 1.

B Claim 5. Any superadditive, obliviously-computable function is the minimum of a finite
number of superadditive, well-ordered quilt-affine functions.

Proof. Let f : Nd → N be a superadditive, obliviously-computable function. From Claim
4, we know that f = min{hwo}, where each of the finitely many hwo : Nd → N is a non-
decreasing, well-ordered quilt-affine function. Let p be the period of the functions f and the
hwo’s. Since the hwo’s may not be superadditive, we construct a superadditive, well-ordered
quilt-affine function hs from each hwo, such that f = min{hs}.

With respect to some fixed hwo and its well-ordered domain representation, sayWOw, we
first partition the well-ordered domains into new types of domains that we will call patches.
Then we define a superadditive function hs as the union of partial affine functions on patches,
such that f(x) ≤ hs(x) ≤ hwo(x) for all x ∈ Nd. Finally we further partition the patches
into well-ordered domains to show that hs is well-ordered quilt-affine, completing the proof
of the claim.

We define a patch as follows. Let n be a congruence class mod p, i.e., n = {n+pz | z ∈ Zd},
where n ∈ Nd. The patch defined by a corner q ∈ Nd ∩ n, a finite set of excluding points
Q ⊂ Nd, and n is

P (q, Q,n) = {x ∈ Nd ∩ n | q ≤ x and x � q′,∀q′ ∈ Q}.

Figure 6 of the appendix illustrates a patch, and our overall transformation from hwo to hs.
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3:10 Composable Leaderless CRN Computation

For each domain Dom of the well-ordered representation of hwo and each congruence
class n in Zd/pZd, we cover Dom∩ n with a finite number patches as follows. Initially, let
the set Q of excluding points be the set of offsets of domains of hwo that are greater than the
offset of Dom. This ensures that only points in Dom are included in the constructed patches.
While not all of Dom∩ n is covered, select from the uncovered points the lexicographically
first minimal point q that minimizes hwo(q) − f(q). Here, by minimal q we mean that
there is no point q′ < q, q′ ∈ Dom∩ n with hwo(q′) − f(q′) ≤ hwo(q) − f(q), and if q1
and q2 are two distinct such minimal points then the lexicographically first one is the one
with the smaller value at the first index between 1 and d where the two points differ. Since
hwo(q)−f(q) ≥ 0, the minimum exists if Dom∩ n is not empty. Create the patch P (q, Q,n).
Then add q to Q (so that future patches exclude points in already-created patches), and
repeat until all points of Dom∩ n are covered.

Since the above algorithm is deterministic, for a given a patch corner, the associated set
of excluding points and congruence class are uniquely determined, so we simply refer to a
patch by its corner. Moreover, the number of patches generated by the algorithm is finite.
To see why, we use the following lemma from Angluin et al., which is in turn a corollary of
Higman’s Lemma [13].

I Lemma 6. (Angluin et al. [2], Higman [13].) Every subset of Nd under the inclusion
ordering ≤ has finitely many minimal elements.

The algorithm selects patch corners q with nondecreasing value of hwo(q)− f(q). The
function f is bounded above by hwo. So a lower bound for hwo(q)− f(q) is 0. If x0 is the
minimum point of Dom∩ n, then when x0 is selected as a patch corner the algorithm must
terminate. So the upper bound for hwo(q)−f(q) is hwo(x0)−f(x0). Since hwo(q)−f(q) is
always integral, there are at most hwo(x0)− f(x0) different values for hwo(q)− f(q) during
the algorithm. Consider the set of points q in Nd with the same value hwo(q)− f(q). By
Lemma 6 this set has a finite number of minimal points. So the number of patches produced
by the algorithm is equal to the sum of the sizes of these finite minimal point sets, summed
over the finite different values in the range 0, . . . , hwo(x0) − f(x0). Thus the algorithm
terminates after a finite number of steps, when run on each Dom∩ n, and Nd is covered by
the union of all the patches, taken over all domains of WOw and congruence classes n.

