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Abstract

The application of kernel methods in process monitoring is well established. How-

ever, there is need to extend existing techniques using novel implementation strate-

gies in order to improve process monitoring performance. For example, process

monitoring using kernel principal component analysis (KPCA) have been reported.

Nevertheless, the effect of combining kernel density estimation (KDE)-based control

limits with KPCA for nonlinear process monitoring has not been adequately investi-

gated and documented. Therefore, process monitoring using KPCA and KDE-based

control limits is carried out in this work. A new KPCA-KDE fault identification

technique is also proposed.

Furthermore, most process systems are complex and data collected from them have

more than one characteristic. Therefore, three techniques are developed in this

work to capture more than one process behaviour. These include the linear latent

variable-CVA (LLV-CVA), kernel CVA using QR decomposition (KCVA-QRD) and

kernel latent variable-CVA (KLV-CVA).

LLV-CVA captures both linear and dynamic relations in the process variables. On

the other hand, KCVA-QRD and KLV-CVA account for both nonlinearity and pro-

cess dynamics. The CVA with kernel density estimation (CVA-KDE) technique

reported does not address the nonlinear problem directly while the regular kernel

CVA approach require regularisation of the constructed kernel data to avoid com-

putational instability. However, this compromises process monitoring performance.

The results of the work showed that KPCA-KDE is more robust and detected faults

higher and earlier than the KPCA technique based on Gaussian assumption of pro-

cess data. The nonlinear dynamic methods proposed also performed better than

the afore-mentioned existing techniques without employing the ridge-type regulari-

sation.
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Introduction 1

Chapter 1

Introduction

The subject of the research work reported in this thesis is the development and testing

of kernel-based multivariate statistical algorithms for monitoring nonlinear dynamic

processes. This introduction chapter provides the background to the work and at-

tempts to address how the work fits into the broader context of the process monitoring

and control discipline.

As a result of technological development, modern process facilities have become

larger, more complex and highly integrated. At the same time, the regulations that

govern their operations are now more stringent. Therefore, the need to operate these

facilities in an efficient but sustainable manner has become more challenging and

critical.

Although process controllers are able to compensate for a number of disturbances

that occur in a process, there are some process changes or faults which controllers

cannot handle adequately (Russel et al., 2000). These include faulty actuators or

analysers, contaminated sensors, leaks, clogged filters, changing feedstock properties,

degraded catalysts, etc. If they are not detected and corrected in time, these faults

can cause equipment malfunction or failure, unscheduled plant or unit shut-downs,

poor product quality, industrial accidents, devastating environmental impacts and

huge financial losses.
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In large complex industrial plants with automatic data acquisition facilities, several

variables are measured and data are recorded very frequently. Therefore, the total

amount of data collected during routine plant operations have increased dramati-

cally. The sheer volume of data makes it difficult for human operators to react to

faults appropriately. Thus, the benefits gained from closer process management due

to increased data availability can often be offset by losses arising from time spent

in dealing with unexpected situations. Furthermore, the large volume of data or in-

formation generated from the plethora of process measurements has also increased

the pressure on human operators to make very important and complex decisions

often within a very short interval of time. However, information overload can make

human operators prone to making decisions and taking actions that make things

even worse in their attempt to correct faults. Incidents like Three Mile Island,

Bhopal, and Chernobyl (Lees, 2005) are tragic examples of faults that turned into

disasters, partly due to wrong actions on the part of operators, who were probably

overwhelmed by too much information. Hence, the development of effective pro-

cess monitoring techniques that enable automated fault detection and diagnosis in

industrial systems is desirable.

Proper process monitoring will ensure timely detection of abnormal situations and

give room for early intervention. This will improve safety, product quality, safeguard

the environment and enhance overall system reliability. Prevention of equipment

malfunctions or failures and associated cost and downtime will improve economic

savings significantly and increase profitability. These incentives have spurred the

study and development of automatic process monitoring methods starting from the

early 1970s (Isermann and Ballé, 1997). Furthermore, research in data-driven pro-

cess monitoring methods have received much attention in the last 25 years resulting

in the development of several multivariate statistical methods (Saxen et al., 2013;

MacGregor and Cinar, 2012; Yin et al., 2014; Ding et al., 2013; Dai and Gao, 2013).
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1.1 Process monitoring tasks

Process monitoring is the checking of measurable variables against tolerances and

raising alarms for operator action when a tolerance is exceeded (Isermann, 2005).

The goal of process monitoring is to detect, identify and diagnose faults timely so

that appropriate actions are taken to remove assignable cause(s) while the process is

still controllable. Consequently, process monitoring is associated with the following

tasks (Raich and Cinar, 1996): fault detection, fault identification, fault diagnosis

and process recovery or intervention (Fig. 1.1).

Figure 1.1: Flowchart showing four general process monitoring tasks. When fault
is detected, the variables associated with fault are first identified and the process is
recovered after determining the source of the fault (fault diagnosis) and removing
it.

• Fault detection : determining the occurrence of a fault.

• Fault identification : identifying the variables immediately impacted by a

fault.

• Fault diagnosis : determining the source of the fault.

• Process recovery or intervention : removing the effect of the fault.

It is necessary to note here, that the terminology associated with process moni-

toring lacks consistency in the fault detection and diagnosis (FDD) literature. For

instance, Isermann and Ballé (1997) defines fault diagnosis as the determination of

the nature, time, locality and extent of a given fault. An alternative viewpoint is

that fault diagnosis consists of fault isolation and fault identification (see Gonzalez
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and Castanon, 2011, pg. 99). According to this viewpoint, fault isolation is the de-

termination of the faulty component while fault identification is the determination

of the magnitude of the fault. In this context, the term fault detection and isolation

(FDI) is adopted when the identification task is not deemed to justify the effort. In

some cases, “diagnosis” is used only as a synonym to “isolation” (Gertler, 1998, pg.

3).

1.2 Motivation of the research

Techniques based on multivariate statistics are well suited for monitoring large com-

plex processes. These approaches which are generally referred to as multivariate

statistical process monitoring (MSPM) methods or statistical process control (SPC)

can be used to process multidimensional data and account for correlation or redun-

dant information in data. MSPM approaches are more effective and more efficient

than univariate methods. Univariate methods deal with only one variable at a

time. Therefore, they lack the ability to describe relationships between variables in

a dataset. Furthermore, multivariate statistical techniques can be used to perform

dimensionality reduction. Hundreds or even thousands of highly correlated variables

can be reduced to a few latent variables without sacrificing critical information. The

lower dimensional data can be further reduced to three, two or even one monitoring

measure(s). This simplifies the monitoring process and improves working conditions

by helping operators to focus on fewer variables to monitor.

Nevertheless, traditional MSPM techniques such as principal component analysis

(PCA) (Wold et al., 1987; Jolliffe, 2002) and partial least squares (PLS) (Wilson and

Irwin, 2000; Muradore and Fiorini, 2012) assume that the process being monitored

is linear and static. On the contrary, nonlinearity and dynamics exist widely in

the process industry. Therefore, traditional MSPM techniques perform poorly in

practice (Yin et al., 2012). Hence, there is need to develop process monitoring

algorithms that effectively capture process nonlinearity and dynamics in order to

improve monitoring performance (Chen, 2013; Yang et al., 2012). This need serves
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as part of the motivation for this research work.

To address the nonlinearity problem, traditional techniques such polynomials, splines,

and neural networks (NNs) have been used (Mathews, 1991; Wold, 1992; Kramer,

1992; Haykin, 1999). However, many of these approaches involve iterative nonlinear

solution methods and/or are computationally expensive. In particular, NNs suffer

from long-time training, slow convergence and local minima (Gou and Fyfe, 2004).

More recently, kernel methods, have gained popularity as an attractive framework

for tackling nonlinear problems (Schölkopf and Smola, 2002; Shawe-Taylor and Cris-

tianini, 2004). The key principle of kernel methods which is also the main motivation

for using kernel methods in this work is the kernel trick.

The kernel trick is based on the fact that many data processing approaches depend

on the inner products between data samples; not on the individual data samples.

It is therefore possible to develop a nonlinear extension of a linear algorithm by

mapping the original data into a high-dimensional feature space via a nonlinear

mapping and reformulating the algorithm in a way that needs only values of the

inner products in the feature space. In kernel methods, the inner products of the

mapped samples in the high dimensional feature space are defined by using a kernel

function of the corresponding samples in the original data space (Qin, 2012; Honeine

and Richard, 2011a). Hence, kernel algorithms are very efficient and do not involve

high computational complexity.

Valid kernels can be constructed for even non vectorial data such as strings and

graphs by simply replacing the classical inner product by an appropriate similarity

measure for the data. Therefore, kernel methods have extended the use of classi-

cal algorithms to many situations where data cannot be readily represented in a

vectorial form by directly working with pairwise distances or similarities between

non-vectorial objects (Duin et al., 1998).

Kernel methods were proposed by Vapnik in Support Vector Machines, SVMs (Vap-

nik, 2000) but are now employed in classification (Mika, Ratsch, Weston, Schölkopf

and Muller, 1999), regression (Rosipal and Trejo, 2002), bioengineering (Camps-
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Valls et al., 2006), and image de-noising (Mika, Schölkopf, Smola, Müller, Scholz

and Rätsch, 1999). Successful application of kernel methods have also been re-

ported in time series prediction (Richard et al., 2009), novelty detection (Schölkopf

et al., 1999), and process condition monitoring (Lee et al., 2004; Choi et al., 2005;

Tan et al., 2010).

1.3 Research gaps

Although kernel-based process monitoring is not new, the need for extending ex-

isting approaches and developing alternative implementation strategies to improve

monitoring performance still exist. For example, a number of nonlinear process

monitoring studies using kernel PCA (KPCA) have been reported. Nevertheless,

the effect of combining kernel density estimation (KDE)-based control limits with

KPCA for nonlinear process monitoring has not been adequately investigated and

documented. Hence, a study on process monitoring using KPCA and KDE-based

control limits is carried out in this work. In particular, the performance and ro-

bustness of KPCA-KDE-based process monitoring is determined and the results

obtained are compared with results obtained with KPCA and control limits based

on the assumption of normally distributed process data.

Furthermore, due to the nonlinear transformation involved in kernel methods, till

date, fault identification is still an unsolved problem in kernel-based nonlinear pro-

cess monitoring (Deng et al., 2013). The techniques reported in the literature are

computationally expensive and difficult to generalise. Consequently, a new KPCA-

KDE-based fault identification process is proposed in this thesis.

More importantly, very limited research has been reported on the use of kernel

methods in nonlinear dynamic process monitoring. The dynamic principal compo-

nent technique proposed by Choi and Lee (2004) does not capture process dynamics

adequately. Conversely, canonical variate analysis (CVA) is reported to be an ef-

ficient multivariate approach for monitoring dynamic systems (Ruiz-Cárcel et al.,
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2015) but it does not address nonlinearity. The CVA with KDE technique proposed

by Odiowei and Cao (2010) to adapt the CVA for nonlinear dynamic process moni-

toring did not address the nonlinear problem directly. On the other hand, directly

applying the kernel canonical correlation analysis (KCCA) algorithm to dynamic

systems result in singular kernel matrices which require regularisation in order to

avoid potential computational instabilities (Huang et al., 2009; Schölkopf and Smola,

2002; Giantomassi et al., 2014). Furthermore, such an approach often leads to poor

process monitoring performance.

To address the above problems, two new kernel-based methods are proposed in this

thesis for nonlinear dynamic process monitoring. These techniques address both

nonlinearity and process dynamics directly and do not require the determination of

an optimum regularisation parameter value to perform well.

1.4 Aim and objectives

The main aim of this work is to develop and test kernel-based multivariate statistical

algorithms for improved nonlnear dynamic process monitoring. Specifically, the

objectives of this research are to:

1. Study the effect of combining kernel density estimation (KDE)-based confi-

dence limits with KPCA for nonlinear process monitoring instead of using

confidence limits based on the Gaussian assumption.

2. Develop a novel kernel-based approach for fault identification in a nonlinear

process.

3. Develop the linear latent variable-CVA (LLV-CVA) approach for monitoring

linear dynamic processes.

4. Develop a new kernel CVA technique based on QR decomposition.

5. Develop the kernel latent variable-CVA (KLV-CVA) approach for monitoring

nonlinear dynamic processes.
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6. Evaluate the fault detection performance of the techniques developed.

7. Carry out comparison study of the developed approaches with existing meth-

ods.

1.5 Publications

Four conference papers and one journal article have resulted from this work. A

second journal paper has been submitted.

Conference papers

Samuel, R.T. and Cao, Y. (2014), Fault detection in a multivariate process based on

kernel PCA and kernel density estimation, 20th International Conference on Automa-

tion and Computing (ICAC) Cranfield, Bedfordshire, United Kingdom, September

12-13, pp. 146-151.

Samuel, R. T. and Cao, Y. (2015), Kernel canonical variate analysis for nonlinear

dynamic process monitoring, 9th International Symposium on Advance Control of

Chemical Processes, Whistler, British Columbia, Canada, June 7-10, pp. 606-611.

(This paper was awarded as the best presentation paper at the conference).

Samuel, R.T. and Cao, Y. (2015), Improved Kernel Canonical Variate Analysis for

Process Monitoring, 21st International Conference on Automation and Computing

(ICAC), University of Strathclyde, Glasgow, UK, September 11-12, pp. 341-346.

Samuel, R. T. and Cao, Y. (2016), Dynamic latent variable modelling and fault

detection of Tennessee Eastman challenge process, IEEE International Conference

on Industrial Technology (ICIT), Taipei, Taiwan, March 14-17.
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Journal articles

Samuel, R. T. and Cao, Y. (2016), Nonlinear process fault detection and identifica-

tion using kernel PCA and kernel density estimation, Systems Science and Control

Engineering, 4(1), 165-174.

Samuel, R. T. and Cao, Y., Kernel latent variable CVA for nonlinear dynamic pro-

cess monitoring, IEEE International Transaction on Industrial Informatics - Sub-

mitted.

1.6 Thesis outline

This thesis consists of seven chapters. The first two chapters are introduction and

an overview of process monitoring methods respectively. Chapters 3 to 6 contain in-

dividual algorithms developed in this thesis. These chapters employ the kernel prin-

ciple except Chapter 4 which is a linear dynamic method. All of the four chapters

are presented in a journal publication style commonly used in the process monitor-

ing literature - introduction, methodology and application study. The application

study section covers algorithm testing, results/discussion and concluding remarks.

Chapter 7 summarises the conclusions drawn from the work and highlights recom-

mendations for future work. A summary of each of the seven chapters is presented

below.

Chapter 1: Introduction

In Chapter 1 the background and motivation of the thesis is presented. The gap

this research work seeks to address, the aims and objectives of the work are also

presented in this chapter. The chapter ends with a thesis outline.
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Chapter 2: Overview of process monitoring methods

Chapter 2 gives an overview of process monitoring methods. Some basic definitions

and the theory of kernel functions is also presented in this chapter.

Chapter 3: Nonlinear process fault detection and identification using

kernel PCA and kernel density estimation

In Chapter 3, the kernel KPCA with KDE technique is developed and evaluated.

Fault detection and identification performance as well as robustness of the technique

are assessed and compared with KPCA based on the Gaussian assumption.

Chapter 4: Statistical process monitoring using linear latent variable

CVA

It is possible for a process to posses both linear and dynamic properties. A technique

capable of capturing both of these properties is therefore necessary. In this chapter,

the linear latent variable technique (LLV-CVA) is developed to address this case.

The effectiveness of the techniques is assessed and compared with the DPCA and

CVA using the TE process.

Chapter 5: Kernel canonical variate analysis using QR decomposition

Chapter 5 is dedicated to the development of the kernel CVA technique based on

QR decomposition. The approach is also tested on the Tennessee Eastman process

and the results are presented.
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Chapter 6: Kernel latent variable CVA for nonlinear dynamic process

monitoring

Chapter 6 addressed the development of kernel latent variable CVA (KLV-CVA)

for monitoring nonlinear dynamic processes. The technique is tested on the three

difficult faults (3, 9 and 15) of the TE process. The performance of the technique

is compared with the traditional KCVA based on KCCA and the kernel dynamic

PCA (KDPCA).

Chapter 7: Conclusions and future work

This chapter summarizes how the objectives of the research were fulfilled. The

contributions and limitations of this work are also presented in this chapter. The

chapter ends with some recommendations for future work.
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Chapter 2

Overview of Process Monitoring

Methods and Positive Definite

Kernels

An overview of process monitoring methods is presented in this chapter. The chap-

ter also provides some relevant definitions and the theory of kernel functions - the

key ingredient of kernel methods. The concept of reproducing kernel Hilbert spaces,

nonlinear mapping and the feature space, and the general implementation strategy

implied in kernel methods are discussed. Common examples of kernels and kernel-

based algorithms are also presented.

Process monitoring methods may be classified into three categories: data-based,

knowledge-based and model-based (Chiang et al., 2001). An elaborate discussion

and description of these categories is captured in a three-part series by Venkata-

subramanian and other researchers published in 2003. The different monitoring

categories are reviewed in this section.
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2.1 Model-based methods

Model-based or analytical approaches are based on explicit mathematical models

of the monitored plant (Isermann, 1984). These fundamental models describe the

internal dynamics and explain the behaviour of the process based on physical, chem-

ical or biological laws. Most model-based fault detection and diagnosis methods are

based on the concept of analytical redundancy. This involves comparing measured

performance or outputs with analytically predicted or estimated outputs. It can also

mean comparing values of two analytically computed quantities from different sets

of variables. This is in contrast to physical redundancy which involves comparing

measurements obtained from several sensors. In analytical redundancy methods, the

occurrence of a fault is captured by the difference between the plant output and the

model prediction or estimate (that is, the residual). Thus, residuals can be thought

of as “artificial signals” that reflect possible faults of the process. Techniques such

as parameter estimation (Isermann, 1993), observer based design (Frank, 1990) or

parity relations (Xiong et al., 2006) are used to generate the residuals.

