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Abstract: Semantic segmentation of organs and tissue types
is an important sub-problem in image based scene under-
standing for laparoscopic surgery and is a prerequisite for
context-aware assistance and cognitive robotics. Deep
Learning (DL) approaches are prominently applied to seg-
mentation and tracking of laparoscopic instruments. This
work compares different combinations of neural networks,
loss functions, and training strategies in their application to
semantic segmentation of different organs and tissue types in
human laparoscopic images in order to investigate their
applicability as components in cognitive systems.
TernausNet-11 trained on Soft-Jaccard loss with a pretrained,
trainable encoder performs best in regard to segmentation
quality (78.31% mean Intersection over Union [IoU]) and
inference time (28.07 ms) on a single GTX 1070 GPU.

Keywords: computer assisted surgery; endoscopy; mini-
mally invasive interventions; surgical data science.

Problem

Computer assistance in laparoscopic surgery requires
scene understanding from images to display critical areas
to surgeons during manual navigation and planning, in
augmented reality scenarios [1], and to generate safe tra-
jectories for robot assisted surgeries [2]. Recognition
and segmentation of different organs and tissue types
in laparoscopic images are important sub-problems of
image based scene understanding [3]. In laparoscopic
cholecystectomy (i.e., gallbladder removal), for example, it
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is crucial to correctly discriminate between fat, liver, and
gallbladder tissue. Deep Learning (DL) approaches are a
promising technology for semantic segmentation of images
[4]. However, different combinations of neural architec-
tures and hyperparameters result in various outcomes
across tasks [5]. For example, the selection of an applicable
loss function for specific DL tasks is a challenging endeavor
[6] itself. DL approaches for semantic segmentation in
laparoscopic surgery are prominently applied to the seg-
mentation of instruments [7] and ex-vivo datasets that often
lack complexity due to the absence of fatty tissue occluding
other tissue types [8]. As the visual features of tissues differ
to those of instruments with clear edges and contours, it is
challenging to predict which architecture-hyperparameter
combinations perform best for semantic segmentation of
different tissue types in laparoscopic images. Most research
addressing semantic segmentation of organs and tissue
types, as seen in Figure 1, is based on Support Vector Ma-
chines and Super Pixels [9], or segments only a small
number of different tissues [3] (e.g., uterus and ovaries).

The aim of this work is to compare the segmentation
performance of different state of the art neural networks
when trained on different loss functions, each with frozen
or trainable, pretrained encoders to investigate their
applicability as components in cognitive systems for
laparoscopic surgery.

Material and methods

Dataset

The data used for training, validation, and testing is composed of
manually annotated frames of videos 1 and 2 of the Surgical Workflow
and Skill Analysis of the Endoscopic Vision Challenge 2019 [10]
dataset. The dataset contains 12 videos of laparoscopic cholecystec-
tomies, recorded at a rate of 25 Hz and resolution of 960 x 540. Every
500th frame of the videos is extracted and segmented by medical
students with a polygon annotation tool. The chosen classes for
annotation are out of image (regions in the frame that appear black due
to the current zoom of the endoscope), liver, gallbladder, instrument
(regardless of the instrument type), fat, and other (e.g., abdominal
wall, rescue bag etc.). To further increase the number of available
samples, annotation conserving image augmentations are applied. The
image augmentations are composed of Gaussian blurs with radii of 2 and
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Figure 1: Laparoscopic image overlayed with its semantic
segmentation annotations for classes: fat (orange), liver (red),
gallbladder (green), instrument (purple), and other (blue).

5 pixels, centered circle crops with radii of 240 and 330 pixels, image
rotations from —10 to 10° in steps of 5°, horizontal flips, and combinations
of various image alterations. Figure 3 illustrates one original and two
augmented image samples. The data is split by uniform random sampling
into subsets for training, validation, and testing with 60, 20, and 20% of
the samples, respectively.

Neural network architectures

The investigated neural network architectures in this work represent
the state of the art in segmentation of biomedical images (U-Net and
TernausNet), road scenes (LinkNet and SegNet), and general object
segmentation (Fully Convolutional Network, FCN). The selected ar-
chitectures and their respective variations are summarized in Table 1.
Except for U-Net, all architectures use encoders that were pretrained
as classifiers on the ImageNet Dataset [11].