We define hs : P (q, Q,n) → N by hs(x) = hwo(x) − hwo(q) + f(q). If q is in domain
Dom of hwo’s well-ordered representation, where on domain Dom∩ n we have that hwo(x)
is the affine function hwo(x) = ∇ · x + b, then we can write

hs(x) = ∇ · x + b− hwo(q) + f(q). (3)

That is, hs : P (q, Q,n)→ N is an affine function with gradient ∇ and intercept b−hwo(q) +
f(q). Finally, we define hs : Nd → N to be the union of these partial affine functions on
patches. Next we prove several useful properties of hs.

I Lemma 7. For each patch corner q, hs(q) = f(q).

Proof. Follows directly from the definition of hs, since hs(q) = hwo(q)−hwo(q) +f(q). J

I Lemma 8. For all x ∈ Nd, hs(x) ≤ hwo(x).

Proof. Let x be in the patch with corner q. Then hs(x) = hwo(x)−hwo(q)+f(q) ≤ hwo(x),
since hwo(q) ≥ f(q). J

I Lemma 9. For all x ∈ Nd, f(x) ≤ hs(x).



H. Hashemi, B. Chugg, and A. Condon 3:11

Proof. Let x be in the patch with corner q. Then by our choice of q, hwo(q) − f(q) ≤
hwo(x) − f(x). Rearranging the terms, we have that f(x) ≤ hwo(x) − hwo(q) + f(q) =
hs(x). J

I Lemma 10. Let x,x′ ∈ Nd and let x ≤ x′. Then the gradient of hs on the patch containing
x is less than or equal to the gradient of hs on the patch containing x′.

Proof. Suppose that x and x′ are in domains Domo and Domo′ in the well-ordered domain
representation of hwo. Then since x ≤ x′, the gradient of hwo on Domo is less than or equal
to the gradient of hwo on Domo′ (the construction of Claim 4 satisfies this property). By
construction of hs in Equation (3), the gradient of hs on a patch equals the gradient of hwo
in the domain containing the patch, and so the lemma follows. J

I Lemma 11. Let x,x′ ∈ Dom∩ n, for some Dom ∈ WOw and congruence class n. Suppose
also that x ≤ x′. Then the intercept of hs on x is less than or equal to the intercept of hs on
x′.

Proof. The stated conditions of the lemma on x and x′ imply that either x and x′ are
in the same patch, or the patch containing x is constructed after the patch containing x′.
The intercepts of hs on patches within Dom∩ n are nonincreasing in the order of patch
construction. J

I Lemma 12. hs is superadditive.

Proof. Let x1 and x2 be in patches q1 and q2, respectively. Then q1 + q2 ≤ x1 + x2 and
q1 + q2 and x1 + x2 are in the same congruence class. Also, by Lemma 3, the points x1 + x2
and q1 + q2 lie in the same domain of hwo. Let x1 + x2 be in the patch with corner q.

On the patches with corners q1, q2, and q, let hs(x1) = ∇1 · x + b1, hs(x2) = ∇2 · x + b2,
and hs(x) = ∇ · x + b, respectively. By Lemma 10, ∇1 ≤ ∇ and ∇2 ≤ ∇. Also, we have that

hs(q1) + hs(q2) = f(q1) + f(q2) (by Lemma 7)
≤ f(q1 + q2) (since f is superadditive)
≤ hs(q1 + q2) (by Lemma 9)
≤ ∇ · (q1 + q2) + b,

where the last inequality follows by Lemmas 10 and 11. Then

hs(x1) + hs(x2) = hs(x1)− hs(q1) + hs(x2)− hs(q2) + hs(q1) + hs(q2)
= ∇1 · (x1 − q1) +∇2 · (x2 − q2) + hs(q1) + hs(q2)
≤ ∇ · (x1 − q1) +∇ · (x2 − q2) +∇ · (q1 + q2) + b

= ∇ · (x1 + x2) + b

= hs(x1 + x2). J

I Lemma 13. hs is well-ordered quilt-affine.