The analytical redundancy approach in model-based fault detection and diagnosis

consists of two key stages: residual generation and residual evaluation (see Fig. 2.1).

In the residual generation stage, the difference between the system and model out-

puts is generated. On the other hand, in the residual evaluation stage, the decision

rules used for analysing the residuals to arrive at the monitoring decisions are chosen.

This stage is essentially the decision making stage.

Figure 2.1: Flowchart showing the stages of a model-based fault detection and
diagnosis procedure. Residuals are generated from the difference between system
and model outputs. The residuals are then evaluated using specified rules for a
decision to made whether or not a fault has occurred.

Due to the effect of noise and modelling errors, the residuals may not be zero even
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if no fault exists. Hence, residuals are usually tested against empirically or theoreti-

cally derived thresholds to detect the presence of faults. The four residual generation

methods associated with model-based process monitoring listed in Chapter 1 are now

presented.

2.1.1 Kalman filter

The generation of residuals by Kalman filters for fault detection and diagnosis was

introduced by Mehra and Peschon (1971). This technique is a recursive data pro-

cessing algorithm that uses series of measurements observed over time which contain

statistical noise and inaccuracies to estimate unknown variables. The difference be-

tween the process measurement and the algorithm output (prediction error) is used

to monitor the process. Fault diagnosis is done by carrying out statistical tests on

whiteness, mean and covariance of the residuals (Hwang et al., 2010). Statistical

tests based on the Kalman filter framework are easy to construct because the resid-

uals form uncorrelated time-series. Nevertheless, fault diagnosis is believed to be

awkward as it requires running one filter for every suspected fault and for every

possible arrival time. In addition, filter outputs need to be checked to identify the

one that can be matched with the actual observations (Gertler, 1998).

2.1.2 Observers

An observer is a tool used to estimate the internal states of a system based on

the measured inputs and outputs. The key concern of this method is to generate

sets of residuals that detect and identify different faults in a unique way. This is

achieved by designing observers which are sensitive to a different subset of faults

and insensitive to other faults and the unknown inputs. Essentially, under normal

operating conditions, the observer estimates will closely follow the plant output

resulting in a small residual which reflects the unknown inputs only. However,

when a fault occurs, observers that have been designed to be insensitive to the
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subset of faults will maintain small residuals which reflect the unknown inputs only.

Nonetheless, observers that are sensitive to the faults will give results that differ

significantly from the process giving rise to large residuals. The unique residual

patterns generated by different observers for different faults enhances the monitoring

process. However, the models may involve complex computations (Chiang et al.,

2001; Gertler, 1991).

2.1.3 Parity relations

This technique involves checking the parity or consistency of the mathematical equa-

tions of the system with the actual measurements. A fault is declared to have oc-

curred when the preassigned threshold is exceeded. The parity relations can be

subjected to a linear dynamic transformation for the transformed residuals to be

used for dynamic process monitoring (Gertler, 1997). The design freedom arising

from the transformation can be used to enhance the monitoring process. It has been

shown that once the design objectives are selected, parity equations and observer

based designs lead to equivalent residual generators (Gertler, 1991).

2.1.4 Parameter estimation

This is a natural approach to monitoring parametric faults. It involves building a

reference model under a fault-free condition. Then, the parameters are re-identified

repeatedly and the results obtained are compared with the reference model. De-

viations from the reference model (that is, the residual) is then used as the basis

for fault detection and diagnosis. This approach can be adopted only if a relation

between process faults and changes in the model parameters exist and if suitable

mathematical models are available (Chiang et al., 2001).

Mathematical models have been used for process monitoring and diagnosis for

many decades (Campos-Delgado and Espinoza-Trejo, 2011; Rothenhagen and Fuchs,

2009). Since they are based on solid physical or engineering principles and prior



Overview of Process Monitoring Methods and Positive Definite Kernels 17

process knowledge, they give the most accurate results if they are well formulated.

However, they can be complex and computationally intensive. Furthermore, detail

understanding of all the phenomena at play in a complex large-scale process may be

lacking. Therefore, significant amount of time and money is required to establish

reliable quantitative models. Sometimes it is even infeasible to build one (Ge et al.,

2013).

According to Katipamula and Brambley (2005), model-based process monitoring

methods are not likely to emerge as the methods of choice in the near future due to

the drawbacks enumerated earlier.

2.2 Knowledge-based methods

Knowledge-based approaches adopt the use of qualitative models e.g. causal analy-

sis, expert systems or pattern recognition to derive the monitoring measures (Venkata-

subramanian, Rengaswamy and Kavuri, 2003). No explicit system models are re-

quired for these approaches and their monitoring results are very intuitive. They

are therefore used as complementary methods or as alternatives to model-based ap-

proaches. However, to a large extent, knowledge-based methods depend on previous

knowledge of the behaviour of the process and the expertise of experienced plant

operators. Therefore, it takes considerable time and effort to acquire the needed

knowledge and expertise to routinely construct knowledge-based models for large-

scale complex systems. Due to their weaknesses, model-based and knowledge-based

methods are limited to relatively small systems; or systems for which it is easy to

build the needed process model; or system for which adequate accumulation of the

pertinent process knowledge is available.

To determine process status, knowledge-based methods employ prior knowledge of

the process expressed in terms of qualitative relationships. This is in contrast to

model-based methods discussed earlier in which prior process knowledge is expressed

in terms of quantitative mathematical relationships. Therefore, process monitoring
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methods based on knowledge-bases are also called qualitative model-based methods.

These models can be obtained by modelling the causal relationships that exist in

the system, using expert domain knowledge, and from detailed system descriptions

or fault-system relationships (Chiang et al., 2001).

2.2.1 Causal analysis

Causal analysis methods are based on modelling the causal relationship between

faults and symptoms in a system. Signed directed graph (SDG) is an example of

causal analysis technique used mainly for fault diagnosis.

SDG is based on analysing initial and final responses of system variables due to

deviations and deducing these dynamic behaviours using causal path propagations.

SDG was first proposed for modelling chemical processes by Iri et al. (1979). A

documentation of a systematic framework for developing and analysing SDG-based

modelling has been made by Maurya et al. (2003).

It is also possible to draw conclusions on the overall system behaviour based on an

understanding of the laws that govern the various subsystems. This approach is

commonly called abstraction hierarchies. Its application in the process industry is

well documented in Venkatasubramanian, Rengaswamy and Kavuri (2003).

2.2.2 Expert systems

The idea behind this approach is to mimic how a human expert will reason when

diagnosing a fault. This is done by combining knowledge gained from first principles

(or structural description of the process) with rules formulated from the experience

of a domain expert. They are basically if-then-else statements and a mechanism

that searches through the rule-space to arrive at conclusions deployed as a software

package. These rules can be based purely on expert domain knowledge gained

from experience or from first principles. Expert systems can capture diagnostic

associations identified by humans which cannot be easily expressed in the form of
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mathematical or causal relationships. The use of expert systems in process industries

is described in detail in Venkatasubramanian, Rengaswamy, Kavuri and Yin (2003).

Expert systems are supposedly based on transparent reasoning and clear explana-

tions can be provided for inferences made (Venkatasubramanian, Rengaswamy and

Kavuri, 2003). However, they are system specific and fail woefully when operated

outside the incorporated boundaries. They are also not easy to change or update.

2.3 Data-based methods

Data-based methods require only input and output data collected from routine pro-

cess operations. These data are transformed in several ways (a process known as

feature extraction) and used as prior knowledge of the monitored system. Due to

their data-driven nature, neither rigorous system models nor detail process knowl-

edge is required in data-based techniques. Therefore, they are simpler to build for

complex large-scale systems than the model-based or knowledge-based approaches.

Furthermore, historical data collected from processes are readily available and pow-

erful data mining techniques for extracting process knowledge from measurement

information are well understood.

Part III of the three-part review articles by Venkatasubramanian and other re-

searchers published in 2003 cited in the preceding sections is dedicated to database

process monitoring methods. An in-depth outlook of data-based monitoring ap-

proaches is also provided by Ge et al. (2013). Their work reviewed the natures of

industrial processes, data characteristics (e.g. high dimensionality, nonlinear data

relationships, non-Gaussian variable distributions, time-varying and multi-mode be-

haviours and data autocorrelations) as well as methodology issues and implementa-

tion procedures. Figure 2.2 shows a generalised methodology for MSPM approaches.

Collecting the dataset that correctly represent the operating conditions of the pro-

cess to be monitored is an important initial step in MSPM techniques. This is
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Figure 2.2: Flowchart showing a typical MSPM procedure. Normal operating data
are collected and pre-processed (e.g. normalised to zero mean and unit variance).
The monitoring model is developed and trained, and control limits are computed
for on-line monitoring. A faulty process is recovered after successful fault detection,
identification and diagnosis.

needed to avoid numerous false alarms or missed detections which are indications of

an inefficient monitoring technique. Pre-processing involves transforming the origi-

nal dataset to a form more appropriate for developing a reliable monitoring model.

A common example of pre-processing is normalising the original data to zero means

and unit variance. This is done to eliminate the influence of the different scales

of the various process variables to avoid undue inclination of a given model to any

one of the measured process variables. The appropriate process monitoring model

is then selected based on the data characteristics of the process. The model is then

trained and evaluated to ascertain its efficiency. Model training is done off-line using

data collected under normal operating conditions. During the training phase, ap-
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propriate statistics used for online monitoring are constructed and their thresholds

or control limits are computed.

To construct the monitoring statistics, the original process variables spanning a

high dimensional space are projected onto a lower dimensional space spanned by

q dominant latent variables which adequately capture the relevant information in

the original high dimensional data. The q latent variables are then used to derive

the model for monitoring the model space (that is, the space spanned by q latent

variables). Conversely, the latent variables that are not included in the model space

are regarded as noise and are used to monitor the residual space (that is, the space

spanned by the latent variables not included in the model space). Hotelling’s T 2

and the Q statistic (also known as squared prediction error, SPE) are two indices

commonly used in MSPM approaches. The T 2 is used to monitor variation in the

model space while the Q statistic is used to monitor variation in the residual space.

Some traditional data-driven MSPM approaches and their extensions are discussed

in the following subsections.

2.3.1 Principal component analysis

Principal component analysis (PCA) is probably the most popular of the MSPM

methods. Assuming a dataset with n number of observations and m variables X ∈

<m×n which is mean-centred and have unit variance, the sample covariance matrix

is computed as

C =
1

m− 1
XTX, (2.1)

where the subscript, T represents transpose. The eigenvalue decomposition of C

given by

C = PLPT , (2.2)

where P are the principal directions (or loading vectors) and L is the eigenvalue

matrix whose ith element represents the variation present in the data projected in

the direction of the ith component. Assuming that P ∈ <m×q are the matrix of
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scores or linear latent variables associated with the dominant q singular values. The

projections of the original variables in X into the lower dimensional space is defined

as

Z = XP =⇒ X̂ = ZPT =

q∑
i=1

zip
T
i , (2.3)

where zi is an orthogonal score vector which captures the relationship between ob-

servations. Conversely, pi is an orthonormal loading vector containing information

about relationship between variables. Given that q principal components explain

the variability of the process data through X, the residual matrix E that captures

the variations associated with the m− q singular values is given by X− X̂. Hence,

X = ZPT + E =

q∑
i=1

zip
T
i + E. (2.4)

Since ZPT and E represent the main sources of process variability (useful infor-

mation) and noise (error) respectively, the choice of q (that is, the number of PCs

retained) is very important in PCA-based process monitoring. Retaining too few

components gives an under-fitted model. Interpreting data analysis under such a

situation implies relating only to the most dominant part of the data structure.

Therefore, some significant information of the data structure will not be captured.

Conversely, using too many components result in an over-fitted model which runs

the risk of interpreting parts of the noise in the data. A number of methods have

been suggested for determining q. These include scree tests, the average eigenvalue

approach, cross-validation, parallel analysis, Akaike information criterion, and the

cumulative percent eigenvalue. However, none of these methods have been proved

analytically to be the best in all situations (Chiang et al., 2001).

PCA-based monitoring statistics

The Hotelling’s T 2 and Q statistic or squared prediction error (SPE) are commonly

used in PCA-based process monitoring. Hotelling’s T 2 is the sum of the normalised
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squared scores. It is computed as

T 2 = [z1, . . . , zq] Λ−1 [z1, . . . , zq]
T , (2.5)

where q are the number of PCs retained and Λ−1 represents the inverse of the matrix

of eigenvalues corresponding to the retained PCs. The control limit corresponding

to a significance level, α, T 2
α is derived from the F -distribution analytically as

T 2
α ∼

q (m− 1)

m− q
Fq,m−q,α, (2.6)

Fq,m−q,α is the value of the F -distribution corresponding to a significance level, α,

with degrees of freedom q and m−q for the numerator and denominator respectively.

On the other hand, the squared prediction error or Q statistic is computed as

Q = eT e =
(
I − PP T

)
x, (2.7)

where e is the residual vector (a projection of the observation x into the residual

space) and I is the identity matrix. The upper confidence limit for the Q-statistic

is computed from its approximate distribution as follows (Jackson, 1991):

Qα = θ1

[
Cαh0

√
2θ2

θ1
+ 1 +

θ2h0 (h0 − 1)

θ21

] 1
h0

, (2.8)

where, θi =
n∑

j=q+1

λij, (i = 1, 2, 3) , h0 = 1 − 2θ1θ3
3θ22

, λi are the eigenvalues, and Cα is

the 100(1− α) normal percentile.

PCA is essentially a dimensionality reduction technique based on a single collection

of variables. However, situations often arise where two sets of variables (X,Y) are

considered in multivariate statistical analysis. Methods used to handle such data

include but not limited to multiple linear regression (MLR), PLS and CCA. MLR

has severe problems dealing with large sets of correlated data. Apart from being

cumbersome, MLR may lead to imprecise parameter estimates and poor predictions.
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Conceptually, PLS is similar to PCA except that it reduces the dimensions of the

two set of variables simultaneously to find their latent vectors which have the highest

correlation using an iterative approach. A number of the techniques employed to

address the gaps identified in this thesis (LLV-CVA, KCVA-QRD and KLV-CVA) are

based on the principle underlying the formulation of CCA. Therefore, a discussion

on the CCA is presented in the next subsection.

2.3.2 Canonical correlation analysis

Canonical correlation analysis was first proposed by Hotelling (1936). The goal

of CCA is to identify and assess linear relations existing between two multivariate

data sets by finding linear combinations of the original variables which maximise the

correlation between the combinations. The linear combinations are called canonical

variates while the pairwise correlations are known as canonical correlations. The

strength of the association between the two sets of variables is measured by the

canonical correlations.

Given two random variable vectors, x ∈ <p and y ∈ <p, their linear combinations are

defined by, u = xTa and v = yTb, where a and b are combination coefficient vectors.

Canonical correlation analysis seeks to find a and b such that the correlation between

u and v is maximised. Numerically, let X ∈ <N×p and Y ∈ <N×p be N samples of

x and y, respectively. Assuming expectations, E(x) = µ1 and E(y) = µ2. Define

X =


µT1
...

µT1

 , Y =


µT2
...

µT2

 .
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Covariance and cross-covariance matrices are defined as

Σxx = E
{(

X−X
) (

X−X
)T}

, (2.9)

Σyy = E
{(

Y −Y
) (

Y −Y
)T}

, (2.10)

Σxy = E
{(

X−X
) (

Y −Y
)T}

. (2.11)

where E denotes expectation. In this case, correlation is given by:

ρ = max
a,b

aTΣxyb

(aTΣxxa)1/2 (bTΣyyb)1/2
. (2.12)

Computing the standardised coefficients (weights) directly as u = Σ1/2
xx a and v =

Σ1/2
yy b, the CCA optimisation problem can be formulated as

max
u,v

uT
(
Σ−1/2xx ΣxyΣ

−1/2
yy

)
v, (2.13)

s.t. uTu = vTv = 1, (2.14)

where the solution, u and v are the left and right singular vectors of the product

matrix L1 = Σ−1/2xx ΣxyΣ
−1/2
yy . Singular value decomposition can then be performed

on L1 as shown below:

L1 = Σ−1/2xx ΣxyΣ
−1/2
yy = U1S1V

T
1 (2.15)

where U1 and V1 are orthogonal matrices of the left and right singular vectors and

S1 is a diagonal matrix whose elements are the singular values of L1. Sorting the

elements of S1 in descending order and reordering the columns of U1 and V1, gives

the degree of correlation between columns of U1 and V1.

MSPM approaches such PCA and CCA are static techniques. They are based on

the assumption that the process data collected are time-independent. However,

data generated from many real industrial processes exhibit time-dependence. Time-

dependence means that an observation at the present time period is correlated with

observations before and after the present time period (Yin et al., 2012). This phe-
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nomenon is known as serial correlation, lagged correlation or autocorrelation. It is

caused by system dynamics arising from process units that induce inertia (that is,

tendency of a system to remain in the same state from one observation to the next),

and high sampling rates used in modern data acquisition instrumentation (Rato and

Reis, 2011; Vanhatalo and Kulahci, 2015).

Autocorrelation affects the number of independent observations. Therefore, the

covariance matrix constructed from autocorrelated data without accounting for time

lags cannot adequately represent the complete variation in the data. Hence, static

techniques which are usually based on zero-lag covariance matrices give poor results

when applied to autocorrelated data resulting from process dynamics (Jiang, Huang,

Zhu, Fan and Braatz, 2015). Consequently, significant research efforts have been

made in the past years to improve monitoring performance in dynamic industrial

processes by incorporating the dynamic information of the process data into the

monitoring model.

The simplest way to eliminate the effects of process dynamics is to increase the

sampling time. This approach weakens the correlation between the data. However, it

does not take into account the dynamic relationships that exist between the process

variables. Hence, long sampling time reduces the sensitivity of monitoring systems

and delay fault detection especially for faults that only cause changes in the time

series correlation of the process variables. Therefore, other more effective methods

for monitoring dynamic processes are presented next.

