32 research outputs found

    2018 Robotic Scene Segmentation Challenge

    Get PDF
    In 2015 we began a sub-challenge at the EndoVis workshop at MICCAI in Munich using endoscope images of ex-vivo tissue with automatically generated annotations from robot forward kinematics and instrument CAD models. However, the limited background variation and simple motion rendered the dataset uninformative in learning about which techniques would be suitable for segmentation in real surgery. In 2017, at the same workshop in Quebec we introduced the robotic instrument segmentation dataset with 10 teams participating in the challenge to perform binary, articulating parts and type segmentation of da Vinci instruments. This challenge included realistic instrument motion and more complex porcine tissue as background and was widely addressed with modifications on U-Nets and other popular CNN architectures. In 2018 we added to the complexity by introducing a set of anatomical objects and medical devices to the segmented classes. To avoid over-complicating the challenge, we continued with porcine data which is dramatically simpler than human tissue due to the lack of fatty tissue occluding many organs

    Scalable Joint Detection and Segmentation of Surgical Instruments with Weak Supervision

    Get PDF
    Computer vision based models, such as object segmentation, detection and tracking, have the potential to assist surgeons intra-operatively and improve the quality and outcomes of minimally invasive surgery. Different work streams towards instrument detection include segmentation, bounding box localisation and classification. While segmentation models offer much more granular results, bounding box annotations are easier to annotate at scale. To leverage the granularity of segmentation approaches with the scalability of bounding box-based models, a multi-task model for joint bounding box detection and segmentation of surgical instruments is proposed. The model consists of a shared backbone and three independent heads for the tasks of classification, bounding box regression, and segmentation. Using adaptive losses together with simple yet effective weakly-supervised label inference, the proposed model use weak labels to learn to segment surgical instruments with a fraction of the dataset requiring segmentation masks. Results suggest that instrument detection and segmentation tasks share intrinsic challenges and jointly learning from both reduces the burden of annotating masks at scale. Experimental validation shows that the proposed model obtain comparable results to that of single-task state-of-the-art detector and segmentation models, while only requiring a fraction of the dataset to be annotated with masks. Specifically, the proposed model obtained 0.81 weighted average precision (wAP) and 0.73 mean intersection-over-union (IOU) in the Endovis2018 dataset with 1% annotated masks, while performing joint detection and segmentation at more than 20 frames per second

    From Generalization to Precision: Exploring SAM for Tool Segmentation in Surgical Environments

    Full text link
    Purpose: Accurate tool segmentation is essential in computer-aided procedures. However, this task conveys challenges due to artifacts' presence and the limited training data in medical scenarios. Methods that generalize to unseen data represent an interesting venue, where zero-shot segmentation presents an option to account for data limitation. Initial exploratory works with the Segment Anything Model (SAM) show that bounding-box-based prompting presents notable zero-short generalization. However, point-based prompting leads to a degraded performance that further deteriorates under image corruption. We argue that SAM drastically over-segment images with high corruption levels, resulting in degraded performance when only a single segmentation mask is considered, while the combination of the masks overlapping the object of interest generates an accurate prediction. Method: We use SAM to generate the over-segmented prediction of endoscopic frames. Then, we employ the ground-truth tool mask to analyze the results of SAM when the best single mask is selected as prediction and when all the individual masks overlapping the object of interest are combined to obtain the final predicted mask. We analyze the Endovis18 and Endovis17 instrument segmentation datasets using synthetic corruptions of various strengths and an In-House dataset featuring counterfactually created real-world corruptions. Results: Combining the over-segmented masks contributes to improvements in the IoU. Furthermore, selecting the best single segmentation presents a competitive IoU score for clean images. Conclusions: Combined SAM predictions present improved results and robustness up to a certain corruption level. However, appropriate prompting strategies are fundamental for implementing these models in the medical domain

    Towards Holistic Surgical Scene Understanding

    Full text link
    Most benchmarks for studying surgical interventions focus on a specific challenge instead of leveraging the intrinsic complementarity among different tasks. In this work, we present a new experimental framework towards holistic surgical scene understanding. First, we introduce the Phase, Step, Instrument, and Atomic Visual Action recognition (PSI-AVA) Dataset. PSI-AVA includes annotations for both long-term (Phase and Step recognition) and short-term reasoning (Instrument detection and novel Atomic Action recognition) in robot-assisted radical prostatectomy videos. Second, we present Transformers for Action, Phase, Instrument, and steps Recognition (TAPIR) as a strong baseline for surgical scene understanding. TAPIR leverages our dataset's multi-level annotations as it benefits from the learned representation on the instrument detection task to improve its classification capacity. Our experimental results in both PSI-AVA and other publicly available databases demonstrate the adequacy of our framework to spur future research on holistic surgical scene understanding.Comment: MICCAI 2022 Ora