Proof. Define w′ to be the vector whose ith component w′i is maxq qi, rounded up to be 0
mod p. The domain set WOw′ is a refinement of the original domain set WOw of hwo’s
representation. Let Domo′ be one of the domains of WOw′ (where o′ ≤ w′), and let
Domo′ ⊂ Domo, where Domo ∈ WOw.

Fix any congruence class n of Zd/pZd. If Domo′ ∩ n is not empty, let m be the smallest
point in Domo′ ∩ n. Let q be the corner of the patch containing m. Note that q is in Domo.

We claim that Domo′ ∩ n is contained in the patch with corner q. This is trivially true if
Domo′ ∩ n is finite, and thus a single point. Consider the case where Domo′ is infinite. Let
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3:12 Composable Leaderless CRN Computation

x ∈ Domo′ ∩ n and let q′ be the corner of the patch containing x. We claim that q′ ≤ m.
To see why, note that if xi > mi then it must be that mi ≥ w′i and by our choice of w′,
q′i ≤ mi. Otherwise, xi ≤ mi and so q′i ≤ xi ≤ mi. But then q = q′, since q is the corner of
the patch containing m. Therefore all of Domo′ ∩ n is in the patch with corner q. It follows
that hs on domain Domo′ ∩ n is a single affine function, namely that associated with the
patch with corner q. Moreover, the gradient of this function is the gradient of the function
hwo on domain Domo ∈ WOw. Since this is true for any congruence class n, the function
hs on domain Domo′ is a quilt-affine function whose gradient is the same as that of f on
Domo, completing the proof. J

From Lemmas 8 and 9, we have that f = min{hs} where the min is taken over a finite
number of functions hs. Moreover, from Lemma 12, each hs is superadditive and from
Lemma 13, each hs is well-ordered quilt-affine. The proof of Claim 5 follows. C

4 A Leaderless Output-Oblivious CRN for Superadditive,
Obliviously-Computable Functions

Here we show the second half of our main result, Theorem 1, by constructing a leaderless,
output-oblivious CRN for any superadditive, well-ordered quilt-affine function.

B Claim 14. Any superadditive, well-ordered quilt-affine function can be stably computed
by a leaderless, output-oblivious CRN.

Proof. Let f : Nd → N be a superadditive, obliviously-computable function. From Claim 5,
we know that f = min{hs}, where each of the finitely many hs is a superadditive, well-ordered
quilt-affine function. Below we show that any such function has a leaderless, output-oblivious
CRN, say Chs. A leaderless, output-oblivious CRN for f can then be obtained from the
Chs’s via the following steps: (i) for each function hs, create a unique replica Xhs,i of each
input species Xi ; (ii) adapt Chs by replacing input species Xi by the replica Xhs,i, in every
reaction and for each i and replacing the output species Y of Chs with Yhs in every reaction;
and (iii) adding the reaction

∑
hs Yhs → Y , which implements the min function.

Fix any superadditive, well-ordered quilt-affine function h, and a representation of h
with well-ordered domain set WOw and period p ∈ N+. To simplify our proof we will
assume without loss of generality that p > 1. Recall that there is one domain Domo in h’s
representation for each o ≤ w. We partition these domains by taking intersections with
congruence classes mod p. For each Domo ∈ WOw and each congruence class x of Zd/pZd

such that Domo ∩ x is non-empty, let m = m(o,x) be the minimum point in the subdomain
Domo ∩ x, and denote this subdomain by Dom′m. Let N be the set of all such m. By our
assumption that p > 1, it must be that all unit vectors ei are in N , 1 ≤ i ≤ d. Since h is
quilt-affine with period p, we have that h(x) on Dom′m is a partial affine function, which we
denote by hm(x) = ∇m(x) + bm, where ∇m = ∇o if m = m(o,x).

Our CRN has input species X1, X2, . . . , Xd and an output species Y . We will use x
to denote the vector of counts of input species consumed, and y to denote the number of
Y ’s produced, during an execution of the CRN. Our CRN also has a leader species Lm for
m ∈ N , and a distance species Pm,i for each m ∈ N and each i ∈ {1, . . . , d}. We will use
#Lm and #Pm,i to denote counts of leader and distance species, during an execution of the
CRN.