2.3.3 Dynamic Principal component analysis

Dynamic principal component analysis (DPCA) is an extension of the PCA tech-

nique that accounts for serial correlations. It involves augmenting each observation

vector with the previous l observations and stacking the data matrix as follows:
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Xl =


xTt xTt−1 . . . xTt−l

xTt−1 xTt−2 . . . xTt−l−1
...

...
. . .

...

xTt+l−m xTt+l−1 . . . xTt−m

 , (2.16)

where Xl is the augmented data matrix and xTt is the n-dimensional observation

vector in the training data at a time period t. To extract the autocorrelation of the

process data, the DPCA model is constructed by performing PCA directly on Xl.

The value of l can be determined statistically. However, according to Chiang et al.

(2001), one or two lags are appropriate for DPCA-based process monitoring. The

T 2 and Q statistics based on the DPCA are employed in a similar way as those from

the conventional PCA for process monitoring in the model and residual spaces.

Due to their simplicity, dynamic MSPM methods are used in many cases with other

developed methods. Ku et al. (1995) employed the DPCA for fault detection and

isolation. Tsung (2000) examined an integrated approach to simultaneously monitor

and diagnose an automatic controlled process using DPCA and minimax distance

classifier. Similar to the DPCA, a dynamic version of the PLS (DPLS) was proposed

by Komulainen et al. (2004) while application of DPCA and DPLS techniques in

on-line monitoring of batch processes was reported by Chen and Liu (2002).

The above studies showed that dynamic MSPC methods outperformed their static

counterparts. Nevertheless, it is argued dynamic MSPC methods provide only lim-

ited representation of process dynamics (Li et al., 2011; Russell et al., 2000). Kruger

et al. (2004) also demonstrated that auto-correlated score variables will arise, even in

the abstract case where the process variables are uncorrelated and a DPCA model is

established. They therefore proposed the integration of ARMA models into a MSPM

model. The results of case studies indicated that their approach extracts the auto-

correlation of the process data successfully and provided better process monitoring

performance in large-scale processes compared to the traditional dynamic MSPM
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methods. The use of decorrelated residuals (Rato and Reis, 2013) have also been

proposed to improve DPCA-based process monitoring. The CVA, a subspace mod-

elling approach which identifies the state space model of a process, is another method

widely reported for dynamic process monitoring (Jiang, Zhu, Huang, Paulson and

Braatz, 2015). The CVA approach is discussed in the next subsection.

2.3.4 Canonical variate analysis

The CVA is an application of the CCA on time series data. It accounts for autocor-

relation in addition to cross-correlation between variables by considering both the

past and future process outputs at each time point (Wang et al., 2010; Odiowei and

Cao, 2010). Assuming that x(k) ∈ <m are m process measurements (variables) at a

given time point k acquired during normal operating process conditions. The past

(p) and future (f) observation vectors are defined to capture the dynamics of the

process as follows:

xp(k) =


x(k−1)

x(k−2)
...

x(k−p)

 ∈ <
mp and xf(k) =


x(t)

x(k+1)

...

x(k+f−1)

 ∈ <
mf (2.17)

The respective past and future observation vectors are then combined separately

to obtain the past and future matrices Xp and Xf . Defining X̃p = Xp − Xp and

X̃f = Xf −Xf as the centred past and future matrices, where Xp and Xf are the

sample means, the covariance and cross-covariance matrices of the past and future

observations are obtained as:

Σpp = E
(
X̃pX̃

T
p

)
, Σff = E

(
X̃fX̃

T
f

)
,

Σfp = E
(
X̃fX̃

T
p

) (2.18)
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The product matrix H1 from (2.18) is obtained and decomposed as follows:

H1 = Σ
−1/2
ff ΣfpΣ

−1/2
pp = U3S3V

T
3 (2.19)

The linear combinations of the past observations that best explain the variability of

the future observations are obtained by performing SVD on H1 in (2.19). In order

to compute the monitoring statistics, the state variables (which span the model

space) and the residuals are obtained from the transformed past observations. The

T 2 and Q statistics are calculated at each time point as the sum of the squared state

variables and residuals respectively. These computations are presented in chapters

4, 5 and 6.

The application of CVA in system identification was pioneered by Akaike (1975)

and was adapted to general linear systems by Juricek et al. (2004). Several other

successful applications of the CVA approach have also been reported over the years.

These studies show that CVA captures process dynamics better and provides su-

perior fault detection and diagnosis than other dynamic approaches that simply

introduce time lags into collected measurements (Wang et al., 2010; Stubbs et al.,

2012; Chen et al., 2014; Ruiz-Cárcel et al., 2015).

Notably, the MSPM approaches discussed so far are linear techniques. This implies

that they do not consider or reveal process nonlinearities. Hence, the use of kernel-

based techniques to address nonlinearity is explored in this work. However, some

relevant definitions and the theoretical framework of kernels are presented next

before the discussion on specific kernel-based monitoring approaches.

2.4 Positive definite kernels

The term kernel is used in different branches of mathematics. In linear algebra,

it is used as a synonym for the nullspace of a linear operator. It is also used in

the theory of integral operators. In conventional statistics, kernel method usually

suggests kernel density estimation or Parzen window approach discussed in Chapter
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3. In the context of this work, a kernel is a real-valued function which takes two

arguments (vectors, real numbers, functions, etc.) and outputs a real number. The

notation for this is k : X × X 7→ R. In particular, the class of kernels used in

this work are positive definite kernels. The insights provided here generally follow

the expositions given by Berlinet and Thomas-Agnan (2004), Schölkopf and Smola

(2002), and Shawe-Taylor and Cristianini (2004).

Definition 2.1 (Positive definite kernel). Let X be a non-empty set. A kernel is

a positive definite (p.d.) kernel on X if it is symmetric, that is, k(xi,xj) = k(xj,xi),

and positive definite, that is,

N∑
i=1

N∑
j=1

αiαjk(xi,xj) ≥ 0, (2.20)

for every (x1,x2, . . . ,xN) ∈ X and for every (α1, α2 . . . , αN) ∈ R, where xi is a

family of known points and αi, is a family of real coefficients.

Definition 2.2 (Kernel matrix). Given a kernel k and any set of data points,

(x1,x2, . . . ,xN) ∈ X , the N × N matrix K (with elements Kij = k(xi,xj) is the

kernel matrix (also called Gram matrix) of k for i, j = 1, . . . , N .

Definition 2.3 (Positive definite matrix). A real-valued N × N matrix K is

positive definite if
N∑
i=1

N∑
j=1

αiαjKij ≥ 0, (2.21)

for all (α1, α2 . . . , αN) ∈ R. This condition requires that αTKα ≥ 0 for any α ∈ RN ,

where the superscript T represents transpose. This means that all the eigenvalues

of the kernel matrix are non-negative. In practice, a positive definite kernel matrix

is derived from a positive definite kernel function. Generally, kernel methods are

algorithms that take kernel matrices as input.
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2.4.1 Positive semi-definite and positive definiteness

Unfortunately, in the literature, there is no common use of the definitions given

above. Some authors refer to functions that give sums that are non-negative as

in (2.20) as positive semi-definite or non-negative definite functions. On the other

hand, functions for which the sum in (2.20) is strictly positive,

N∑
i=1

N∑
j=1

αiαjk(xi,xj) > 0, (2.22)

at least one αi is non-zero are referred to as positive definite functions. The kernel

matrix K derived from such a kernel is also termed a positive definite matrix. It

is even argued that the correct mathematical terminology is to say that the kernel

matrix associated to a positive definite matrix is positive semi definite (see Mohri

et al., 2012, pg. 92). However, in numerical practice, some form of regularisation is

carried out on the matrices to explicitly lower their condition number (the ratio of

the biggest to the smallest eigenvalue of a matrix) in most estimation procedures.

Therefore, definiteness and semi-definiteness will be equivalent. Hence, these two

terms are not considered to be different in this work. In other words, the term

positive definiteness is used for all kernels that comply with non-negativity.

The requirement for positive definiteness of kernels is important for at least two

reasons. First, it is a major assumption in convex programming (Boyd and Vanden-

berghe, 2004). It ensures that algorithms converge to a unique solution. Second,

positive definiteness is a key assumption from the functional analysis viewpoint of

kernels in the theory of reproducing kernel Hilbert spaces (RKHSs).

2.4.2 Hilbert spaces

Kernels can also be viewed from the viewpoint of functional analysis because there is

a Hilbert space H of real-valued functions on a set X to every kernel on X . Hilbert

spaces are briefly introduced in this subsection starting with the definition of an
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inner product 〈·, ·〉 which is a key concept in kernel methods - the space in which a

kernel algorithm is supposedly performed is essentially an inner product space.

Definition 2.4 (Inner product space). Let V be a vector space over the scalar

field R. An inner product (also called scalar product or dot product) on V is a

mapping 〈·, ·〉 : V × V → R for all x,y, z ∈ V and for all α ∈ R. That is, an inner

product takes each ordered pair of vectors x,y ∈ V and outputs a number. An inner

product must satisfy the following properties:

(i) 〈x + y, z〉 = 〈x, z〉+ 〈y, z〉

(ii) 〈αx,y〉 = α〈x,y〉

(iii) 〈x,y〉 = 〈y, z〉

(iv) 〈x,x〉 ≥ 0, for all x ∈ V and 〈x,x〉 = 0 if and only if x = 0

Generally, the inner product of x,y ∈ VM is defined by

〈x,y〉 =
N∑
i=1

xiyi. (2.23)

where xi, yi, i, . . . , N , are the elements of vectors x and y.

In a geometric sense, the inner product of two vectors of unit length gives a good

notion of the angle between the two vectors by the formula

cos θ =
〈x,y〉
‖x‖‖y‖

.

Furthermore, the inner product defines the length (or norm) of a vector x as

‖x‖ = 〈x,x〉
1
2 , (2.24)

and the distance d between two vectors x and y by

d(x,y) = ‖x− y‖ = 〈x− y,x− y〉
1
2 . (2.25)
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Therefore, geometric constructions can be formulated in terms of angles, lengths and

distances, in an inner product space. An inner product space (also called pre-Hilbert

space) is a vector space endowed with an inner product.

Definition 2.5 (Hilbert space). An inner product space that is complete with

respect to the metric induced by the inner product is called a Hilbert space H.

Completeness means that every Cauchy sequence defined on the space converges to

an element of the space (or has a limit which is a point in the space). Completeness

is essential for achieving good convergence properties when dealing with infinite-

dimensional Euclidean spaces. A sequence {xn}∞n=1 is a Cauchy sequence if for any

real number ε > 0 there exists a natural number N∗ such that d(xn − xm) < ε for

any n,m ≥ N∗. Some examples of Hilbert spaces are:

• The vector space Rn endowed with an inner product 〈a,b〉 = aTb.

• The space l2 of square-summable sequences, with inner product 〈x, y〉=
∑∞

i=1 xiyi.

• The space L2 of square-integrable functions (i.e.,
∫
f(x)2dx <∞), with inner

product 〈f, g〉 =
∫
f(x)g(x)dx.

2.4.3 Reproducing kernels

Let H0 := f : X → R be the space of functions that map X to R. If X is a set and

k a positive definite kernel, a feature map can be defined as

φ : X → H0,

x 7→ k(x, ·).
(2.26)

That is, for any x ∈ X , k(x, ·) ∈ H0 denotes the function that maps x
′ ∈ X to

k(x,x
′
) ∈ R. In other words, k(x, ·) is a real valued function on X whose value at

an argument x
′

is a real number k(x,x
′
) which quantifies how similar x and x

′
are.

Let H be the set of all functions that are finite linear combinations of all possible
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k(x, ·) ∈ H0. Then, any function f(·) ∈ H can be written as

f(·) =
N∑
i=1

αik(xi, ·), (2.27)

for some N ∈ N,xi ∈ X and αi ∈ R. Given two functions f, g ∈ H, it is easy to see

that f +g ∈ H and αf ∈ H for α ∈ R would also be some finite linear combinations

of all the k(x, ·) functions. Since function addition and scalar multiplication can be

performed, H is considered to be a vector space.

Suppose g(·) =
∑N

′

j=1 βjk(x
′
i, ·), then the inner product 〈f, g〉H is defined by

〈f, g〉H :=
N∑
i=1

N
′∑

j=1

αiβjk(xi,x
′

j). (2.28)

Notice that (2.28) can be written independent of the representation of f as

〈f, g〉H =
N

′∑
j=1

βj

N∑
i=1

αik(xi,x
′

j) =
N

′∑
j=1

βjf(x
′

j), (2.29)

or independent of the representation of g as

〈f, g〉H =
N∑
i=1

αi

N
′∑

j=1

βjk(xi,x
′

j) =
N∑
i=1

αig(xi). (2.30)

This implies that 〈f, g〉H does not depend on the specific expansion coefficients α

and β. Hofmann et al. (2008) has proved that: operator 〈·, ·〉H is indeed a valid

inner product; is a positive definite kernel; the evaluation of a function at a point

is given by the inner product between the function and the kernel centred at the

point, that is,

f(x) = 〈f, k(x, ·)〉. (2.31)

This is called the reproducing kernel property (Aronszajn, 1950). Thus, kernels

that admit an inner product representation in a feature space are called reproducing
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kernels. In particular, from (2.26), we have that φ(x) = k(x, ·). Therefore,

〈k(x, ·), k(x
′
, ·)〉 = k(x,x

′
) = 〈φ(x),φ(x

′
)〉. (2.32)

Hence, positive definite kernels are also called reproducing kernels (Schölkopf and

Smola, 2002; Berg et al., 1984; Saitoh, 1988). The above description also shows that

a positive definite kernel corresponds to an inner product in some feature space.

2.4.4 Reproducing kernel Hilbert spaces

A Hilbert space that is endowed with a reproducing kernel is called a reproducing

kernel Hilbert space (RKHS) Hk or a proper Hilbert space. This subject (RKHS)

was originally and simultaneously developed by Aronszajn (1950) and Bergman

(1950). Aside process monitoring, RKHSs also arise in a number of other areas such

as complex analysis, harmonic analysis, quantum mechanics and machine learning.

A formal definition of RKHS is given below.

Definition 2.5 (Reproducing kernel Hilbert space). Assume that X is a non-

empty set and H is a Hilbert space of functions f : X → R. Then, H is a RKHS

endowed with an inner product 〈·, ·〉 and a norm ‖f‖ := 〈f, f〉 12 , if there exists a

function k : X × X → R for which the following properties are satisfied:

(i) k has a reproducing property

〈f, k(x, ·) = f(x)〉, ∀f ∈ H, ∀x ∈ X (2.33)

and in particular, 〈k(x, ·), k(x
′
, ·)〉 = k(x,x

′
).

(ii) H is spanned by k, that is, every f ∈ H can be written in the form of (2.27),

f(·) =
∑N

i=1 αik(xi, ·).

The RKHS representation of positive definite kernels presented here is based on

the Moore-Aronszajn theorem (Aronszajn, 1950) which says that every symmetric
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positive definite kernel defines a unique RKHS. Mercers’s theorem, an alternative

way of characterising symmetric p.d. kernels, is discussed in the next sub section.

2.4.5 Mercer’s Theorem

Mercer’s Theorem provides a solid way for constructing a RKHS. In general terms

the theorem states that a positive kernel k, can be expanded in terms of eigenfunc-

tions and eigenvalues of a positive operator that comes from the kernel.

Mercer’s Theorem. Given a real-valued symmetric function k and a compact

input space X, there exists an inner product space H and a mapping φ : X → H

so that k(x,x
′
) =

〈
φ(x),φ(x′)

〉
if for the set of all square-integrable functions f(x)

(that is,
∫
f(x)2dx <∞),

∫
X

k(x,x
′
)f(x)f(x

′
)dx dx

′ ≥ 0. (2.34)

Expanding the function k(x,x
′
) in its eigenfunctions gives

k(x,x
′
) =

nH∑
i=1

λiψi(x)ψi(x
′
), (2.35)

for λi ≥ 0 and ψi : X → R, where
∫
X
k(x,x

′
)ψi(x

′
)dx

′
= λiψi(x); where ψi and

λi are the eigenfunctions and (nonnegative) eigenvalues of k respectively (Mercer,

1909). Equation (2.34) is referred to as Mercer’s condition and a kernel satisfying

this condition is called a Mercer kernel.

Given, a data point x, a feature map φ can be defined as

φ(x) =
[√

λ1ψ1(x),
√
λ2ψ2(x2), . . . ,

√
λnHψnH(xnH)

]T
. (2.36)

The number of nonnegative eigenvalues mH determines the dimensionality of this

space which is infinite for the Gaussian kernel.

A RKHS of functions defined over X based on Mercer’s theorem can then be con-
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structed as linear combinations of the eigenfunctions

f(x) =
∞∑
i=1

αik(xi,x) =
∞∑
i=1

αi

nH∑
j=1

λjψj(xj)ψj(x). (2.37)

Defining an inner product 〈·, ·〉:

〈f, k(x, ·)〉 =
∞∑
i=1

αi

nH∑
j=1

mH∑
n=1

λjψj(xi)
〈
ψj, ψn

〉
λnψn(x), (2.38)

and taking
〈
ψj, ψn

〉
= δjn/λj makes the Mercer kernel a reproducing kernel for this

Hilbert space, that is, 〈f, k(x, ·).

The kernel maps based on Mercer’s theorem and Moor-Aronszajn theorem lead to

different feature spaces. Nevertheless, since both are Hilbert spaces, it implies that

they are isometrically isomorphic.

2.4.6 Feature maps associated with kernels

Apart from constructing a feature space, another interesting point was made in the

preceding subsections. It is the notion of finding a feature mapping φ : X → F

such that:

k(x,x
′
) = 〈φ(x),φ(x

′
)〉F , (2.39)

where F is some high dimensional feature space and φ is the feature map associated

with the kernel k. It was actually this (feature map) viewpoint that stimulated the

initial advocacy for kernel-based learning algorithms (Schölkopf and Smola (2002)).