    Generalizing Surgical Instruments Segmentation to Unseen Domains with One-to-Many Synthesis

    Full text link
    Despite their impressive performance in various surgical scene understanding tasks, deep learning-based methods are frequently hindered from deploying to real-world surgical applications for various causes. Particularly, data collection, annotation, and domain shift in-between sites and patients are the most common obstacles. In this work, we mitigate data-related issues by efficiently leveraging minimal source images to generate synthetic surgical instrument segmentation datasets and achieve outstanding generalization performance on unseen real domains. Specifically, in our framework, only one background tissue image and at most three images of each foreground instrument are taken as the seed images. These source images are extensively transformed and employed to build up the foreground and background image pools, from which randomly sampled tissue and instrument images are composed with multiple blending techniques to generate new surgical scene images. Besides, we introduce hybrid training-time augmentations to diversify the training data further. Extensive evaluation on three real-world datasets, i.e., Endo2017, Endo2018, and RoboTool, demonstrates that our one-to-many synthetic surgical instruments datasets generation and segmentation framework can achieve encouraging performance compared with training with real data. Notably, on the RoboTool dataset, where a more significant domain gap exists, our framework shows its superiority of generalization by a considerable margin. We expect that our inspiring results will attract research attention to improving model generalization with data synthesizing.Comment: First two authors contributed equally. Accepted by IROS202

    Surgical-VQLA:Transformer with Gated Vision-Language Embedding for Visual Question Localized-Answering in Robotic Surgery

    Get PDF
    Despite the availability of computer-aided simulators and recorded videos of surgical procedures, junior residents still heavily rely on experts to answer their queries. However, expert surgeons are often overloaded with clinical and academic workloads and limit their time in answering. For this purpose, we develop a surgical question-answering system to facilitate robot-assisted surgical scene and activity understanding from recorded videos. Most of the existing visual question answering (VQA) methods require an object detector and regions based feature extractor to extract visual features and fuse them with the embedded text of the question for answer generation. However, (i) surgical object detection model is scarce due to smaller datasets and lack of bounding box annotation; (ii) current fusion strategy of heterogeneous modalities like text and image is naive; (iii) the localized answering is missing, which is crucial in complex surgical scenarios. In this paper, we propose Visual Question Localized-Answering in Robotic Surgery (Surgical-VQLA) to localize the specific surgical area during the answer prediction. To deal with the fusion of the heterogeneous modalities, we design gated vision-language embedding (GVLE) to build input patches for the Language Vision Transformer (LViT) to predict the answer. To get localization, we add the detection head in parallel with the prediction head of the LViT. We also integrate generalized intersection over union (GIoU) loss to boost localization performance by preserving the accuracy of the question-answering model. We annotate two datasets of VQLA by utilizing publicly available surgical videos from EndoVis-17 and 18 of the MICCAI challenges. Our validation results suggest that Surgical-VQLA can better understand the surgical scene and localized the specific area related to the question-answering. GVLE presents an efficient language-vision embedding technique by showing superior performance over the existing benchmarks

    Task-Aware Asynchronous Multi-Task Model with Class Incremental Contrastive Learning for Surgical Scene Understanding

    Full text link
    Purpose: Surgery scene understanding with tool-tissue interaction recognition and automatic report generation can play an important role in intra-operative guidance, decision-making and postoperative analysis in robotic surgery. However, domain shifts between different surgeries with inter and intra-patient variation and novel instruments' appearance degrade the performance of model prediction. Moreover, it requires output from multiple models, which can be computationally expensive and affect real-time performance. Methodology: A multi-task learning (MTL) model is proposed for surgical report generation and tool-tissue interaction prediction that deals with domain shift problems. The model forms of shared feature extractor, mesh-transformer branch for captioning and graph attention branch for tool-tissue interaction prediction. The shared feature extractor employs class incremental contrastive learning (CICL) to tackle intensity shift and novel class appearance in the target domain. We design Laplacian of Gaussian (LoG) based curriculum learning into both shared and task-specific branches to enhance model learning. We incorporate a task-aware asynchronous MTL optimization technique to fine-tune the shared weights and converge both tasks optimally. Results: The proposed MTL model trained using task-aware optimization and fine-tuning techniques reported a balanced performance (BLEU score of 0.4049 for scene captioning and accuracy of 0.3508 for interaction detection) for both tasks on the target domain and performed on-par with single-task models in domain adaptation. Conclusion: The proposed multi-task model was able to adapt to domain shifts, incorporate novel instruments in the target domain, and perform tool-tissue interaction detection and report generation on par with single-task models.Comment: Manuscript accepted in the International Journal of Computer Assisted Radiology and Surgery. codes available: https://github.com/lalithjets/Domain-adaptation-in-MT
    corecore