The leader and distances species will track how much input has been consumed by
reactions. To build intuition on how this works, it may be helpful first to imagine that there
is just one leader. In this case, if the input x consumed so far is in domain Dom′m, then our
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reactions will ensure that the leader is Lm and that for 1 ≤ i ≤ d, #Pm,i = (xi −mi)/p, i.e.,
the distance of the consumed input x from m, along the ith dimension. (Since x ∈ Dom′m,
xi −mi is a multiple of p.) Thus,

x = m + p
∑

1≤i≤d

#Pm,i × ei.

Generalizing to the leaderless scenario, consumption of input will produce many leaders;
we can imagine that the consumed input is distributed over many domains Domm. Our
reactions will ensure that a generalization of the above equality holds:

x =
∑

m∈N

#Lm ×m + p
∑

i∈{1,...,d}

#Pm,i × ei

 , (4)

and we call the term on the right hand side of this invariant the input value of the CRN
configuration. The invariant trivially holds initially since both x and the input value are 0.
Our reactions will also maintain the following output invariant:

y =
∑

m∈N

#Lm × h(m) +
∑

i∈{1,...,d}

#Pm,i ×∇m,i

 . (5)

We call the term on the right hand side of this invariant the output value. Initially both y
and the output value are 0. We will show that once our CRN stabilizes, the output value is
the function h applied to the input value, and so these invariants ensure that y = h(x) upon
stabilization.

Our CRN has three types of reactions. We next describe these, and show that each
respects the input and output invariants. Figure 4, included in the appendix, shows an
example of a function h, a quilt-affine representation and the partitioning of the quilt-affine
domains (via intersections with congruence classes), and Figure 5, also in the appendix,
illustrates part of our CRN construction for the function of Figure 4.

4.1 Input-Consuming Reactions
These reactions consume inputs and produce leader species. There is one reaction for each
i, 1 ≤ i ≤ d:

Xi → Lei
+ h(ei)× Y.

This reaction consumes input ei, and recall that by our assumption that p > 1, ei ∈ N . So,
no distance species are needed to ensure that the input invariant holds. Producing h(ei) Y’s
ensures that the output invariant holds.

4.2 Merge Reactions
Merge reactions reduce the number of leader species, effectively electing a single leader:

Lm + Lm′ → Lm′′ + δ × Y +
∑

j∈{1..d}

δ′jPm′′,j .

Here, m′′ is chosen such that Dom′m′′ contains m + m′. To ensure that the input invariant
holds upon a merge reaction, we choose δ′j = (nj + n′j − n′′j )/p. Plugging this value into the
input invariant (4) shows that the input value is unchanged, which is necessary since no
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3:14 Composable Leaderless CRN Computation

input is consumed. To ensure that the output invariant holds, we set δ to be equal to the
change in the output value as a result of the reaction (increase due to addition of products
minus decrease due to removal of reactants):

δ = h(m′′) + p
∑

j∈{1..d} δ
′
j ×∇m′′,j − h(m)− h(m′)

= h(m + m′)− h(m)− h(m′).

In this case, δ is non-negative because f is superadditive.

4.3 Exchange Reactions
The exchange reactions ensure that, once there is a single leader molecule, say Lm, eventually
all of the distance species Pm′,i are such that m′ = m. Let m and m′ be in N , with m 6= m′.
Let m and m′ be in the well-ordered domains of WOw with offsets o and o′, respectively.
Recall that ∇m = ∇o and ∇m′ = ∇o′ . Suppose without loss of generality that o ≤ o′ (in
which case ∇o ≤ ∇o′), and that if o = o′ then m ≤m′. Then we add the following reactions,
for 1 ≤ i ≤ d:

Lm + Pm′,i → Lm + δ × Y + Pm,i.