This viewpoint implies that evaluation of a symmetric p.d. kernel k at points x and

x
′

in the input space is equivalent to taking the inner products between φ(x) and

φ(x
′
) in some (probably unknown) high dimensional feature space. Thus, φ can be

thought of as a mapping from the input space to a high dimensional feature space

where inner products can be computed simply by computing k. In other words,

there is no need to use (or even know) φ to embed the data into the feature space

and explicit computation of φ(x) and φ(x
′
) is not required. The advantage of this
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is that the complexity of the optimisation problem depends on the dimensionality of

the input space rather than that of the feature space. Thus, kernel methods make

possible the use of feature spaces with exponential or even infinite dimensionality.

Without this so called kernel trick, it would not have been possible for kernel-

based methods to satisfy the desired efficiency requirements. In this subsection, two

common constructions of φ (based on RKHS and Mercer’s theorem) which are more

or less equivalent, are presented.

In Section 2.4.3, the feature map was defined by φ(x) = k(x, ·) and the feature

space by H. Using the reproducing property of the kernel, this gives:

〈φ(x),φ(x
′
)〉Hk = 〈k(x, ·), k(x

′
, ·)〉Hk = k(x,x

′
),

which satisfies the requirement for φ (see Schölkopf et al., 1999).

In Mercers’s representation of p.d. kernels, eigenfunctions ψi and eigenvalues λi

were used to define φ in (2.36). The inner product can therefore be calculated as

〈
φ(x),φ(x

′
)
〉

=
〈√

λiψi(x),
√
λiψi(x

′
)
〉

=

mH∑
i=1

√
λiψi(x)

√
λiψi(x

′
)

=

mH∑
i=1

λiψi(x)λiψi(x
′
)

= k(x,x
′
).

An important outcome of feature mapping is that it causes nonlinear relationships

in the input space to appear linear in the high dimensional feature space. Consider

the toy example of a mapping from two to three dimensions shown below:

φ : R2 → R3,

(x1, x2) 7→ (x21,
√

2x1x2, x
2
2).

(2.40)
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The inner products between the vectors in the feature space can be computed as

〈φ(x),φ(y)〉 =
〈

(x21,
√

2x1x2, x
2
2), (y

2
1,
√

2y1y2, y
2
2)
〉

= 〈(x1, x2), (y1, y2)〉2

= 〈x,y〉2

= k(x,y).

(2.41)

That is, the function

〈x,y〉2 = k(x,y),

is a kernel function (a polynomial kernel).

Figure 2.3 shows the effect of the above mapping. Data points that are linearly

non-separable in the original 2-dimensional (2-D) space are linearly separable in the

3-dimensional (3-D) feature space. Linear relations in the 3-D space corresponds to

quadratic relations in the original 2-D space. That is, the feature space is nonlin-

early related to the input space. Consequently, linear techniques can be applied to

Figure 2.3: An illustration of the effect of mapping data into a high dimensional
feature space. The nonlinear function φ embeds data in the feature space. Data
points which were not linearly separable in the input space (left panel) become
linearly separable after mapping into higher dimensions (right panel).

detect the relationships in the higher dimensional space. This is desirable because

techniques capable of detecting linear relations efficiently are well-researched and

well-understood. The same tools can be applied to detect nonlinear relations after

mapping the data into a higher dimensional space.
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Another interesting point to note in kernel-based feature mapping is that the func-

tion φ (or the dimension of its range) is not unique. The finding in (2.41) can be

generalised to mean that (Muller et al., 2001; Schölkopf et al., 1998): the same ker-

nel can compute the inner product that corresponds to d dimensional feature map

such that for x,y ∈ RM and d ∈ N, the kernel function can be represented as

k(x,y)d.

Hence, it is possible for more than one φ to exist for a given kernel function (Shawe-

Taylor and Cristianini, 2004).

2.4.7 Examples and properties of kernels

Examples of some commonly used kernels are presented in Table 2.1.

Table 2.1: Examples of commonly used kernels

Type of kernel Inner product kernel Comments

Linear kernel k(x,x
′
) = 〈x,x′〉 Here, φ is an identity,

therefore, no mapping
takes place.

Polynomial kernel k(x,x
′
) = 〈x,x′〉d d ∈ N is specified a

priori by user.

Radial basis function
(RBF) kernel

k(x,x
′
) = exp

(
− ‖x− x

′‖2

c

)
c ∈ R is specified by
user.

Sigmoid kernel k(x,x
′
) = tanh (κ〈x,x′〉+ θ) κ, θ > 0. Mercer’s

theorem is only satis-
fied for some values of
κ and θ.

Since kernel functions measure similarity between data objects, intuitively, different

similarity measures can also be combined to create new kernels. Two kernel tech-

niques, KPCA and kernel CCA (KCCA), are discussed in the next two subsections.
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2.4.8 Kernel principal component analysis

KPCA was proposed by Schölkopf et al. (1998) as a nonlinear generalisation of the

PCA. A number of studies adopting the technique for nonlinear process monitoring

have also been reported (Ge and Song, 2013; Choi et al., 2005; Cho et al., 2005).

KPCA is performed in two steps: (i) mapping the input data into a high-dimensional

feature space, and (ii) performing standard PCA in the feature space.

Other PCA-based nonlinear techniques have also been proposed to address the

nonlinearity problem. Kramer (1992) proposed a nonlinear PCA based on auto-

associative neural network. Dong and McAvoy (1996) suggested a nonlinear PCA

that combined principal curves and neural network (NN). Their approach involved:

(i) using principal curve method to obtain associated scores and the correlated data,

(ii) using an NN model to map the original data into scores, and (iii) mapping the

scores into the original variables.

Nonlinear PCA methods have also been proposed by (Jia et al., 2000; Hiden et al.,

1999; Cheng and Chiu, 2005; Kruger et al., 2005). However, most of these methods

are based on NNs and require the solution of a nonlinear and non-convex optimisa-

tion problem. Conversely, KPCA does not involve solving a nonlinear optimisation

problem; it only solves an eigenvalue problem. Hence, implementing the KPCA is

computational less expensive compared to NN-based methods. Furthermore, KPCA

does not require specifying the number of PCs in advance (Choi et al., 2005).

Similar to the PCA, the Hotelling’s T 2 and Q statistics are commonly used in

KPCA-based process monitoring. In a linear method such as PCA, computation of

the upper control limits (UCLs) of T 2 and Q statistics are based on the assumption

that random variables included in the data are Gaussian. The actual distribution

of T 2 and Q statistics can be analytically derived based on this assumption. Hence,

the UCLs can also be derived analytically. However, many real industrial processes

are nonlinear. Even though the sources of randomness of these processes could be

assumed as Gaussian, variables included in measured data are non-Gaussian due

to inherent nonlinearities. Hence, adopting UCLs for fault detection based on the
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multivariate Gaussian assumption in such processes is inappropriate and may lead

to misleading results (Ge and Song, 2013).

An alternative solution to the non-Gaussian problem, is to derive the UCLs from

the underlying probability density functions (PDFs) estimated directly from the

T 2 and the Q statistics via a non-parametric technique such as kernel density es-

timation (KDE). This approach has been applied in various linear fault detection

techniques, such as PCA (Chen et al., 2000; Liang, 2005), independent component

analysis (ICA) (Xiong et al., 2007), and canonical variate analysis (CVA) (Odiowei

and Cao, 2010). It is even more important to adopt this kind of approach to derive

meaningful UCLs for a nonlinear technique such as the KPCA. This is because the

Gaussian-assumption-based UCLs for latent variables obtained through a nonlin-

ear technique will not be valid at all. Unfortunately, this issue has not attracted

enough attention in the literature. Therefore, the KPCA with KDE (KPCA-KDE)

technique is investigated in this work.

2.4.9 Kernel canonical correlation analysis

Since CCA is a linear technique, even when strong correlation exists between a pair

of multivariate data sets, such a correlation may not be captured by CCA, if the

association between the data sets is non-linear. Hence, kernel CCA was developed

as a nonlinear generalisation of the CCA to capture nonlinear relations.

Given a pair of input vectors x and y drawn from two sets of data, non-linear

mappings into high dimensional feature spaces Fx and Fy are defined by φx : x 7→

φx(x) and φy : y 7→ φy(y) respectively Hofmann et al. (2008). Applying CCA to

φx(x),φy(y) in Fx and Fy provides linear correlation in Fx and Fy which indicates

the non-linear correlation in the input spaces. Assuming the data are mean centred,
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the covariance and cross-covariance matrices in the feature space are computed as

Σxx = E
{
φx(x),φx(x)T

}
(2.42)

Σyy = E
{
φy(y),φy(y)T

}
(2.43)

Σxy = E
{
φx(x),φy(y)T

}
(2.44)

Kernel CCA seeks to find weights wx and wy which maximise wT
xΣxywy subject to

the constraint that wT
xΣxxwx = wT

y Σyywy = 1. Expressing the weight vectors as

linear combinations of the mapped data in the feature space gives:

wx =
N∑
i=1

αiφx(xi) (2.45)

wy =
N∑
i=1

βiφy(yi) (2.46)

Defining kernel matrices

Kx = 〈φx(xi),φx(xj)〉 and Ky =
〈
φy(yi),φy(yj)

〉
(2.47)

for all i, j = 1, . . . , N where N is the number of observations, the optimisation

problem for kernel CCA is set as (Chu et al., 2013)

max
α,β

αTKxKyβ (2.48)

s.t. αTKxKxα = βTKyKyβ = 1 (2.49)

Defining Γxx = KxK
T
x , Γyy = KyK

T
y , and Γxy = KxK

T
y , SVD can be performed on

the product matrix L2 similar to (2.15):

L2 = Γ−1/2xx ΓxyΓ
−1/2
yy (2.50)

The problem is that the effective rank of a kernel matrix is often lower than its

size (Huang et al., 2009). Hence Kx and Ky could be singular. Therefore, regu-
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larisation is required so that matrix inversion required in CCA can be performed.

Thus, KxK
T
x and KyK

T
y become (Kx + γI) (Kx + γI)T and (Ky + γI) (Ky + γI)T

respectively (Giantomassi et al., 2014), where γ is the regularisation parameter

and I is an identity matrix. Denoting Γ∗xx = (Kx + γI) (Kx + γI)T and Γ∗yy =

(Ky + γI) (Ky + γI)T , a recast of (2.50) is given as

L∗2 = Γ∗−1/2xx ΓxyΓ
∗−1/2
yy = U2S2V

T
2 (2.51)

However, the optimum value of γ may not be easily specified. Therefore, carrying

out KPCA on the original samples before performing CCA to reduce dimensionality

is an alternative approach to attack the singularity problem.

2.4.10 Nonlinear dynamic process monitoring

Some techniques that address nonlinearity and process dynamics separately have

been identified in this chapter. In particular, the KPCA addresses nonlinearity but

cannot capture dynamic relationships while DPCA, DPLS, CVA, etc. capture pro-

cess dynamics but cannot deal with nonlinearity. However, many real industrial

systems exhibit both nonlinear and dynamic behaviour at the same time. Unfortu-

nately, monitoring techniques aimed at addressing both of these process character-

istics simultaneously have received only limited attention in the literature.

One of the few studies that have addressed these two process behaviours simultane-

ously was carried out by Choi and Lee (2004). They developed the dynamic kernel

PCA (DKPCA) and applied it to a simulated nonlinear process and a wastewater

treatment facility. This technique captures nonlinearity using the kernel paradigm

while process dynamics was addressed using a time lagged version of the original

observation data. According to their study, the approach outperformed other tech-

niques such as PCA and KPCA by giving fewer missing alarms and shorter times

to detect faults.

As noted in the introduction, kernel methods are efficient techniques for capturing
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nonlinear relations. However, in the DKPCA technique proposed by Choi and Lee

(2004), the kernel approach is combined with the DPCA which has limitation in

capturing process dynamics (Odiowei and Cao, 2010). This is likely to limit the

performance of this technique. In other words, although the approach has a good

technique for describing nonlinear relations, the method employed to account for

process dynamics leaves room for improvement. Furthermore, Odiowei and Cao

(2010) developed the CVA with KDE technique to enhance the monitoring perfor-

mance of nonlinear dynamic processes. To account for nonlinearity, they associated

the CVA with KDE-derived control limits. They reported that this approach per-

formed better than the non KDE-based techniques. However, despite using the CVA

which is known to perform well in dynamic process monitoring, the approach does

not directly address the nonlinear problem.

The preceding discussion suggests that the kernel approach and CVA can be used

to effectively address nonlinearity and process dynamics respectively. It is therefore

possible to gain from the synergy obtainable from integrating these two approaches

to enhance nonlinear dynamic process monitoring. Nevertheless, such studies have

not been given the deserved attention in the open literature.

The development of a smart system for monitoring households to minimise energy

wastage (Giantomassi et al., 2014) is a good attempt based on the above integration

concept. This study involved using kernel canonical variate analysis (KCVA) to

detect system malfunctions and occupant bad behaviour (e.g. opening of a window

while the heating system is on during the winter). The technique was implemented

by performing the CVA on kernel matrices constructed from collected experimen-

tal data. They reported that the technique allowed the detection and diagnosis of

several faults by simply monitoring the trend of ambient temperature of each room

of the apartment. However, kernel matrices are often singular and have effective

ranks lower than their sizes (Huang et al., 2009). This also apply to the sample

covariance matrices based on the kernel data. Hence, the optimisation problem

solved in canonical analysis becomes ill-conditioned. Therefore, regularisation of

kernel matrices constructed from observation data is needed. Regularisation, how-
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ever, reduces model accuracy and impacts negatively on monitoring performance

especially if the optimum regularisation value is not used. This makes the perfor-

mance of the approach used by Giantomassi et al. (2014) overly dependent on the

value of the regularisation parameter selected. Furthermore, the study does not

include a comparative analysis of methods. Therefore, it is difficult to compare the

performance of the technique with other approaches. The development of two new

kernel-based methods with novel implementation strategies for nonlinear dynamic

process monitoring including comparative analyses are therefore undertaken in this

work.

2.4.11 Concluding remarks

This chapter provided an overview of process monitoring methods. Some equivalent

conditions of a kernel on a set X were also defined. These include:

• Every kernel matrix (or Gram matrix) is positive definite.

• k is the reproducing kernel of a RKHS of functions on X .

• A kernel can be expressed as k(x,x
′
) =

nH∑
i=1

λiψi(x)ψi(x
′
).

• A kernel has also been considered as a feature map

It was shown in this chapter that a positive definite kernel k on a set X corresponds

to taking the inner products between pairs of data points mapped into the feature

space. Furthermore, the dimension of the feature space may be very large or even

infinite. Therefore, the mapping might neither be explicitly given nor convenient

to work with in practice. Hence, working in the feature space is done implicitly

using the kernel trick (that is, formulating algorithms to process finite dimensional

vectors expressed in terms of pairwise inner products). That is, the algorithms are

applied to potentially infinite-dimensional vectors in the feature space by replacing

each inner product evaluation with a kernel evaluation.
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The kernel approach is modular and using the kernel trick extends many linear

algorithms to nonlinear settings including general data types (for example, non-

vectorial data). Modularity means that a given algorithm can be used with any

kernel and therefore any data type. There is no need to change an algorithm in

order to accommodate a specified kernel function. It is also possible to carry out

a different task with the same kernel by simply using another algorithm. Thus,

design and analysis of algorithms can be considered separately from the choice of

kernel functions. Hence, different modules can be combined together to give complex

algorithms.

Finally, many real industrial processes exhibit both nonlinear and dynamic char-

acteristics. However, kernel-based methods for monitoring such processes are lim-

ited. Therefore, the development of two new kernel-based algorithms with novel

implementation strategies to take into account nonlinearity and process dynamics

simultaneously is considered to be a key contribution of this work.
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Chapter 3

Nonlinear process fault detection

and identification using kernel

PCA and KDE

KPCA is an effective and efficient method for monitoring nonlinear processes. How-

ever, associating it with upper control limits (UCLs) based on the Gaussian distribu-

tion can deteriorate its performance. In this chapter, the mathematical formulation

of KPCA is undertaken while the kernel density estimation (KDE) technique is used

to estimate UCLs for KPCA-based nonlinear process monitoring. The tehnique is

applied to the Tennessee Eastman process and the monitoring performance of the

KPCA-KDE approach is compared with KPCA whose UCLs are based on the Gaus-

sian distribution. The robustness of the KPCA-KDE technique is demonstrated and

a new fault identification approach is proposed.
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3.1 KPCA-KDE-based process monitoring

3.1.1 Kernel PCA algorithm

Given m training samples xk ∈ <n, k = 1, . . . ,m, the data can be projected onto a

high-dimensional feature space using a nonlinear mapping, φ : xk ∈ <n −→ φ(xk) ∈

<F . The covariance matrix in the feature space is then computed as

CF =
1

m

m∑
j=1

〈φ (xj) ,φ (xj)〉, (3.1)

where φ (xj), for j = 1, . . .m is assumed to have zero mean and unit variance.

To diagonalize the covariance matrix, eigenvalue decomposition is performed in the

feature space using

λa = CFa, (3.2)

where λ is an eigenvalue of CF , satisfying λ ≥ 0, and a ∈ <F is the corresponding

eigenvector (a 6= 0).

The eigenvector can be expressed as a linear combination of the mapped data points

as follows:

a =
m∑
i=1

αiφ (xi) . (3.3)

Using φ (xk) to multiply both sides of (3.2) gives

λ〈φ (xk) , a〉 = 〈φ (xk) ,CFa〉. (3.4)

Substituting (3.1) and (3.3) in (3.4) gives

λ

m∑
i=1

αi〈φ (xk) ,φ (xi)〉

=
1

m

m∑
i=1

αi

〈
φ (xk) ,

m∑
j=1

φ (xj)

〉
〈φ (xj) ,φ (xi)〉 .