In this work, Soft-Jaccard (S]) [18], Generalized Dice (GD) [19], and
Cross Entropy (CE) loss are explored for training the neural networks,
whereas Intersection over Union (IoU) score is used to evaluate the
semantic segmentation quality. SJ and GD loss are differentiable ap-
proximations of IoU score and Dice’s coefficient, respectively.

Experiments

A consistent training procedure, as shown in Figure 2, is implemented
to investigate the various combinations of hyperparameters and
neural networks. The neural networks are implemented in Python
utilizing the DL framework PyTorch. Adam is used as the optimizer for
all experiments with its hyperparameters set to the default values
(learning rate = 0.001, B = (0.9, 0.999), € = le — 08, without weight

Table 1: Investigated neural network architectures and variations.
Fully Convolutional Network (FCN) and SegNet are built with VGG-16
encoders. U-Net does not use a pretrained encoder.

Architecture Variations Ref.
U-Net Original [12]
TernausNet VGG-{11, 16} encoder [13, 14]
FCN Up-sampling sizes {32s, 16s, 8s} [4]
LinkNet ResNet-{18, 34, 50, 101, 152} encoder [15, 16]
SegNet Original [17]
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decay). The images are scaled to a resolution of 128 x 128 and com-
bined to batches of 20 samples for training.

The investigated parameters are (1) the neural network varia-
tion (e.g., TernausNet-16 or SegNet), (2) the loss function employed
during the complete training, and (3) trainable or frozen encoder
after five epochs of initial training. For the initial training the
encoder is frozen to utilize the pretrained features of the encoder in
early training stages (except for U-Net, as it does not have a pre-
trained encoder). After the initial training, the neural networks are
trained until the loss function no longer decreases on the validation
split over the period of 20 epochs (early stopping). The weights of
the best performing epoch in regard to validation loss are used for
final testing. Experiments are conducted for 12 different neural
networks, three loss functions, and an either trainable or frozen
encoder (except for U-Net) resulting in a total of 69 experiments.
Each of the 69 experiments is conducted seven times to mitigate the
effects of stochastic weight initialization.

Inference time on a single NVIDIA GeForce GTX 1070 Ti is measured
and compared against a maximum execution time of 40 ms. This ensures
that each frame of a laparoscope operating at 25 Hz can be processed.

Results
Dataset

A total of 210 images were manually annotated by medical
students with an approximate duration of 25 min per frame.
In total 14 image augmentations were applied to the data,
resulting in a total of 3,150 samples. After augmentation, the
majority of pixels were part of classes liver (26.2%) and out of
image (20.1%), followed by other (23.02%), fat (16%), and
instrument (5.15%).

Semantic segmentation

The five best performing combinations in regard to
maximum and mean achieved IoU testing scores over all

Architecture
v

Initial Training: 5 epochs, frozen encoder

[Loss Function]

[Frozen Encoderj [Trainable Encoder]

Training Training
Y Y
Testing Testing

Figure 2: Training experiment pipeline. The experiments are
characterized by network architecture, loss function, and whether
the encoder is frozen or trainable after the initial training.
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seven trials are listed in Table 2. The TernausNet archi-
tectures trained on the GD loss achieved the overall leading
maximum IoU scores and all of the best performing com-
binations were achieved with a trainable encoder. In re-
gard to mean and maximum IoU score, there is a noticeable
difference between achieved IoU scores, with an exception
of TernausNet-11 trained on the SJ loss, which shows good
performance in both average and maximum IoU scores.
Furthermore, when sorted in regard to the mean IoU score
the combinations exhibit a standard deviation that is up to
two orders of magnitude smaller than the best combina-
tions when sorted in regard to the maximum IoU score.
The IoU scores per class for TernausNet-11 trained on SJ
with trainable encoder were examined in more detail,
because this combination is among the best in regard to
both mean and maximum IoU scores. The highest IoU re-
sults were achieved for the class out of image (99.54%),
followed by classes instrument (77.07%) and fat (76.8%).
The lowest, but still reasonable high scores were achieved
for classes liver (74.49%), other (71.59%), and gallbladder

Table 2: The five best training combinations in regard to
(a) maximum and (b) mean loU scores (n=7) on the test data.