Each exchange reaction preserves the input invariant because the input value is unchanged
and no input is consumed. To ensure that the output invariant holds, we set δ to equal the
change in the output value as a result of the reaction (increase due to addition of products
minus decrease due to removal of reactants):

δ = h(m) + p∇m,i − h(m)− p∇m′,i

= p(∇m,i −∇m′,i)
= p(∇o,i −∇o′,i)
≥ 0, since ∇o ≥ ∇o′ .

This completes the description of the reactions of the CRN.

4.4 Correctness
A “leader dominance” invariant that is maintained by all reactions is that for any Pm′,i

with positive count, there is also some leader Lm with positive count, such that if Domo
and Domo′ are the well-ordered domains containing m and m′, respectively then o ≥ o′.
The input consuming and exchange reactions trivially maintain this invariant. Consider a
merge reaction with reactants Lm and Lm′ that produces Lm′′ . Suppose that m, m′, and
m′′ are in the well-ordered domains with offsets Domo, Domo′ and Domo′′ , respectively.
Then by Lemma 3, since Dom′m′′ contains m + m′, Domo′′ must contain o + o′. Therefore,
o′′ = (o+o′)�w, where we use � to denote the element-wise min. So it must be that o′′ ≥ o′,
and the leader dominance invariant must hold upon a merge reaction.

Next we show that the CRN stabilizes. First note that eventually all input species are
consumed by the input-consuming reactions, at which point no more leaders will be produced.
Also, eventually there is exactly one leader, because of the merge reactions. At this point, the
only possible reactions are exchange reactions. Each exchange reaction reduces the number
of Pm′,i with m′ 6= m. By the leader dominance invariant, this number will eventually reach
zero, at which point no more exchange reactions are possible.
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Suppose that, once no more reactions are possible, the leader is Lm, in which case the
only distance species with count greater than zero are species Pm,i for some i. As a result,
we have that

y = h(m) + p
∑

i∈1..d #Pm,i ×∇m,i from the output invariant
= h(m)∇np(

∑
i∈1..d #Pm,i × ei + m−m)

= h(m) +∇m × (x−m) from the input invariant
= h(x).

This ensures that the output is correct once the CRN has stabilized, completing the proof.
C

5 Conclusion

We have classified the functions f : Nd → N which are stably computable by CRNs that
are (a) leaderless, and (b) never consume their own output. This result sheds light on the
fundamental limitations of discrete CRNs. Indeed, together with previous work on CRNs with
leaders [16], this has completed the classification of functions which are stably computable by
output-oblivious CRNs – with and without leaders. Such results inform the larger question
of composability in this model of computation, and to what extent such systems can be
comprised of smaller, modular components.

While composition with guaranteed correctness seems dubious for functions which are
not output-oblivious, we emphasize that there are nevertheless routes to composition with a
high probability of correctness. Phase-clocks for example, a ubiquitous tool in population
protocols (e.g., [3, 12, 1]), may be used to prohibit a CRN from being activated for some
number of time steps. Kosowski and Uznański recently demonstrated how to build hierarchies
of phase clocks; these could be leveraged to construct an arbitrarily long series of CRN
compositions [14].

A question raised by our results is the extent to which the theory of discrete and continuous
CRNs can be reconciled. As mentioned in the introduction, our results mirror those for
continuous CRNs, but our techniques are quite distinct. It would be useful to know whether
and under what conditions certain statements apply to both models. Is their a theoretical
framework allowing both continuous and discrete CRNs to be studied simultaneously?

A separate question is whether CRNs which compute output-oblivious functions, but are
not themselves output-oblivious, can be augmented with reactions to make them so. For
CRNs implemented as strand displacement systems, for instance, it may be easier to add
reactions than to change the underlying network entirely. Understanding the limitations
of being able to edit in this way would shed light on the possibility of building CRNs
incrementally instead of requiring that the design be understood beforehand.
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A Appendix

h(x1, x2) =


x1, x2 = 0
x2, x1 = 0
h′(x1, x2), x1 ≥ 1, x2 ≥ 1.