(3.5)
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Instead of performing eigenvalue decomposition directly on CF in (3.1) and finding

eigenvalues and PCs, we apply the kernel trick by defining an m×m (kernel) matrix

as follows:

[K]ij = Kij = 〈φ (xi) ,φ (xj)〉 = k (xi,xj) (3.6)

for all i, j = 1, . . . ,m. Introducing the kernel function of the form k (x,y) =

〈φ (x) ,φ (y)〉 in (3.5) enables the computation of the inner products 〈φ (xi) ,φ (xj)〉

in the feature space as a in terms of the original input data. This precludes the need

to carry out the nonlinear mappings and the explicit computation of inner products

in the feature space (Schölkopf et al., 1998; Lee et al., 2004). Applying the kernel

matrix, (3.5) can be re-written as

λ

m∑
i=1

αiKki =
1

m

m∑
i=1

αi

m∑
j=1

KkjKji. (3.7)

Notice that k = 1, . . . ,m, therefore, (3.7) can be represented as

λmKα = K2α. (3.8)

Equation (3.8) is equivalent to the eigenvalue problem

mλα = Kα. (3.9)

Furthermore, the kernel matrix can be mean centred before eigenvalue decomposition

as follows

Kctr = K− InK−KIn + InKIn, (3.10)

where In is an m×m matrix in which each element is equal to 1/m. Eigen decompo-

sition of Kctr is equivalent to performing PCA in <F . This, essentially, amounts to

solving the eigenvalue decomposition problem in (3.9) to determine the eigenvectors

α1,α2, . . . ,αm and their corresponding eigenvalues λ1 ≥ λ2 ≥ . . . λm.

Since the kernel matrix, Kctr is symmetric, the derived PCs are orthonormal, that
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is,

〈αi,αj〉 = δi,j, (i, j = 1, 2, . . . ,m) , (3.11)

where δi,j represents the Dirac delta function.

The score vectors of the nonlinear mapping of mean-centred training observations

xj, j = 1, . . . ,m, can then be extracted by projecting φ (xj) onto the PC space

spanned by the eigenvectors αk, k = 1, . . . ,m,

zk,j = 〈αk,kctr〉 =
m∑
i=1

αk,i 〈φ (xi) ,φ (xj)〉 . (3.12)

Applying the kernel trick, this can be expressed as

zk,j =
m∑
i=1

αk,i [Kctr]i,j . (3.13)

3.1.2 Fault detection metrics

The Hotelling’s T 2 of the jth samples in the feature space used for KPCA fault

detection is computed as

T 2
j = [z1,j, . . . , zq,j] Ω−1 [z1,j, . . . , zq,j]

T (3.14)

where zi,j, i = 1, . . . , q represents the PC scores of the jth samples, q is the number

of nonlinear PCs retained and Ω−1 represents the inverse of the matrix of eigenvalues

corresponding to the retained PCs. A simplified computation of the Q-statistic has

been proposed by Lee et al. (2004). For the the jth samples,

Qj = ||φ(xj)− φ̂q(xj)||2 =
m∑
i=1

z2i,j −
q∑
i=1

z2i,j (3.15)

The method of computing control limits directly from the PDFs of the T 2 and Q

statistics is explained in the next section.
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3.1.3 Kernel density estimation

KDE is a procedure for fitting a data set with a suitable smooth PDF from a set

of random samples. It is used widely for estimating PDFs, especially for univariate

random data (Bowman and Azzalini, 1997). The KDE is applicable for the T 2 and

Q statistics since both are univariate although the process characterized by these

statistics is multivariate.

Given a random variable y, its PDF g(y) can be estimated from its N samples, yj,

j = 1, . . . , N , as follows:

g(y) =
1

Nh

N∑
j=1

K(
y − yj
h

) (3.16)

where K is a kernel function while h is the window width (also known as bandwidth

or smoothing parameter). Integrating the density function over a continuous range

gives the probability. Thus, the probability of y to be less than the control limit c

based on a given significance level, α is given by:

P (y < c) =

∫ c

0

g(y) dy = α. (3.17)

where g(y) is the PDF. Consequently, the control limits of the monitoring measures

(i.e., T 2 and Q) can be calculated from their respective PDF estimates as

∫ T 2
α

0

g(T 2) dT 2 = α (3.18)

∫ Qα

0

g(Q) dQ = α. (3.19)

3.1.4 On-line monitoring

For a mean-centred test observation, xtt, the corresponding kernel vector, ktt is

calculated with the training samples, xj, j = 1, . . . ,m as follows:

[ktt]j = k(xj,xtt). (3.20)
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The test kernel vector is then centred as shown below:

kctt = ktt −KIt − Inktt + InKIt. (3.21)

where It = 1
m

[1, . . . , 1]T ∈ <m. The corresponding test score vector, ztt is calculated

using

ztt,k = 〈αk,kctt〉 =
m∑
i=1

αk,i 〈φ (xi) ,φ (xtt)〉 . (3.22)

This can be re-written as

ztt,k =
m∑
i=1

αk,i[kctt]i. (3.23)

In vector form,

ztt = Akctt. (3.24)

where A = [α1, · · · ,αm].

3.1.5 Outline of KPCA-KDE fault detection procedure

Tables 3.1 and 3.2 show the outline of KPCA-KDE-based fault detection procedure.

Table 3.1: Off-line training
TR1. Obtain data under normal operating conditions (NOC) and scale

the data using the mean and standard deviation of the columns of
the data set which represent the different variables.

TR2. Decide on the type of kernel function to use and determine the
kernel parameter

TR3. Construct the kernel matrix of the NOC data and centre it using
(3.10)

TR4. Obtain eigenvalues and their corresponding eigenvectors and rear-
range them in a descending order

TR5. Orthonormalise the eigenvectors using (3.11)
TR6. Obtain nonlinear components using (3.13)
TR7. Compute monitoring indices (T 2 and Q) based on the kernelised

NOC data using (3.14) and (3.15)
TR8. Determine control limits of T 2 and Q using (3.18) and (3.19)

To provide a more intuitive picture, a flowchart of the procedure is presented in

Figure 3.1.
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Table 3.2: On-line monitoring
TT1. Acquire test sample xtt and normalize using the mean and standard

deviation values used in step 1 of the off-line stage
TT2. Compute the kernel vector of the test sample using (3.20)
TT3. Centre the kernel vector according to (3.21)
TT4. Obtain the principal component of the test sample from (3.23)
TT5. Compare the T 2 and Q of the test sample with their respective

control limits obtained in the model development stage
TT6. If T 2 or Q is less than its monitoring statistic, the process is in-

control. If both exceed their control limits, the process is out-of-
control and therefore fault identification is carried out to identify
the source of the fault

Figure 3.1: KPCA-KDE fault detection procedure.

3.2 KPCA-KDE based fault identification

Detecting a fault is just one aspect of monitoring a process. It is also important that

the variables responsible for the fault are identified, after a detecting the fault. This

step makes it possible for the root cause(s) of the fault to be located and removed

in order to restore the process to its normal operating conditions.



Nonlinear process fault detection and identification using kernel PCA and KDE 55

Contribution plots have been used as a common means of fault identification in pre-

vious studies (Westerhuis et al., 2000; Miller et al., 1998). Essentially, contribution

plots show the contributions of different process variables to the monitoring statis-

tics. A high contribution of a given variable to the monitoring indices in a fault

region shows that such a variable is strongly connected with the fault. A scheme

using the Hotelling’s T 2 and Q-statistics based on the PCA has been reported (Chi-

ang et al., 2001; He et al., 2006). A combined index of the T 2 and Q statistics based

on fault reconstruction in PCA and PLS have also been reported which showed to

achieve better fault identification than using the T 2 and Q statistics singly (Yue and

Qin, 2001; Dunia and Qin, 1998). Limited studies have also been carried out using

linear dynamic systems like canonical variate analysis (Chiang et al., 2001; Jiang,

Huang, Zhu, Fan and Braatz, 2015) for successful fault identification. Nevertheless,

the drawback of these techniques is their inability to address process nonlinearities.

Fault identification based on kernel methods is not as straightforward as that of

linear techniques and cannot be generalised from the linear approaches due the non-

linear relationship between the transformed and the original process variables(Lee

et al., 2004). Efforts have been made to perform nonlinear fault identification using

kernel PCA by calculating reconstruction error (Cho et al., 2005) and virtual scale

factor (Choi et al., 2005). Kernel PCA fault identification strategy has also been

developed based on approximating kernel functions using power series approxima-

tion. Although this approach makes possible the use of contribution plots similar to

linear PCA, the complexity of the calculations become more involved as the problem

size increases due to the calculation of kernel matrices. Thus, despite the scholarly

efforts that have been made in the past, identification of faulty variables and source

diagnosis is a problem that is still open to be solved in data-driven fault diagnosis

studies involving nonlinear systems (Deng et al., 2013).

A recent study by Deng et al. (2013) identified fault variables using a sensitivity

analysis approach (Petzold et al., 2006). The method is based on calculating the

rate of change in system output variables resulting from changes in the problem

causing parameters. Given an observation vector xi ∈ <n with n variables, the
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contribution of the ith variable to a monitoring metric using

T 2
i,con = xiai and Qi,con = xibi, (3.25)

where ai = ∂T 2/∂xi and bi = ∂Q/∂xi.

In this work, the partial derivatives are obtained by differentiating the functions

defining T 2 and Q at a given reference fault instance using complex step differentia-

tion method. Let f be a function. The complex step differentiation (Martins et al.,

2003) of f at a value x is given by the expression

∂f

∂x
≈ lm[f(x + ih)]

h
. (3.26)

where h is the step size, hence ih is an imaginary step. Essentially, evaluating the

function with a complex argument gives both the function value (the real part) and

the derivative (the imaginary part). Unlike, the finite difference method, complex

step differential does not involve a difference operation. Hence, very small step sizes

can be used without losing accuracy.

Lyness (1967) and Lyness and Moler (1967) were the first to adopt the use of complex

variables to develop estimates of derivatives in their work. The potential of this

technique is now well recognised. Squire and Trapp (1998) used this theory to obtain

an expression for the estimation of derivatives. It has been used by Newman et al.

(1998) in a multidisciplinary environment. Work on the approach have also been

presented in the works of Martins et al. (2000) and Martins et al. (2003). Although,

using the approach for evaluating routines with complex arguments may require a

high runtime, it is still a good generalisable approach for fault identification studies.



Nonlinear process fault detection and identification using kernel PCA and KDE 57

3.3 Application study

3.3.1 Overview of Tennessee Eastman process

The Tennessee Eastman (TE) process is a simulation of an actual industrial plant

developed by Downs and Vogel of the Eastman Chemical Company (Downs and

Vogel, 1993). It is probably the most popular benchmark process for assessing new

monitoring and control techniques. The evidence of this can be seen in the many

benchmark studies based on this process (Russell et al., 2000; Liu et al., 2012;

McAvoy and Ye, 1994; Chiang et al., 2001; Yin et al., 2012; Kano et al., 2002). A

schematic diagram of the process is shown in Figure 3.2.

Figure 3.2: Schematic diagram of the TE process. Reaction products (Stream 7) are
cooled in the condenser and sent to the separator where the vapour phase is cooled,
partially purged (Stream 9) and recycled. Stream 4 strips unreacted reactants from
Stream 10 and feeds them to the recycle stream while the products are collected
from the exit.

The process has five main units - separator, compressor, reactor, stripper and con-

denser. There are eight components (A to H) in the process. The following equations
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represents the of the process.

A(g) + C(g) +D(g)→ G(liq) Product

A(g) + C(g) + E(g)→ H(liq) Product

A(g) + E(g)→ F (liq) By product

3D(g)→ 2F (liq) By product

(3.27)

A, C, D and E are gaseous reactants which enter the reactor via streams 1, 4, 2 and

3 respectively. B is an inert component that feeds the reactor via stream 4. G and H

are liquid products while F is a bye product. The cooled reactor product enters the

separator where the vapour phase is condensed and recycled. Stream 9 is partially

purged to avoid the accumulation of B and F in the recycle stream. The liquid

phase in the separator enters the stripper. Stream 4 strips the reactants that have

not reacted from stream 10 and the stripped components enter the recycle stream

via stream 5. The products, G and H, are collected at the exit of the stripper.

The TE process consists of 960 observations which are sampled every 3 minutes. It

also has 53 variables out of which 12 are continuous, 19 are composition and 12 are

manipulated variables. The initial version of Downs and Vogel defined 20 faults but

a 21st fault was added by Chiang et al. (2001). All fault conditions were induced in

the process after a 8 hour period of normal operation.

3.3.2 Application procedure

Five hundred samples collected during normal operation were used as training data

and all 960 samples collected in each of the faulty conditions were used as test data.

All 22 continuous and the 11 manipulated variables were used in this work. The

12th manipulated variable (that is, agitation speed of the reactor’s stirrer) which

is constant, was excluded. A total of 20 faults in the process were studied. A

description of the variables and faults studied are presented in Tables 3.3 and 3.4

respectively.
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Table 3.3: TE process monitoring variables.

No. Description No. Description

1 A feed (stream 1) 18 Stripper temperature
2 D feed (stream 2) 19 Stripper stream flow
3 E feed (stream 4) 20 Compressor work
4 Total feed (stream 4) 21 Reactor cooling water outlet temp.
5 Recycle flow (stream 8) 22 Condenser cooling water outlet temp.
6 Reactor feed rate (stream 6) 23 D feed flow (stream 2)
7 Reactor pressure 24 E feed flow (stream 3)
8 Reactor level 25 A feed flow (stream 1)
9 Reactor temperature 26 Total feed flow (stream 4)
10 Purge rate 27 Compressor recycle valve
11 Separator temperature 28 Purge valve
12 Separator level 29 Separator pot liquid flow (stream 10)
13 Separator pressure 30 Stripper liquid product flow
14 Separator under flow (stream 10) 31 Stripper steam valve
15 Stripper stream valve 32 Reactor cooling water flow
16 Stripper pressure 33 Condenser cooling water flow
17 Stripper under flow (stream 11)

In this study, the number of PCs that explained over 90% of the total variance were

retained. Based on this approach, 16 and 17 PCs were selected for PCA and KPCA

respectively.

Another important parameter for kernel-based modelling is the choice of kernel and

its width. The RBF kernel commonly used in previous studies (Stefatos and Hamza,

2007; Lee et al., 2004) was also used in this work. The kernel parameter value c was

computed using the formula c = Wnσ2, where W is a constant which depends on the

monitored process, n is the dimension of the input data while σ2 is the variance (Lee

et al., 2004; Mika, Schölkopf, Smola, Müller, Scholz and Rätsch, 1999). The value

of W was set at 40 with validation from the training data. The T 2 and Q statistics

were jointly used for detecting faults. In other words, a successful detection of fault

was deemed to have occurred when either the T 2 or Q or both statistics detects

the fault. This is because the faults may not always manifest in the model space

and the residual space simultaneously to the same degree due the different ways the

abnormality may affect these spaces.
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Table 3.4: Fault descriptions in the TE process.

Fault Description Type

1 A/C feed ratio, B composition
constant Step

2 B composition, A/C ratio
constant Step

3 D feed temperature Step
4 Reactor cooling water inlet

temperature Step
5 Condenser cooling water

inlet temperature Step
6 A feed loss Step
7 C header pressure

loss-reduced availability Step
8 A, B, C feed composition Random variation
9 D feed temperature Random variation
10 C feed temperature Random variation
11 Reactor cooling water

inlet temperature Random variation
12 Condenser cooling water

inlet temperature Random variation
13 Reaction kinetics Slow drift
14 Reactor cooling water valve Sticking
15 Condenser cooling water valve Sticking
16 Unknown
17 Unknown
18 Unknown
19 Unknown
20 Unknown

3.3.3 Fault detection rule

Since measurements obtained from chemical processes are usually noisy, monitoring

indices may exceed their thresholds randomly. This amounts to announcing the

presence of a fault when no disturbance has actually occurred, that is, a false alarm.

In other words, a monitoring index may exceed its threshold once but if no fault

is present, the monitoring index may not stay above its threshold in subsequent

measurements. Conversely, a fault has likely occurred if the monitoring index stays

above its threshold in several consecutive measurements. A fault detection rule
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is used to address the problem of spurious alarms (Tien et al., 2004; van Sprang

et al., 2002; Choi and Lee, 2004). A detection rule also provides a uniform basis for

comparing different monitoring methods. In this study, successful fault detection

was counted when a monitoring measure stays above its control limit in at least

two observations consecutively. All algorithms recorded a false alarm rate (FAR) of

zero when tested with the training data based on this criterion. Computation of the

metrics for evaluating the monitoring performance of the different techniques was

therefore based on this criterion.

3.3.4 Computation of monitoring performance metrics

Three metrics were used to measure the performance of the different monitoring

techniques: fault detection rate (FDR), false alarm rate (FAR) and detection delay.

FDR is the percentage of samples that are faulty which are correctly identified. This

was calculated using

FDR =
nfc

ntf

× 100, (3.28)

where nfc denotes the number of fault samples detected correctly and ntf is the total

number of samples that are faulty. FAR is the percentage of samples that are normal

which are detected as faulty or abnormal. It was calculated as

FAR =
nnf

ntn

× 100, (3.29)

where nnf is the number of normal samples incorrectly detected as abnormal and

ntn is the total number of samples that are normal. Detection delay is the difference

between the time of occurrence of the fault and the time of detection.
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3.3.5 Results and discussion

KPCA-KDE-based fault detection

Fault detection based on KPCA-KDE is demonstrated using Faults 11 and 12 of

the TE process. Fault 11 is a random variation in the reactor cooling water inlet

temperature while Fault 12 is a random variation in the condenser cooling water

inlet temperature. The monitoring charts for the two faults are shown in Fig-

ures. 3.3(a) and 3.3(b) respectively. The solid curves represent the fault signals

while the dash-dot and dash lines represent the control limits at 99% confidence

level based on Gaussian distribution and KDE respectively. It can be seen that in

both cases, especially in the T 2 control charts, the KDE-based control limits are be-

low the Gaussian distribution-based control limits. That is, the monitoring indices

exceed the KDE-based control limits to a greater extent compared to the Gaus-

sian distribution-based control limits. In other words, using the KDE-based control

limits with the KPCA technique gives higher monitoring performance compared to

using the Gaussian distribution-based control limits.