@

Architecture Loss Enc. loUax, % 1oUmeans %
TernausNet-11 GD Train. 79.74 55.81 + 35.65
TernausNet-16 GD Train. 79.71 28.04 +35.45
TernausNet-11 S) Train. 79.23 78.31+01.11
TernausNet-16 S) Train. 79.22 24.53 +37.28
FCN-8s GD Train. 78.07 14.40 + 28.07
()]

Architecture Loss Enc. 10U ax, % 10U means %
TernausNet-11 S) Train. 79.23 78.31+01.11
LinkNet-50 S) Train. 77.33 76.45+00.78
LinkNet-101 GD Train. 77.18 76.30+£00.78
LinkNet-152 S) Train. 77.33 76.25+00.58
TernausNet-11 CE Train. 77.34 76.24 + 00.83
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Figure 3: Original, cropped, and blurred &
flipped sample images together with their
annotation masks.

(70.35%). Sample images, their annotation, and pre-
dictions of the combination are shown in Figure 4.

Except for LinkNet-152 (42.51 ms), all architectures of
the best performing networks in Table 2 require less than
40 ms for inference, rendering them utilizable for scenarios
with endoscopes that operate at 25 Hz. The remaining
networks all require less than 40 ms execution time on a
single NVIDIA GeForce GTX 1070: TernausNet-11
(28.07 ms), TernausNet-16 (28.27 ms), FCN-8s (32.17 ms),
LinkNet-50 (33.67 ms), and LinkNet-101 (38.13 ms).

Discussion and conclusion

The results suggest, that learned features from pretraining
on the ImageNet Dataset do not exhibit sufficient similarity
to the relevant features for semantic segmentation of
laparoscopic images. Thus, implementing the encoder to
be trainable seems to be the sensible recommendation
when using pretrained weights from ImageNet. As an
outlook, generalizability of the results and networks
without pretrained weights may be investigated when
increased data is available. Furthermore, data for testing
may be drawn from a separate video to avoid possible data
leakage effects. In regard to the loss function, the rankings
in Table 2 support the findings of [20] who argue that
models for semantic segmentation benefit from being
trained on SJ and GD over CE.

The comparatively high IoU scores for classes instru-
ment and out of image indicate that visual features for the
respective classes, which are necessary for correct classi-
fication, are easier to learn compared to visual features for
class liver. There are almost five times the number of an-
notated pixels for class liver compared to class instrument,
however the achieved IoU score for class instrument is
2.58% higher than the respective IoU score for class liver.
The comparatively low IoU score for class other is expected,
as the class is composed of multiple visually dissimilar
classes that share visual features with other classes. Not
explicitly annotated classes, such as cystic duct in other
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may thus be wrongly classified as a visually similar an-
notated class (e.g. gallbladder).

In conclusion, a total of 69 different combinations of
neural networks, loss functions, and trainable or frozen
encoder were trained on the task to semantically segment
laparoscopic images. Based on the conducted experiments,
the recommended combination is TernausNet-11 with a train-
able encoder and the SJ loss function. The given combination
exhibits high segmentation performance with low variance in
the trials, as well as fast execution speed. However, it is to be
noted, that the considered hyperparameters do not cover the
complete search space of possible combinations in a DL
training pipeline. Apart from taking more hyperparameters
into account, such as utilized optimizer and learning rate,
further research should investigate whether the achieved
performance allows for integration into the vision pipeline of
cognitive surgical robots or context-aware assistance systems.

Research funding: The author state no funding involved.
Author contributions: All authors have accepted
responsibility for the entire content of this manuscript
and approved its submission

Conflict of interest: Authors state no conflict of interest.

References

1. Teatini A, Pelanis E, Aghayan DL, Kumar RP, Palomar R, Fretland Aa,
et al. The effect of intraoperative imaging on surgical navigation for
laparoscopic liver resection surgery. Sci Rep 2019;9:1-11.

2. Hashizume M, Yasunaga T, Tanoue K, leiri S, Konishi K, Kishi K,
et al. New real-time mr image-guided surgical robotic system for
minimally invasive precision surgery. Int ] Comput Assist Radiol
Surg 2008;2:317-25.

3. Zadeh SM, Francois T, Calvet L, Chauvet P, Canis M, Bartoli A, et al.
Surgai: deep learning for computerized laparoscopic image
understanding in gynaecology. Surg Endosc 2020:1-7. https://doi.
0rg/10.1007/s00464-019-07330-8.

10.

11.

12.

13.

14.

15.

16.

DE GRUYTER

Figure 4: Original input images from the test
data (left), their ground truth annotations
(center), and respective predictions of
TernausNet-11 trained on SJ loss with
trainable encoder (right).

