4 research outputs found

    Modelling and Control of Chemical Processes using Local Linear Model Networks

    Get PDF
    Recently, technology and research in control systems have made fast progress in numerous fields, such as chemical process engineering. The modelling and control may face some challenges as the procedures applied to chemical reactors and processes are nonlinear. Therefore, the aim of this research is to overcome these challenges by applying a local linear model networks technique to identify and control temperature, pH, and dissolved oxygen. The reactor studied exhibits a nonlinear function, which contains heating power, flow rate of base, and the flow rate of air as the input parameters and temperature, pH, and dissolved oxygen (pO2) the output parameters. The local linear model networks technique is proposed and applied to identify and control the pH process. This method was selected following a comparison of radial basis function neural networks (RBFNN) and adaptive neuro-fuzzy inference system (ANFIS). The results revealed that local linear model networks yielded less mean square errors than RBFNN and ANFIS. Then proportional-integral (PI) and local linear model controllers are implemented using the direct design method for the pH process. The controllers were designed on the first order pH model with 4 local models and the scaling factor is 20. Moreover, local linear model networks are also used to identify and control the level of dissolved oxygen. To select the best method for system identification, a gradient descent learning algorithm is also used to update the width scaling factor in the network, with findings compared to the manual approach for local linear model networks. However, the results demonstrated that manually updating the scaling factor yielded less mean square error than gradient descent. Consequently, PI and local linear model controllers are designed using the direct design method to control and maintain the dissolved oxygen level. The controllers were designed on first and second order pO2 model with 3 local models and the scaling factor is 20. The results for the first order revealed good control performance. However, the results for second order model lead to ringing poles which caused an unstable output with an oscillation in the input. This problem was solved by zero cancellation in the controller design and these results show good control performance. Finally, the temperature process was identified using local linear model networks and PI and local linear model controllers were designed using the direct design method. From the results, it can be observed that the first order model gives acceptable output responses compared to the higher order model. The control action for the output was behaving much better on the first order model when the number of local models M=4, compared with M=3 and M=5. Furthermore, the results revealed that the mean square error became less when the number of local models M=4 in the controller, compared with having number of local models M=3 and M=5

    Nonlinear dynamic process monitoring using kernel methods

    Get PDF
    The application of kernel methods in process monitoring is well established. How- ever, there is need to extend existing techniques using novel implementation strate- gies in order to improve process monitoring performance. For example, process monitoring using kernel principal component analysis (KPCA) have been reported. Nevertheless, the e ect of combining kernel density estimation (KDE)-based control limits with KPCA for nonlinear process monitoring has not been adequately investi- gated and documented. Therefore, process monitoring using KPCA and KDE-based control limits is carried out in this work. A new KPCA-KDE fault identi cation technique is also proposed. Furthermore, most process systems are complex and data collected from them have more than one characteristic. Therefore, three techniques are developed in this work to capture more than one process behaviour. These include the linear latent variable-CVA (LLV-CVA), kernel CVA using QR decomposition (KCVA-QRD) and kernel latent variable-CVA (KLV-CVA). LLV-CVA captures both linear and dynamic relations in the process variables. On the other hand, KCVA-QRD and KLV-CVA account for both nonlinearity and pro- cess dynamics. The CVA with kernel density estimation (CVA-KDE) technique reported does not address the nonlinear problem directly while the regular kernel CVA approach require regularisation of the constructed kernel data to avoid com- putational instability. However, this compromises process monitoring performance. The results of the work showed that KPCA-KDE is more robust and detected faults higher and earlier than the KPCA technique based on Gaussian assumption of pro- cess data. The nonlinear dynamic methods proposed also performed better than the afore-mentioned existing techniques without employing the ridge-type regulari- sation

    30th International Conference on Condition Monitoring and Diagnostic Engineering Management (COMADEM 2017)

    Get PDF
    Proceedings of COMADEM 201

    Safety and Reliability - Safe Societies in a Changing World

    Get PDF
    The contributions cover a wide range of methodologies and application areas for safety and reliability that contribute to safe societies in a changing world. These methodologies and applications include: - foundations of risk and reliability assessment and management - mathematical methods in reliability and safety - risk assessment - risk management - system reliability - uncertainty analysis - digitalization and big data - prognostics and system health management - occupational safety - accident and incident modeling - maintenance modeling and applications - simulation for safety and reliability analysis - dynamic risk and barrier management - organizational factors and safety culture - human factors and human reliability - resilience engineering - structural reliability - natural hazards - security - economic analysis in risk managemen
    corecore