Table 3.5 shows the detection rates for PCA, PCA-KDE, KPCA, and KPCA-KDE

for all 20 faults studied. The results show that the KDE versions have overall

higher FDRs compared to the corresponding Gaussian distribution-based versions.

Furthermore, in Table 3.6, it can be seen that the detection delays of the KDE-

based versions are either equal to or lower than the non-KDE-based techniques.

This implies that the approaches based on KDE-derived UCLs detected faults earlier

than their Gaussian distribution-based counterparts. Thus, associating the control

limits derive via KDE with the KPCA technique enhances the performance of the

KPCA approach.

KPCA-KDE fault identification

KPCA-KDE-based fault identification is demonstrated using Fault 11 as an example.

The occurrence of Fault 11 induces change in the reactor cooling water flow rate
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Table 3.5: Fault Detection Rates (%).

Fault PCA PCA-KDE KPCA KPCA-KDE

1 99.75 99.75 99.75 99.75

2 98.25 98.75 98.63 98.63

3 0.13 0.88 1.63 1.75

4 99.88 99.88 99.88 99.88

5 23.63 25.75 26.38 26.88

6 99.88 99.88 99.88 99.88

7 99.88 99.88 99.88 99.88

8 96.88 97.38 98.00 98.00

9 0.25 1.13 1.63 2.25

10 35.75 41.63 51.13 53.50

11 74.75 77.50 78.13 79.88

12 97.50 97.63 97.50 97.63

13 95.50 95.75 95.38 95.63

14 99.75 99.75 99.75 99.75

15 0 1.13 2.13 2.88

16 27.50 36.13 39.75 44.62

17 92.50 93.88 93.00 93.50

19 5.50 9.88 10.13 13.50

20 49.25 53.00 57.13 57.75

which causes fluctuation in the reactor temperature. Both the T 2- and SPE-based

contribution plots at sample 300 shown in Figure 3.4 identified the two fault variables

correctly. Variables 9 and 32 are the reactor’s temperature 32 and cooling water flow

rate respectively. Although, it is possible for the control loops to compensate the

change in the reactor temperature after a longer time has elapsed, the fluctuations

in both variables affected early after the introduction of the fault were correctly

identified by the contribution plots.
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Table 3.6: Detection Delay, DD (min).

Fault PCA PCA KDE KPCA KPCA KDE

1 6 6 6 6

2 39 30 33 33

3 2346 1656 1725 1725

4 3 3 3 3

5 3 3 3 3

6 3 3 3 3

7 3 3 3 3

8 48 48 48 48

9 2346 1665 1725 1725

10 186 186 180 180

11 15 15 15 15

12 42 30 60 42

13 102 102 111 105

14 6 6 6 6

15 ND 1656 1725 1725

16 81 78 81 81

17 45 45 45 45

18 24 24 24 24

19 213 24 213 36

20 105 102 105 105

Note: ND, Not Detected.

Test of robustness

The robustness of the techniques was tested by varying two parameters: bandwidth

and the number of PCs retained. Fig. 3.5 shows the monitoring charts for KPCA and

KPCA-KDE with W = 40 and W = 10 for Fault 14. This fault represents sticking

of the reactor cooling water valve, which is quit easily detected by most statistical

process monitoring approaches. At W = 40, both KPCA and KPCA-KDE recorded

zero false alarms (Fig. 3.5(a)). However, at W = 10, KPCA recorded a false alarm

rate of 8.13% while the FAR for KPCA-KDE was still zero (Fig. 3.5(b)). Also,

Table 3.7 shows that the KPCA recorded a similar high FAR when 25 principal
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components were retained. Conversely, the KPCA-KDE approach still recorded

zero false alarms.

Table 3.7: Monitoring results at different number of PCs retained.

KPCA KPCA-KDE

PCs FDR FAR DD FDR FAR DD

10 99.88 0 3 99.88 0 3

15 99.75 0 6 99.75 0 6

20 96.75 0 6 99.88 0 3

25 99.88 8.13 3 99.75 0 6

Thus, apart from generally providing higher FDRs and earlier detections, the KPCA-

KDE is more robust than the KPCA technique with control limits based on the

Gaussian assumption. A more sensitive technique is better for process operators

since less faults will be missed. Secondly, when a fault is detected early, operators

will have more time to establish the cause(s) that induced the fault and take remedial

actions while the process can still be controlled. Thirdly, although methods are

available for obtaining optimum design parameters for developing process monitoring

models, there is no guarantee that the optimum values are used all the time. The

reason for this may range from lack of experience of personnel to lack of or limited

understanding of the process itself. Therefore, the more robust a technique is the

better it is for process operations.

3.4 Concluding remarks

This chapter investigated nonlinear process fault detection and identification using

the KPCA-KDE technique. In this approach, the thresholds used for constructing

control charts were derived directly from the PDFs of the monitoring indices instead

of using thresholds based on the Gaussian distribution. The technique was applied

to the benchmark TE process and its fault detection performance was compared with

the KPCA technique based on the assumption of Gaussian distributed variables.
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The overall results show that KPCA-KDE detected faults more and at shorter times

from when faults occur compared to the KPCA approach whose control limits were

based on the Gaussian distribution. The study also shows that the control lim-

its based on KDE are more robust than those based on the Gaussian assumption

because the former follow the actual distribution of the monitoring statistics more

closely. In general, the work corroborates the claim that using KDE-based con-

trol limits give better monitoring results in nonlinear processes than using control

limits based on the Gaussian assumption. A generalisable approach for computing

variable contributions in fault identification studies that centre on multivariate sta-

tistical methods was also demonstrated. However, the KPCA approach does not

capture process dynamics. This will be addressed in Chapter 4.
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Figure 3.3: KPCA-based control charts showing monitoring indices and Gaussian
assumption/KDE-based control limits for (a) Fault 11 (b) Fault 12. The KDE-
based control limits are below the Gaussian assumption-based thresholds in both
faults and give higher fault detection rates.



68 Nonlinear process fault detection and identification using kernel PCA and KDE

(a)

(b)

Figure 3.4: Plot showing KPCA-KDE-based contributions to T 2 and SPE for Fault
11 of the TE process at sample number 300; (a) T 2-based contribution plot (b) SPE-
based contribution plot. Both plots correctly identified variables 9 and 32 mostly
responsible for the faulty condition.
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Figure 3.5: KPCA-KDE control charts for Fault 14 of the TE process; (a) control
chart using W = 40 in the formula c = Wnσ2 (b) control chart using W = 10 in the
formula c = Wnσ2. The KPCA-KDE FARs do not change drastically with changing
operating parameters which makes it more robust than the KPCA approach based
on Gaussian assumption control limits.
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Chapter 4

Statistical process monitoring

using linear latent variable CVA

It is not impossible for process measurements to have both linear and dynamic vari-

able relationships. Therefore, in this chapter, the linear latent variable CVA (LLV-

CVA) technique is proposed as a dynamic latent variable method to capture linear

variable cross-correlations and dynamic autocorrelations simultaneously. In this ap-

proach, PCA is used to capture linear cross-correlations while CVA is used to capture

dynamic autocorrelations. Application results of the technique on the TE process are

compared with results obtained with DPCA and CVA.

4.1 Introduction

Dynamic monitoring techniques extract only dynamic relationships. On the other

hand, steady state models focus on static relationships without considering any time

lags or delays. However, a complex industrial process may exhibit more than one

data characteristic. This could mean that data generated from the process have

both linear and dynamic features. Hence, developing a monitoring technique which

simultaneously accounts for cross-correlations arising from steady state behaviour

as well as autocorrelations due to process dynamics is a good idea.
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Li et al. (2011) suggested a dynamic latent variable model using dynamic factor

analysis to restrict the dynamic variation in a reduced subspace in the prediction

of time series. This approach involves, firstly, extracting the dynamics in a variable

space into autocorrelated latent variables. Secondly, the autocorrelated PCA is used

for extracting dynamic principal factors according to their autocovariance. However,

this approach is not still able to extract dynamic relations exhaustively, due to the

limitations of using time lags to capture process dynamics (Jiang, Zhu, Huang,

Paulson and Braatz, 2015).

In this chapter, PCA is used to extract static correlations in the variable space to

obtain linear latent variables (LLVs). Then, CVA is applied to the LLVs to extract

dynamic autocorrelations. The proposed approach is referred to as linear latent

variable-CVA (LLV-CVA). Modelling and fault detection based on the LLV-CVA is

presented in this chapter and its performance is compared with DPCA and CVA.

The chapter ends with concluding remarks drawn from the application study.

4.2 Linear latent variable-CVA modelling

Recall that from (2.3), the transformed data (that is, the matrix of scores or linear

latent variables) derived from the observation dataset X is given by Z = XP. If zl

is the lth column vector of Z, computation of the past (p) and future (f) observation

vectors in the CVA step is obtained as follows:

zp,l =


zl−1

zl−2
...

zl−p

 ∈ <
rp and zf,l =


zl

zl+1

...

zl+f−1

 ∈ <
rf , (4.1)

where r is the dimension of the linear latent variables retained which contains eigen-

vectors corresponding to the first r eigenvalues of Z. The mean centred past and
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future observation vectors, ẑp,l and ẑf,l respectively are calculated as

ẑp,l = zp,l − z̄p,l and ẑf,l = zf,l − z̄f,l, (4.2)

where z̄p,l and z̄f,l denote the sample means of zp,l and zf,l respectively. The past

Ap and future Af matrices were obtained by arranging the corresponding past and

future vectors together in columns as follows:

Ap = [ẑp,p+1, ẑp,p+2, . . . ẑp,p+W ] ∈ <rp×W , (4.3)

Af = [ẑf,p+1, ẑf,p+2, . . . ẑf,p+W ] ∈ <rf×W , (4.4)

where Ap and Af are past and future truncated Hankel matrices for N observations.

To avoid singularity of Σpp and Σff , parameters r, p and f have to satisfy {rp, rf} <

N − p− f + 1. The number of columns W for the truncated Hankel matrices were

computed using W = N − f − p+ 1.

The sample covariances and cross-covariances of the past and future matrices were

estimated as

Σpp = ApA
T
p (W − 1)−1 , (4.5)

Σff = AfA
T
f (W − 1)−1 , (4.6)

Σfp = AfA
T
p (W − 1)−1 . (4.7)

The correlation between the linear combinations of the future observation vectors

aT ẑf,l and those of the past observation vectors bT ẑp,l were expressed as

ρ = max
a,b

aTΣfpb

(aTΣffa)1/2 (bTΣppb)1/2
. (4.8)

Assuming that u = Σ
1/2
ff a and v = Σ1/2

pp b, the CVA optimisation problem can be
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represented as

max
u,v

uT
(
Σ
−1/2
ff ΣfpΣ

−1/2
pp

)
v, (4.9)

s.t. uTu = vTv = 1, (4.10)

where the solution, u and v are the left and right singular vectors of the Hankel

matrix Hl = Σ
−1/2
ff ΣfpΣ

−1/2
pp . Singular value decomposition (SVD) of Hl gives:

Hl = Σ
−1/2
ff ΣfpΣ

−1/2
pp = UΩVT . (4.11)

where U and V are orthogonal matrices of the left and right singular vectors and Ω

is a diagonal matrix whose elements are the singular values of Hk. Reordering the

singular values in descending order and rearranging the columns of the associated

singular vectors makes the first q columns of V the ones with top largest correlations

with those of U. This gives a reduced dimensional matrix Vq such that (q < rp).

The transformation matrices C and D for converting the rp-dimensional past matri-

ces to the q-dimensional state variables and the residuals respectively were computed

as

C = VT
q Σ−1/2pp ∈ <q×rp, (4.12)

D =
(
I −VqV

T
q

)
Σ−1/2pp ∈ <rp×rp, (4.13)

For a given latent variable vector, the states and residuals are defined as

z∗l = C.ẑp,l and e∗l = D.ẑp,l. (4.14)

4.3 Method of fault detection

The Hotellings T 2 and the Q statistic or squared prediction error (SPE) and their

control limits are used for process monitoring in LLV-CVA. They are computed as
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follows:

T 2
l = z∗Tl z∗l and Ql = e∗Tl e∗l . (4.15)

To avoid the Gaussian distribution assumption, the control limits of T 2 and Q are

computed through kernel density estimation (Odiowei and Cao, 2010).

Given a test observation xt, the corresponding latent variable is computed as

zt = xtP, (4.16)

and the past vector z
(t)
p,l is computed similar to (4.1) and (4.2). The corresponding

state and residual test vectors are calculated using

z
∗(t)
l = J.ẑ

(t)
p,l and e

∗(t)
l = L.ẑ

(t)
p,l . (4.17)

4.3.1 LLV-CVA-based process monitoring steps

Off-line training

A6–1 Obtain normal operating data.

A6–2 Mean centre data and normalize to unit variance.

A6–3 Compute covariance matrix of the pre-processed data using (2.1) and perform

eigen decomposition using (2.2).

A6–4 Compute latent variables using (2.3).

A6–5 Expand latent variable vector at each time point l to obtain past (p) and

future (f) measurements using (4.1).

A6–6 Perform SVD on the scaled Hankel matrix using (4.11) and determine number

of states to retain.

A6–7 Determine state variables and residuals using (4.14).
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A6–8 Compute monitoring indices using (4.15) and their KDE-based thresholds

similar to (3.18) and (3.19) .

On-line monitoring

B6–1 Obtain and pre-process test data with same mean and standard deviation

used for training data.

B6–2 Compute latent variable of test data using (4.16).

B6–3 Compute the past vector similar to (4.1) and (4.2) .

B6–4 Calculate state and residual using (4.17).

B6–5 Compute T 2
l and Ql of the test data using (4.15).

B6–6 Monitor process by comparing values of T 2
l and Ql of the test data against

their thresholds. A fault is detected if either or both indices exceed their

thresholds.

4.4 Application study

In this section the LLV-CVA approach was tested using the TE challenge pro-

cess (Downs and Vogel, 1993; Lyman and Georgakis, 1995; Wilson and Irwin, 2000;

Liu et al., 2012; Jing et al., 2014) and the results obtained are compared with DPCA

and CVA-based results.

4.4.1 Parameters selection

Two parameters are required for implementing the CVA. These are the lag length

(i.e. number of past and future lags used) and the number of states retained. The

lag length of a time series can be estimated from its sample autocorrelation function
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(ACF). Assuming an observed series x1,x2, . . .xN . The autocorrelation coefficient

at a given time interval or lag l (r̂l) is given by

r̂l =

N−l∑
i=1

(xi − x̄) (x̄i+l − x̄)

N∑
i=1

(xi − x̄)2
, (4.18)

where x̄ = 1
N

N∑
i=1

xi is the sample mean of the N observations. Notice that N is

used instead of the usual N − 1 in calculating the sample mean. This convention

is common in time series applications and also because N is usually not small.

Therefore, the difference between using N and N − 1 will be little.

Autocorrelation coefficient measures the correlation between values of an observation

at two different time periods. A plot of autocorrelation coefficients for several time

periods (i.e. l = 1, 2, 3, . . .) is referred to as the autocorrelation function (ACF) or

correlogram. In other words, the sample ACF summarises the autocorrelation of

a time series at different lags. Therefore, the number of past lags that correlate

significantly with the time series can be determined from the sample ACF. The

autocorrelation function of the training data with 95% confidence level (represented

by the solid horizontal lines) is shown in Figure 4.1. Based on the ACF, a lag length

of 15 is used in this study. Hence, the values of p and f were set at 15.

It is proposed that determining the states to retain be based on the number of largest

singular values in matrix Hl in (4.11) (Negiz and Cinarl, 1998). However, Figure 4.2

shows that the normalised singular values decrease very slowly in this particular case.

Hence, such an approach may not give a realistic model (Odiowei and Cao, 2010).

Furthermore, the choice of states to retain is not critical because both indices are

used for monitoring. A fault that does not manifest in the model phase may manifest

in residual phased and will be detected by the Q statistic. Similarly, a fault that

does not have significant impact on the residual space may manifest significantly in

the model phase and be detected by the T 2 statistic. Consequently, 26 states were

retained to minimise the rate of false alarms under normal operating conditions. All
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Figure 4.1: Plot showing sample autocorrelation function of the training data with
95% confidence level. Autocorrelation died out at the 15th time period. Hence the
length of future f and past g time lag was fixed at 15.

control charts for monitoring the process were constructed at 99% confidence level.

Figure 4.2: Plot of normalised singular values of the training data used for deter-
mining number of states to retain. Since the singular values decreased very slowly,
26 states were retained to minimise false alarms.

The DPCA model was constructed with 2 lags. This agrees with the view that

one or two lags are appropriate for DPCA-based process monitoring even though a

higher lag-order may be required in nonlinear processes (Chiang et al., 2001). Also,
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a total of 28 principal components (PCs) were retained in the DPCA technique

based on the cumulative variance of the eigenvalues that accounted for over 90%

of the total variance. The design parameters used for model development in this

study are presented in Table 4.1. Successful fault detection was assumed when a

Table 4.1: Table showing summary of design parameters for the different monitoring
methods.

Design Parameter Value

Order of time lag (DPCA) 2

Number of PCs (DPCA), (90% of total variance) 28

Number of states (CVA, LLV-CVA) 16

Number of time lags (CVA, LLV-CVA) 15

monitoring statistic exceeds its threshold in at least three consecutive observations.