. Long J, Shelhamer E, Darrell T. Fully convolutional

networks for semantic segmentation. In: IEEE CVPR; 2015:
3431-40 pp.

. IsenseeF. Petersen J, Kohl SAA, Jager PF, Maier-Hein KH. nnu-net:

breaking the spell on successful medical image segmentation.
ArXiv 2019;abs/1904.08128.

. De Brabandere B, Neven D, Van Gool L. Semantic Instance

Segmentation with a Discriminative Loss Function. CoRR 2017;
abs/1708.02551. http://arxiv.org/abs/1708.02551. arXiv:
1708.02551 [cs].

. Bodenstedt S, Allan M, Agustinos A, Du X, Garcia-Peraza-Herrera

L, Kenngott H, et al. Comparative evaluation of instrument
segmentation and tracking methods in minimally invasive
surgery. ArXiv 2018;abs/1805.02475.

. Allan M, Kondo S, Bodenstedt S, Leger S, Kadkhodamohammadi

R, Luengo |, et al. 2018 robotic scene segmentation challenge.
ArXiv 2020; abs/2001.11190.

. Moccia S, Wirkert S), Kenngott H, Vemuri AS, Apitz M, Mayer B,

et al. Uncertainty-aware organ classification for surgical data
science applications in laparoscopy. IEEE Trans Biomed Eng
2018;65:2649-59.

EndoVis — Home [Online]. Available from: https://endovis.grand-
challenge.org/ [Accessed 27 Oct 2019].

Russakovsky O, Deng ), Su H, Krause J, Satheesh S, Ma S, et al.
ImageNet large scale visual recognition challenge. Int ] Comput
Vis 2015;115:211-52.

Ronneberger O, Fischer P, Brox T. U-Net: convolutional
networks for biomedical image segmentation. CoRR 2015;
abs/1505:04597. https://doi.org/10.1007/978-3-319-2457 4-
4_28.

Iglovikov V, Shvets A. TernausNet: U-Net with VGG11 encoder pre-
trained on ImageNet for image segmentation. CoRR 2018;abs/
1801:05746.

Simonyan K, Zisserman A. Very deep convolutional networks for
large-scale image recognition. CoRR 2014;abs/1409:1556.
Chaurasia A, Culurciello E. LinkNet: exploiting encoder
representations for efficient semantic segmentation. CoRR
2017;abs/1707:03718. https://doi.org/10.1109/VCIP.2017.
8305148.

He K, Zhang X, Ren S, Sun J. Deep residual learning for image
recognition. CoRR 2015;abs/1512:03385. https://doi.org/10.
1109/CVPR.2016.90.


https://doi.org/10.1007/s00464-019-07330-8
https://doi.org/10.1007/s00464-019-07330-8
http://arxiv.org/abs/1708.02551
https://endovis.grand-challenge.org/
https://endovis.grand-challenge.org/
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1109/VCIP.2017.8305148
https://doi.org/10.1109/VCIP.2017.8305148
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90

DE GRUYTER

17.

18.

Badrinarayanan V, Kendall A, Cipolla R. SegNet: a deep
convolutional encoder-decoder architecture for image
segmentation. CoRR 2015;abs/1511:00561. https://doi.org/10.
1109/TPAMI.2016.2644615.

Rahman MA, Wang Y. Optimizing intersection-over-union in deep
neural networks for image segmentation. In: ISVC; 2016:234-44
pp. https://doi.org/10.1007/978-3-319-50835-1_22.

19.

20.

Scheikl et al.: Deep learning for semantic segmentation of organs =—— 5

Sudre CH, Li W, Vercauteren T, Ourselin S, Cardoso MJ. Generalised
dice overlap as a deep learning loss function for highly unbalanced
segmentations. In: Deep learning in medical image analysis and
multimodal learning for clinical decision support; 2017:240-8 pp.
Bertels J, et al. Optimizing the dice score and jaccard index for
medical image segmentation: theory and practice. In: MICCAI;
2019:92-100 pp.


https://doi.org/10.1109/TPAMI.2016.2644615
https://doi.org/10.1109/TPAMI.2016.2644615
https://doi.org/10.1007/978-3-319-50835-1_22

	Deep learning for semantic segmentation of organs and tissues in laparoscopic surgery
	Problem
	Material and methods
	Dataset
	Neural network architectures
	Experiments

	Results
	Dataset
	Semantic segmentation

	Discussion and conclusion
	References