(a) A superadditive, output-oblivious function h, where h′(x1, x2) = 2x1 + 2x2 − ((x1 + x2)
mod 2).

h(x1, x2) =


0, (x1, x2) ∈ Dom00 = {(0, 0)}
x1, (x1, x2) ∈ Dom01 = {(x1, 0) + (1, 0) | x1 ∈ N}
x2, (x1, x2) ∈ Dom10 = {(0, x2) + (0, 1) | x2 ∈ N}
h′(x1, x2), (x1, x2) ∈ Dom11 = {(x1, x2) + (1, 1) | x1, x2 ∈ N}.

(b) A well-ordered, quilt-affine representation of h. The domain set WOw has period 2,
w = 11 and contains four domains Domo as shown, for o ∈ {00, 01, 10, 11}.

h(x1, x2) =



0, (x1, x2) ∈ Dom′00 = Dom00 ∩ 00
x1, (x1, x2) ∈ Dom′01 = Dom01 ∩ 01
x1, (x1, x2) ∈ Dom′02 = Dom01 ∩ 00
x2, (x1, x2) ∈ Dom′10 = Dom10 ∩ 10
x2, (x1, x2) ∈ Dom′20 = Dom10 ∩ 00
2x1 + 2x2, (x1, x2) ∈ Dom′11 = Dom11 ∩ 11
2x1 + 2x2 − 1, (x1, x2) ∈ Dom′12 = Dom11 ∩ 10
2x1 + 2x2 − 1, (x1, x2) ∈ Dom′21 = Dom11 ∩ 01
2x1 + 2x1, (x1, x2) ∈ Dom′22 = Dom11 ∩ 00

(c) Representation of h on nonempty domains of the form Dom′n = Dom′n(o,z) = Domo ∩ z,
for each congruence class z of Z2/2Z2, where z = {2(x1, x2) + z | x1, x2 ∈ N} for each

z = 00, 01, 10, 11, and n = n(o, z) is the minimum point in Domo ∩ z.

Figure 4 (a) A superadditive, output-oblivious function h. (b) Quilt-affine representation of h.
(c) Representation of h used in our leaderless CRN construction. Here as in Figure 5, we use strings
to denote vectors, e.g. 11 denotes (1, 1).
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3:18 Composable Leaderless CRN Computation

Input-consuming Sample Merge Sample Exchange
Reactions Reactions (involving L01 or L11) Reactions (involving L11 or L22)

X1 → L10 + Y

X2 → L01 + Y

L01 + L10 → L11 + 2Y
L01 + Lx1 → Lx2, x ∈ {0, 1}
L01 + L21 → L22 + 2Y
L01 + L02 → L01 + P01,2

L01 + Lx2 → Lx1 + 2Y + Px1,2, x ∈ {1, 2}

L11 + L01 → L21

L11 + L11 → L22

L11 + L21 → L12 + P21,1

L11 + L12 → L21 + P21,2

L11 + L22 → L11 + 2Y + P11,x, x ∈ {1, 2}

L11 + P01,x → P11,x + 2Y
L11 + P10,x → P11,x + 2Y

L22 + P01,x → P22,x + 2Y
L22 + P10,x → P22,x + 2Y
L22 + P11,x → P22,x

L22 + P21,x → P22,x

L22 + P12,x → P22,x

Figure 5 Sample reactions of the leaderless, output-oblivious CRN for the function h of Figure 4,
obtained from our construction of Claim 14.

(a) (b)

(c) (d)

Figure 6 (a) An output-oblivious function f(x). (b) By Claim 4, the function f of part (a)
can be written as f = min{hwo}, where each of the finitely many functions hwo is nondecreasing,
well-ordered quilt-affine. One of these functions is shown here. This function happens to be quite
simple, with period 1 and one domain, namely N2, and f = hwo on the red line shown in part (a).
(c) The superadditive, obliviously-computable function hs that is derived from the function hwo of
part (b) via the construction of Claim 5. Patch corners are shown as red dots. The function hs has
the same gradient as hwo on each patch, but has different intercepts. (d) Each coloured region is a
patch on N2 (i.e., the congruence class has period 1). These patches correspond to the corners of
part (c).
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