This fault detection rule provided the common basis for comparing the monitoring

techniques investigated.

4.4.2 Results and discussion

Tables 4.2 and 4.3 show the monitoring performances of DPCA, CVA, and LLV-

CVA. Table 4.2 compares the fault detection rates (FDRs) of the techniques inves-

tigated while Table 4.3 compares the fault detection times (DTs) of all three ap-

proaches. FDR is the percentage of faulty observations that are correctly detected.

FAR represents the observations recorded as faults when no faults were actually

present, while detection time is the time that passes before a fault is detected.

In general, the results showed that the CVA-based methods (i.e. CVA and LLV-

CVA) gave higher FDRs and lower detection times compared to the DPCA. In other

words, faults were detected more and earlier by the CVA-based techniques compared

to the DPCA approach. This is attributable to the inability of the DPCA to ade-

quately capture the dynamics of the process as was highlighted in the introduction.

The difference in performance between the DPCA and the CVA-based techniques

is particularly significant in Faults 3, 9, and 15. These faults are more difficult
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to detect in the TE process because they cause little variation in the measured

variables.

In Fault 3, the FDR of the DPCA, CVA and LLV-CVA are 0%, 65.13% and 65.88%

respectively. The equivalent results for Fault 9 are 0%, 88.63% and 90.13% respec-

tively. In Fault 3, both CVA and LLV-CVA records a detection delay of 15 minutes

while the DPCA did not detect the fault at all. However, results of the CVA and

the LLV-CVA were largely similar, although, the LLV-CVA gave slightly higher

FDRs than the CVA in Faults 3, 9, 13, 15, 17 and 18. The LLV-CVA also recorded

slightly lower detection times in Faults 9, 13, 15, 17 and 18. Based on the fault de-

tection rule of three consecutive readings above the control limit employed, all the

techniques recorded zero false alarms. Evidently, the LLV-CVA enhanced both the

level of fault detected and time of detection in a number of faults compared to the

DPCA. However, incorporating a linear step in CVA to extract static correlations in

addition to dynamic autocorrelations seem to have improved performance only very

slightly. Since the techniques investigated in this chapter are linear methods, they

do not consider process nonlinearities. Therefore, a nonlinear dynamic approach is

considered in the next chapter.

Figs. 4.3(a), 4.3(b), and 4.3(c) show the control charts for Fault 9 for DPCA, CVA,

and LLV-CVA respectively. The solid signal is the monitoring statistic while the

dash line is the threshold (control limit). The difference between the DPCA and

CVA-based methods can be seen clearly. The control charts show that the DPCA

did not detect Fault 9. The solid signal is below the control line which erroneously

implies a normal condition. The T 2 statistic of both the CVA and LLV-CVA also

did not detect the fault. However, their charts based on the Q-statistic clearly show

an abnormal deviation from about the 172nd sample. This is the instance when the

monitoring statistic exceeds the control limit.
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Table 4.2: Table comparing FDRs of DPCA, CVA and LLV-CVA for Faults 1 to 20
of the TE process. LLV-CVA outperformed the DPCA and give FDRs comparable
with the CVA. Note: All techniques gave zero false alarms.

FDR (%)

Fault DPCA CVA LLV-CVA

1 99.50 99.63 99.63

2 98.13 99.50 99.50

3 0 65.13 65.88

4 99.75 99.75 99.75

5 21.63 99.75 99.75

6 99.75 99.75 99.75

7 99.75 99.75 99.75

8 96.75 98.75 98.75

9 0 88.63 90.13

10 32.38 96.38 96.38

11 86.75 99.25 99.25

12 97.38 99.38 99.38

13 95.25 96.00 96.13

14 99.63 99.75 99.75

15 0 99.50 99.63

16 28.75 99.13 99.13

17 95.63 98.00 98.13

18 98.88 99.13 99.25

19 8.38 99.75 99.75

20 48.63 97.38 97.38

4.5 Concluding remarks

In this chapter, the latent variable-CVA technique (LLV-CVA) was proposed. It

involved performing PCA on process measurements to extract latent variables. The

latent variables were then used as input for canonical variate analysis. The objective

of the technique was to capture both static cross-correlations and dynamic serial

correlations. The results show that the LLV-CVA method performed better than

the DPCA technique and gave results that were comparable with the CVA approach.

The techniques considered in this chapter capture static and dynamic relations but
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Table 4.3: Table comparing fault detection times (min) of DPCA, CVA and LLV-
CVA for Faults 1 to 20 of the TE process. LLV-CVA performs better than the
DPCA. However, detection times of the LLV-CVA and CVA are not significantly
different.

Fault DPCA CVA LLV-CVA

1 12 9 9

2 45 12 12

3 ND 15 15

4 6 6 6

5 6 6 6

6 6 6 6

7 6 6 6

8 57 30 30

9 ND 39 36

10 180 87 87

11 18 18 18

12 63 15 15

13 114 96 93

14 9 6 6

15 ND 12 9

16 84 21 21

17 48 48 45

18 27 21 18

19 132 6 6

20 108 63 63

Note: ND, not detected

do not address nonlinearities. However, many real processes are inherently nonlinear

and dynamic. Therefore, nonlinear dynamic processes will be presented in the next

chapter.
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(a) (b)

(c)

Figure 4.3: Control charts for Fault 9 (a) DPCA (b) CVA (c) LLV-CVA.
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Chapter 5

Kernel canonical variate analysis

using QR decomposition

This chapter presents the kernel CVA (KCVA) technique based on QR decomposition

(KCVA-QRD). This algorithm is the first of two strategies proposed in this thesis for

monitoring nonlinear dynamic processes. The technique is also intended to deal with

the formation of singular matrices associated with implementing canonical analysis

on kernel data. Details of the proposed approach and its mathematical formulation

are presented. The technique is applied to the TE process and the results obtained are

discussed in comparison with two other approaches: performing KCVA on regularised

kernel data (KCVA-REG) and DKPCA.

5.1 Introduction

In Chapter 3, the KPCA-KDE technique was developed for nonlinear process mon-

itoring. In Chapter 4, process dynamics and linear variable relationships were ad-

dressed simultaneously using a dynamic linear modelling approach (LLV-CVA). In

this chapter, the past and future kernel matrices constructed from process measure-

ments are factorised using QR decomposition. This avoids the need for regularisation

in kernel-based canonical analysis techniques. The performance of the proposed ap-
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proach is tested using the TE process. The results obtained are then compared with

DKPCA and the kernel CVA technique based on regularised kernel data. A brief

discussion on QR decomposition is presented in the next section.

5.2 QR decomposition

Basically, QR decomposition is used to factor a matrix as a product of two matrices.

Given a matrix A, its QR decomposition yields

A = Q×R (5.1)

where Q is a unitary matrix and R is an upper triangular matrix (that is, A =

0 for j < i). If A ∈ <m×n, then Q ∈ <m×m and R ∈ <m×n.

QR decomposition can be used for matrix inversion because if A = QR, then,

A−1 = Q−1R−1 = R−1QT . (5.2)

Since R is triangular, it is easy to invert.

Essentially, if a matrix A is invertible, its inverse is given by A−1. However, if it is

not invertible, its inverse can be approximate by obtaining its pseudo-inverse as

A+ =
(
ATA

)−1
AT , (5.3)

where the superscript + represents pseudo-inverse. When A is invertible, the

pseudo-inverse is in theory, the same as the inverse but when A is not invertible,

the pseudo-inverse is much more robust than the inverse.
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5.3 Kernel CVA with QR decomposition

Kernel-based CVA seeks to extract state variables which also capture nonlinear

characteristics in the observation dataed data using nonlinear kernel transformation

and CVA. The description of the technique is presented in this section.

To address time correlations, an observation vector x having a dimension of d is

expanded at every time instant l to generate past x(p,l) and future x(f,l) observation

vectors

x(p,l) =


x(l−1)

x(l−2)
...

x(l−p)

 ∈ <
dp and x(f,l) =


x(l)

x(l+1)

...

x(l+f−1)

 ∈ <
df . (5.4)

These p and f vectors are then normalised to have a mean of 0 so that variables

having greater absolute values do not have a dominant effect

x̂(p,l) = x(p,l) − x̄(p,l) and x̂(f,l) = x(f,l) − x̄(f,l). (5.5)

where x̄(p,l) and x̄(f,l) are the sample means of x(p,l) and x(f,l) respectively. The past

and future vectors are then arranged together in columns to obtain the corresponding

past and and future matrices, Xp and Xf respectively

Xp =
[
x̂(p,p+1), x̂(p,p+2), . . . x̂(p,p+W )

]
∈ <dp×W , (5.6)

Xf =
[
x̂(f,p+1), x̂(f,p+2), . . . x̂(f,p+W )

]
∈ <df×W , (5.7)

where the columns of the truncated Hankel matrices for N observations is given by

W = N − f − p + 1. To capture nonlinear relations, a nonlinear mapping of the

generated p and f vectors is performed, Φ1 : <dp → F and Φ2 : <df → F respectively,

where, Φ1 and Φ2 are the nonlinear maps. The kernel trick is then used to construct
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kernel matrices (Kp and Kf ) (Schölkopf et al., 1998; Lee et al., 2004):

Kp = 〈Φ1 (Xp) ,Φ1 (Xp)〉 , (5.8)

Kf = 〈Φ2 (Xf ) ,Φ2 (Xf )〉 , (5.9)

where the elements of these kernel matrices are defined as

(Kp)ji =
〈
Φ1

(
x̂(p,p+j)

)
,Φ1

(
x̂(p,p+i)

)〉
,

(Kf )ji =
〈
Φ2

(
x̂(f,p+j)

)
,Φ1

(
x̂(f,p+i)

)〉
,

for all j, i = 1 . . . ,W . The kernel matrices are mean-centred using

Kcp = Kp − IwKp −KpIw + IwKpIw, (5.10)

Kcf = Kf − IwKf −KfIw + IwKfIw. (5.11)

where Kcp and Kcf are the past and future mean-centred kernel matrices, Iw is an

W ×W matrix in which each element is equal to 1/W .

The p and f kernel matrices are then factorised using QR decomposition in order

to avoid the need for regularisation

Kcp = QpRp and Kcf = QfRf , (5.12)

where Qp and Qf are orthogonal matrices and Rp and Rf are upper triangular

matrices. Although, Kcp and Kcf are not full rank, they can be managed by using

the MATLAB backlash operator which makes them equivalent to pseudo-inverses.

The product of the orthogonal matrix pair is then calculated and canonical variates

are determined using singular value decomposition (SVD):

H = QT
f Qp = USVT , (5.13)

where U and V are orthogonal matrices and S is a diagonal matrix. The singu-
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lar values of H (its elements on the main diagonal) show the degree of correlation

between pairs of U and V. This approach avoids the computational problems asso-

ciated with generating the scaled Hankel for the SVD operation when covariances

are based on kernel matrices constructed from the observation data as reported

by Giantomassi et al. (2014). This is a key advantage of the proposed technique.

The left and right singular vectors, (U∗) and (V∗) respectively are normalised as

follows::

U∗ = R+
f U (W − 1)

1
2 and V∗ = R+

p V (W − 1)
1
2 , (5.14)

where R+
f and R+

p are pseudo-inverse of Rf and Rp respectively. Re-arranging the

columns of the eigenvectors according to the sizes of their corresponding eigenvalues

in descending order makes V∗n (i.e. the first n columns of V∗) the ones having the

most dominant pairwise correlations with those of U∗. The transformation matrices

for determining the n-dimensional state variables and residuals are given by

J = V∗n ∈ <W×n and L =
(
I − JJT

)
∈ <W×W , (5.15)

The state and residual spaces are computed as shown below:

Z∗ = J ·Kcp ∈ <n×W . and E∗ = L ·Kcp ∈ <W×W . (5.16)

5.4 Fault detection using KCVA-QRD

Similar to other multivariate statistical process monitoring methodologies, the fault

detection strategy of KCVA-QRD involves two phases: off-line training and on-line

monitoring or testing. The off-line training phase involves developing the process

model, and calculating the monitoring indices and their control limits using the nor-

mal operation data. Conversely, on-line monitoring involves computing the moni-

toring indices using faulty or test data and comparing their values with the control

limits obtained in the off-line training phase to determine the status of the process.

The Hotellings T 2 and the Q statistic or squared prediction error (SPE) are used as
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the indices for KCVA-QRD-based process monitoring. The Hotellings T 2 monitors

the changes in the state space while the Q statistic monitors the changes in the

residual space. The monitoring indices are computed using

T 2 =
n∑
i=1

z∗2i,l and Q =
W∑
i=1

e∗2i,l , (5.17)

where n is the number of states retained, zi,l and ei,l are (i, l)th the entries of Z∗

and E∗ matrices respectively. To correct the assumption of Gaussian distributed

variables, the KDE method is also adopted for calculating the control limits from

the PDFs of T 2 and Q as discussed in Section 3.1.3.

For a test observation vector xl at a given time point l, the past vector x
(t)
p,l is

computed similar to (5.4) and (5.5). The states and residuals of the test data are

computed as

z
∗(t)
l = J · k(t)

cp ∈ <n×1 and e
∗(t)
l = L · k(t)

cp ∈ <W×1, (5.18)

where k
(t)
cp is the kerenel matrix of the test observation vector.

5.5 Summary of KCVA-QRD-based fault detec-

tion procedure

The steps involved in the proposed kernel CVA technique for the training and mon-

itoring phases are outlined below:

Off-line training

c–1 Obtain observation vector.

c–2 Expand observation vector at each time point t to obtain information from the

past (p) and future (f) measurements.
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c–3 Form kernel matrices of the past and future measurements.

c–4 Mean-centre the past and future kernel matrices. Factorise the mean-centred

past and future kernel matrices using QR decomposition to obtain pairs of upper

triangular and orthogonal matrices.

c–5 Compute the product of the orthogonal matrix pair from step 4 and perform

singular value decomposition. Normalise the canonical coefficients.

c–6 Determine states and residuals.

c–7 Compute monitoring indices T 2 and Q at each time point as the sum of the

squared state variables and residuals respectively.

On-line monitoring

d–1 Acquire test data and define past and future matrices and arrange data similar

to training data.

d–2 Form kernel matrices of the past and future measurements using the same

function and parameters used in the training stage and mean-centre.

d–3 Calculate states and residuals of test data.

d–4 Compute T 2 and Q of test data.

d–5 Monitor process by comparing value of T 2 and Q against their control limits.

A fault is detected if both monitoring indices exceed their control limits.

5.6 Application study

The kernel CVA based on QR decomposition (KCVA-QRD) and kernel CVA on

regularised kernel data (KCVA-REG) were tested on the TE process to assess their

performance. Three faults (3, 9, and 15) of the TE process were considered for this

application study. Faults 3 and 9 are step change and random variation in D feed
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temperature respectively, while Fault 15 is a sticking valve problem involving the

condenser cooling water valve. These three faults are usually more difficult to detect

in the TE process because they cause very little variation in the variables that are

measured.

5.6.1 Results and discussion

The performance of the techniques were assessed based on the three metrics used

in Chapter 3 (FDR, FAR and detection delay): fault detection rate, fault detection

time and false alarm rate. Fault detection was calculated as the percentage of

observations with a value higher than the value of the control limit in the fault

region of the data signal. Detection rate is the difference between when a fault

was introduced and when it was detected. False alarm rates were calculated as

the percentage of observations having values greater than the value of the control

limits outside the fault region. An overview of the process including number of

observation, types of variables and the types of faults are as explained in Chapter 3

where a schematic of the process is also presented.

Table 5.1 shows the rate of fault detection for Faults 3, 9 and 15 based on the

KCVA-QRD approach and results obtained with KCVA-REG at different values of

regularisation. The detection rates at a regularisation value of 10−2 were the lowest

(51.25, 78.13, and 85.38 percent) for Faults 3, 9 and 15 respectively. At a very small

regularisation value of 10−8, the detection rates improved but the values were still

lower than the results obtained via QR decomposition.

The detection times for the KCVA-QRD approach for all three faults was 15 minutes

while the corresponding rates for the KCVA-REG technique were 54/45, 84/66, and

54/45 minutes for Faults 3, 9 and 15 respectively for the worst and best detection

time delays. A higher detection time means that it takes a longer time to detect

a fault that has occurred which is not desired in process monitoring. Thus, in

all faults considered, the KCVA-QRD based detection times were better than the

best detection times obtained via the KCVA-REG approach. The regularisation
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approach also had higher FARs (which again makes it relatively poorer) than the

KCVA-QRD approach except for the smallest regularisation value.

Table 5.1: Comparison of monitoring results (DKPCA, KCVA-QRD and KCVA-
REG). The DKPCA results are very poor in all faults while the performance of
KCVA-REG depends on the regularisation parameter value. The proposed KCVA-
QRD is generally better without regularisation.

FDR (%)

Fault DKPCA KCVA-QRD KCVA-REG

10−2 10−5 10−8

3 9.50 98.25 51.25 98.13 98.13

9 9.13 97.50 78.13 97.38 97.38

15 11.50 98.25 85.35 98.13 98.13

FAR (%)

DKPCA KCVA-QRD KCVA-REG

10−2 10−5 10−8

3 0.0316 0.0382 0.0458 0.0840 0.0076

9 0.0316 0.0382 0.0458 0.0840 0

15 0.0316 0.0382 0.0458 0.0840 0

Detection delay (min)

DKPCA KCVA-QRD KCVA-REG

10−2 10−5 10−8

3 23 15 54 45 45

9 23 15 84 63 66

15 23 15 54 45 45

Fig. 5.1 shows the monitoring results for Fault 15. Figs. 5.1(a) represents the moni-

toring result for KCVA-QRD while Figs. 5.1(b) and 5.1(c) are the monitoring results

for KCVA-REG at regularisation values of 10−2 and 10−8 respectively. The solid

signals represent the monitoring indices while the dash-dot horizontal lines are the

control limits. Unlike the other two figures, the monitoring index did not fully go

above the control limit most of the time in Fig. 5.1(b). This shows that its fault

detection performance is poor. The reason for this poor detection performance is the

inappropriate value of the regularisation parameter used. This heavy dependence

on regularisation is a major weakness of the KCVA-REG technique.
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(a) (b)

(c)

Figure 5.1: Monitoring statistics of Fault 15. (a) KCVA with QRD, (b) KCVA with
regularisation (10−2), (c) KCVA with regularisation (10−8).

5.7 Concluding remarks

In this chapter, the KCVA-QRD technique is proposed to account for nonlinear-

ity and process dynamics simultaneously by combining the CVA and the kernel

paradigm. In the proposed technique, the product matrix computed from the past

and future kernel matrices which is normally subjected to SVD was computed using

QR decomposition. The aim of this implementation strategy is to avoid singularity

problems encountered in kernel-based canonical modelling.

Results of the application study of the proposed KCVA-QRD approach using the

TE process were compared with DKPCA and KCVA-REG-based results. The study

shows that the proposed KCVA-QRD technique performed better than the both

DKPCA and KCVA-REG in both monitoring rate and the time taken to detect
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faults. This supports the effectiveness of the proposed approach. Furthermore,

the technique proposed does not require selecting an optimum regularisation value

to perform kernel-based CVA. This is desirable because choosing the wrong regu-

larisation parameter value generates poor monitoring results. A second nonlinear

dynamic/kernelisation technique, the kernel latent variable-CVA) will be the subject

of the next chapter.
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Chapter 6

Kernel latent variable CVA for

nonlinear dynamic process

monitoring

This chapter focuses on the development of kernel latent variable canonical vari-

ate analysis (KLV-CVA) for nonlinear dynamic process monitoring. The KLV-CVA

algorithm is the second of two strategies proposed in this thesis to: (i) effectively

monitor nonlinear dynamic processes, and (ii) address the problem of ill-conditioned

kernel matrices and regularisation encountered if CVA is performed directly on sym-

metric kernel matrices constructed from observation data. The first approach based

on kernel CVA with QR decomposition was discussed in Chapter 5. Details of the

KLV-CVA approach and its mathematical formulation are presented in this chapter.

In the application study, the proposed KLV-CVA approach is tested on Faults 3, 9

and 15 of the TE process which are the most difficult to detect. The results obtained

are discussed and compared with results obtained from two related techniques.
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6.1 Introduction

The popular procedure for developing kernel versions of linear algorithms (kerneli-

sation) described in the open literature is the two-step approach of mapping data

implicitly from the input space to a feature space using a kernel function, and apply-

ing the original algorithm on the corresponding feature space (Honeine and Richard,

2011b; Schölkopf et al., 1998). Figure 6.1 summarises this process.

Figure 6.1: Flowchart showing the regular kernelisation process. In general, it in-
volves constructing a kernel matrix using a kernel function and performing the re-
quired algorithm directly on the kernel matrix.

This implies taking the kernel matrix as the input of the given algorithm instead of

the observation data. This amounts to modifying the input interface of the algorithm

or inner processing in its kernel version. This view of kernelisation suggests that

algorithms that can be performed in terms of inner products can be made nonlinear

by kernel substitution - i.e. the kernel trick (Schölkopf and Smola, 2002; Schölkopf

et al., 1999).

Assuming that X is the input data matrix with each row as data points and each

column as variables. The output Y of an algorithm G is obtained by taking the

inner product of the observation data as input. This can be represented as follows:

Y = G(XTX). (6.1)

On the contrary, the kernelised algorithm Gk takes the inner product matrix (or

kernel matrix) K in the feature space as input instead of the original inner product

matrix of (6.1). Consequently, the relationship between the kernelised algorithm Gk



96 Kernel latent variable CVA for nonlinear dynamic process monitoring

and the original algorithm G can be represented as

Yk = Gk(X) = G(K). (6.2)

where Yk is the output of Gk.

Alternatively, Yang et al. (2004) performed kernel fisher discriminant analysis (FDA)

by combining KPCA and linear discriminant analysis (LDA). Lee et al. (2007) also

carried out kernel independent component analysis (KICA) by integrating KPCA

and ICA. In line with the works of Yang et al. and Lee et al., Chen and Zhang

(2007) suggested that kernel methods can essentially be viewed as performing kernel

PCA on the input data to extract nonlinear principal components (PCs) in the

feature space, and then performing the original algorithm, taking the PCs as input.

Figure 6.2 shows the computing process of this stance.

Figure 6.2: Flowchart showing an alternate kernelisation approach. It is essentially
carrying out KPCA followed by performing any other specified algorithm on the
kernel latent variables

Chen and Zhang hold the view that the process of kernelising an algorithm G and

the process of performing KPCA (GKPCA) to obtain PCs followed by carrying out

the algorithm G on the PCs (i.e. GKPCA + G) are equivalent. An expression of the

process is represented as

F = GKPCA(X), (6.3)

Yk,f = G(FTF), (6.4)

where F are the PCs in the feature space, and Yk,f denotes output of the algorithm
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in the feature space. Then, PCA and KPCA can be related as

F = GKPCA(X) = GPCA(K). (6.5)

Notice (6.2) and (6.4) give the relation

Yk,f = G(FTF) = G(K) = Yk. (6.6)

Equation (6.6) proves that the kernelisation of G to obtain Gk and the process of

GKPCA + G are equivalent. However, the latter kernelisation process requires only

changing the input of the original algorithm. It does not require changing the

original algorithm by formulating it in inner product format which could be quite

problematic for complex algorithms.

Inspired by the works of Yang et al. (2004), Lee et al. (2007), Chen and Zhang

(2007), and the idea of using dynamic latent variable models for extracting dynam-

ics in a variable space into autocorrelated latent factors discussed by Li et al. (2011),

a new kernel latent variable-CVA (KLV-CVA) technique is proposed for nonlinear

dynamic process monitoring. The proposed algorithm involves performing CVA on

the kernel component space obtained from KPCA instead of performing the CVA di-

rectly on the kernel matrix constructed from process measurements. This technique

transforms the higher dimensional inputs into lower dimensions while retaining the

important characteristics of the inputs. It also simplifies the algorithm and enhances

its generalisation ability. Furthermore, the singularity problem associated with the

KCCA approach is avoided. The proposed algorithm is derived and tested on the

TE benchmark process in this chapter.

6.2 Kernel latent variable CVA

Suppose xk ∈<m is a set of training data, where k = 1, . . . , N are the number of

observations while m are variables. Using the derivation presented in Section 3.1.1,
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the N×N centred symmetric kernel matrix, Kc has N eigenvalues λ1 ≥ λ2 ≥ . . . λN

and N orthogonal eigenvectors, α1,α2, . . . ,αN satisfying

〈
αi,αj

〉
= δi,j, (i, j = 1, 2, . . . , N) . (6.7)

Let G ∈ <N×r contain eigenvectors corresponding to the largest r eigenvalues. A

kernel latent variable matrix Z is defined as

Z = GTKc ∈ <r×N . (6.8)

To capture both nonlinear and dynamic relations, CVA is performed on Z, treating

it as a collected r × N data. State variables and residuals are then extracted for

computing the monitoring statistics.

Assuming that zk is the kth column vector of Z, information from the past (p) and

future (f) data series are defined as

zp,k =


zk−1

zk−2
...

zk−p

 ∈ <
rp and zf,k =


zk

zk+1

...

zk+f−1

 ∈ <
rf . (6.9)

Each component is then normalised to have a mean of 0 as follows:

ẑp,k = zp,k − z̄p,k and ẑf,k = zf,k − z̄f,k, (6.10)

where z̄p,k and z̄f,k denote the sample means of zp,k and zf,k respectively. To obtain

the past and and future matrices, Ap and Af respectively, the corresponding past

and future vectors are arranged together in columns

Ap = [ẑp,p+1, ẑp,p+2, . . . ẑp,p+B] ∈ <rp×W , (6.11)

Af = [ẑf,p+1, ẑf,p+2, . . . ẑf,p+B] ∈ <rf×W , (6.12)
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where the columns of the truncated Hankel matrices for N observations is given by

W = N − f − p+ 1. The sample covariances and cross-covariances of the past and

future matrices are estimated as shown below:

Σpp =
1

W − 1
ApA

T
p , (6.13)

Σff =
1

W − 1
AfA

T
f , (6.14)

Σfp =
1

W − 1
AfA

T
p . (6.15)

In order for Σpp and Σff , not to be singular, parameters r, p and f have to satisfy

{rp, rf} < N − p − f + 1. Canonical variates are then computed via SVD of the

scaled Hankel matrix, Hk

H = Σ
−1/2
ff ΣfpΣ

−1/2
pp = ULVT . (6.16)

Rearranging the singular values in descending order and reordering the columns

of the associated singular vectors makes the first q columns of V the top dominant

correlations with those of U. This generates a new matrix Vq of a smaller dimension

such that (q < rp).

Transformation matrices C and D for converting the rp-dimensional past matrices

to the q-dimensional state variables and the residuals respectively are calculated as

C = VT
q Σ−1/2pp ∈ <q×rp, (6.17)

D =
(
I −VqV

T
q

)
Σ−1/2pp ∈ <rp×rp. (6.18)

The canonical state variables denotes linear combinations of the past data series

that most explain the future variability. The state variables Z∗ and residuals E∗ for

training data are computed using

Z∗ = C ·Ap ∈ <q×W and E∗ = D ·Ap ∈ <rp×W . (6.19)
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6.3 KLV-CVA-based fault detection

Like CVA, the Hotellings T 2 and the Q statistic or squared prediction error (SPE)

and their control limits are employed for process monitoring in KLV-CVA. Hotellings

T 2 is used for monitoring changes in the model space while Q statistic is used for

monitoring changes in the residual space. Their values are calculated using

T 2
k =

q∑
i=1

z∗2i,k and Qk =

rp∑
i=1

e∗2i,k (6.20)

where q is the number of states retained, z∗i,k and ei,k are (i, k)th elements of Z∗ and

E∗ matrices respectively. Since measurements in a nonlinear process do not follow

the Gaussian distribution, the control limits of T 2 and Q are determined using the

KDE approach.

To carry out online monitoring, the test observation vector xt is preprocessed and

arranged similar to the training data and latent variables are computed. The past

observation vector ẑ
(t)
p,k is then computed similar to (6.9) and (6.10). The state

variables and residuals for test data are computed as

z∗k = C.ẑ
(t)
p,k ∈ <

q×1 and e∗k = D.ẑ
(t)
p,k ∈ <

rp×1. (6.21)

6.3.1 Summary of KLV-CVA fault detection procedure

Off-line training

a–1 Acquire normal operating data, construct kernel matrix and obtain kernel latent

variables.

a–2 Compute past and future data series from the kernel latent variables using (6.11)

and (6.12) .

a–3 Compute covariances and cross-covariance from (6.13) to (6.15).
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a–4 Perform SVD on scaled Hankel matrix using (6.16) and determine number of

states to retain.

a–5 Determine state variables and residuals using (6.19).

a–6 Compute monitoring indices using (6.20) and their control limits using (??).

On-line monitoring

b–1 Acquire test data and construct kernel matrix.

b–2 Calculate state and residual of test data using (6.21).

b–3 Calculate T 2 and Q of test data and monitor process by comparing their values

against their control limits. A fault is detected if either of the monitoring

indices or both exceed their control limits.

6.4 Application study

Application of the KLV-CVA technique on the TE process, details of the imple-

mentation procedure as well as selection of design parameters are presented in this

section. The results obtained are also presented and discussed.

6.4.1 Implementation details

Normal operation data were used as the training set and data collected under fault

conditions were used for monitoring. The radial basis function (RBF) kernel, a

recommended representative kernel function for KPCA-based studies (Lee et al.,

2004) was adopted in this work. All confidence limits were determined from the

probability density functions of the monitoring indices using KDE approach. Control

charts based on the T 2 and and SPE were constructed for process monitoring at

99% confidence level. Monitoring performance indices used are fault detection rate

(FDR), false alarm rate (FAR) and detection time.
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6.4.2 Parameter selection

A kernel window width of 1660 was used in this study based on cross-validation with

the training data. The dimension of the kernel component space was set based on

cumulative variance percentage (CVP) (Deng et al., 2013). The number of kernel

latent variables whose cumulative variance accounted for more than 99% of the total

variance was adopted to ensure little loss of information. This sets the kernel latent

variables used to 62.

To successfully develop the CVA and kernel CVA models to characterize the variabil-

ity of the off-line data requires that the number of time lags for the past and future

measurements are determined. The lag order represents the number of past measure-

ments that are significantly correlated with a measurement at a given time point.

A lag order of 15 (i.e. p = f = 15) was used based on the autocorrelation function

analysis discussed in chapter 4. This satisfies rp = rf = 900 < N − p− f + 1 = 931.

A tabulation of the design parameters is presented in Table 6.1.

Table 6.1: Summary of design parameters

Parameter ID Value

Kernel window width c 1660

Regularisation parameter ra 10−2, 10−5 & 10−8

No. of states retained a 16

Length of past and future lag p,f 15

Kernel latent variable KLV 62

6.4.3 Results and discussion

Monitoring results showing the FDRs and FARs of all three techniques investigated

for Faults 3, 9 and 15 are presented in Table 6.2. The results show that KLV-CVA

has higher FDRs than CVA-KDE. Its FDRs are 98.13, 97.25, and 98.13 percent for

Faults 3, 9, and 15 respectively as against 75.25, 91.25, and 97.88 percent recorded

by CVA-KDE. The KCVA-REG fault detection at different regularisation sizes show

that its performance is affected by the size of regularisation used. At a regularisation
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value of 10−2, it recorded FDRs of 51.25, 78.18 and 85.35 percents for Faults 3, 9

and 15 respectively. These results are poorer than results obtained using CVA-KDE

and KLV-CVA. The KCVA-REG FDR results became comparable with KLV-CVA

only at highr regularisation values. Also, both CVA-KDE and KLV-CVA recorded

0 false alarms while the KCVA-REG approach gave false alarms.

Furthermore, KLV-CVA also gave better results in terms of detection times (i.e.

45, 66 and 45 minutes) compared to 54, 72 and 51 minutes recorded by CVA-KDE

for the three faults (Table 6.3). Conversely, KCVA-REG detection delay results

were poorer or equal to the CVA-KDE results at a regularisation value of 10−2 but

were better than CVA-KDE and comparable with the KLV-CVA approach at higher

regularisation values. It is worthy of note that although the KCVA-REG approach

gave results comparable in FDR and detection delay at higher regularisation values,

its high false alarm rate still makes it less effective than the proposed KLV-CVA

approach.

Table 6.2: Comparison of FDR and FAR. KLV-CVA performs better than CVA-
KDE. KCVA-REG values depend on regularisation value used and compares with
KLV-CVA values only at high regularisation.

FDR (%)

Fault CVA-KDE KLV-CVA KCVA-REG

10−2 10−5 10−8

3 75.25 98.13 51.25 98.13 98.13

9 91.25 97.25 78.13 97.38 97.38

15 97.88 98.13 85.35 98.13 98.13

FAR (%)

Fault CVA-KDE KLV-CVA KCVA-REG

10−2 10−5 10−8

3 0 0 0.0458 0.0840 0.0076

9 0 0 0.0458 0.0840 0

15 0 0 0.0458 0.0840 0

The superior performance of KLV-CVA over CVA-KDE can be clearly observed

in Figure 6.3 showing their monitoring charts for Fault 3. It can be seen that

in Figure 6.3(a), the CVA-based T 2 represented by the solid signal is below the

horizontal dash-dot line (i.e., the control limit), virtually all through the duration
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Table 6.3: Comparison of fault detection delay. KLV-KCVA detected faults earlier
than CVA-KDE. KCVA-REG values depend on regularisation parameter used.

Fault CVA-KDE KLV-CVA KCVA-REG

10−2 10−5 10−8

3 54 45 54 45 45

9 72 66 84 63 66

15 51 45 54 45 45

of the process. This suggests that the process is in-control. However, the Q statistic

is above the control limit at some points showing the presence of a fault. The

presence of a malfunction is confirmed by both the T 2 and the Q statistic based

on KLV-CVA. The monitoring indices of KLV-CVA (Figure 6.3(b)) are above the

control limits prominently, indicating the presence of a fault. Furthermore, the

poor performance of KCVA-REG is clearly seen when a regularisation size of 10−2

was used (Figure 6.3(c)) compared to Figure 6.3(d) which is comparable to the

KLV-CVA result but with a higher false alarm rate as mentioned earlier. This

affirms that the performance of the KCVA-REG approach is affected by the size of

the regularisation parameter selected. Selecting a wrong regularisation parameter

makes it perform dismally, while the proposed KLV-CVA approach does not require

the use of a regularisation parameter.

6.5 Concluding remarks

In this chapter, the CVA with KDE technique was generalised to a non-linear case to

give a novel kernel latent variable-based CVA approach (KLV-CVA). The proposed

technique draws from the synergy of combining kernel KPCA and CVA. The ker-

nel PCA accounts for non-linearities while the CVA captures the process dynamics.

Applying the proposed technique to the TE challenge problem and comparing the

result with those of CVA with KDE, and kernel CVA with regularisation, showed

that the proposed method recorded better overall fault detection performance. Fur-

thermore, the strategy of using kernel latent variables as input to the CVA made
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(a) (b)

(c) (d)

Figure 6.3: Monitoring statistics for Fault 3 using KLV-CVA and KCVA-REG using
2 regularisation sizes (a) CVA-KDE, (b) KLV-CVA, (c) 10−2 regularisation, (d) 10−8

regularisation
.

the implementation of the proposed technique more convenient. Unlike KCVA-REG,

KLV-CVA does not need regularisation to perform well. In addition to nonlinearity

and dynamics, another common feature in industrial systems is the use of multiple

operating modes. This will is addressed in Chapter 7.
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