902 research outputs found

    Using Semantic Web Technologies to Query and Manage Information within Federated Cyber-Infrastructures

    Get PDF
    A standardized descriptive ontology supports efficient querying and manipulation of data from heterogeneous sources across boundaries of distributed infrastructures, particularly in federated environments. In this article, we present the Open-Multinet (OMN) set of ontologies, which were designed specifically for this purpose as well as to support management of life-cycles of infrastructure resources. We present their initial application in Future Internet testbeds, their use for representing and requesting available resources, and our experimental performance evaluation of the ontologies in terms of querying and translation times. Our results highlight the value and applicability of Semantic Web technologies in managing resources of federated cyber-infrastructures.EC/FP7/318389/EU/Federation for FIRE/Fed4FIREEC/FP7/732638/EU/Federation for FIRE Plus/Fed4FIREplu

    On Evaluating Commercial Cloud Services: A Systematic Review

    Full text link
    Background: Cloud Computing is increasingly booming in industry with many competing providers and services. Accordingly, evaluation of commercial Cloud services is necessary. However, the existing evaluation studies are relatively chaotic. There exists tremendous confusion and gap between practices and theory about Cloud services evaluation. Aim: To facilitate relieving the aforementioned chaos, this work aims to synthesize the existing evaluation implementations to outline the state-of-the-practice and also identify research opportunities in Cloud services evaluation. Method: Based on a conceptual evaluation model comprising six steps, the Systematic Literature Review (SLR) method was employed to collect relevant evidence to investigate the Cloud services evaluation step by step. Results: This SLR identified 82 relevant evaluation studies. The overall data collected from these studies essentially represent the current practical landscape of implementing Cloud services evaluation, and in turn can be reused to facilitate future evaluation work. Conclusions: Evaluation of commercial Cloud services has become a world-wide research topic. Some of the findings of this SLR identify several research gaps in the area of Cloud services evaluation (e.g., the Elasticity and Security evaluation of commercial Cloud services could be a long-term challenge), while some other findings suggest the trend of applying commercial Cloud services (e.g., compared with PaaS, IaaS seems more suitable for customers and is particularly important in industry). This SLR study itself also confirms some previous experiences and reveals new Evidence-Based Software Engineering (EBSE) lessons

    EvLog: Evolving Log Analyzer for Anomalous Logs Identification

    Full text link
    Software logs record system activities, aiding maintainers in identifying the underlying causes for failures and enabling prompt mitigation actions. However, maintainers need to inspect a large volume of daily logs to identify the anomalous logs that reveal failure details for further diagnosis. Thus, how to automatically distinguish these anomalous logs from normal logs becomes a critical problem. Existing approaches alleviate the burden on software maintainers, but they are built upon an improper yet critical assumption: logging statements in the software remain unchanged. While software keeps evolving, our empirical study finds that evolving software brings three challenges: log parsing errors, evolving log events, and unstable log sequences. In this paper, we propose a novel unsupervised approach named Evolving Log analyzer (EvLog) to mitigate these challenges. We first build a multi-level representation extractor to process logs without parsing to prevent errors from the parser. The multi-level representations preserve the essential semantics of logs while leaving out insignificant changes in evolving events. EvLog then implements an anomaly discriminator with an attention mechanism to identify the anomalous logs and avoid the issue brought by the unstable sequence. EvLog has shown effectiveness in two real-world system evolution log datasets with an average F1 score of 0.955 and 0.847 in the intra-version setting and inter-version setting, respectively, which outperforms other state-of-the-art approaches by a wide margin. To our best knowledge, this is the first study on tackling anomalous logs over software evolution. We believe our work sheds new light on the impact of software evolution with the corresponding solutions for the log analysis community

    A Review on IoT Deep Learning UAV Systems for Autonomous Obstacle Detection and Collision Avoidance

    Get PDF
    [Abstract] Advances in Unmanned Aerial Vehicles (UAVs), also known as drones, offer unprecedented opportunities to boost a wide array of large-scale Internet of Things (IoT) applications. Nevertheless, UAV platforms still face important limitations mainly related to autonomy and weight that impact their remote sensing capabilities when capturing and processing the data required for developing autonomous and robust real-time obstacle detection and avoidance systems. In this regard, Deep Learning (DL) techniques have arisen as a promising alternative for improving real-time obstacle detection and collision avoidance for highly autonomous UAVs. This article reviews the most recent developments on DL Unmanned Aerial Systems (UASs) and provides a detailed explanation on the main DL techniques. Moreover, the latest DL-UAV communication architectures are studied and their most common hardware is analyzed. Furthermore, this article enumerates the most relevant open challenges for current DL-UAV solutions, thus allowing future researchers to define a roadmap for devising the new generation affordable autonomous DL-UAV IoT solutions.Xunta de Galicia; ED431C 2016-045Xunta de Galicia; ED431C 2016-047Xunta de Galicia; , ED431G/01Centro Singular de Investigación de Galicia; PC18/01Agencia Estatal de Investigación de España; TEC2016-75067-C4-1-

    Supporting Users in Cloud Plan Selection

    Get PDF
    Cloud computing is a key technology for outsourcing data and applications to external providers. The current cloud market offers a multitude of solutions (plans) differing from one another in terms of their characteristics. In this context, the selection of the right plan for outsourcing is of paramount importance for users wishing to move their data/applications to the cloud. The scientific community has then developed different models and tools for capturing users\u2019 requirements and evaluating candidate plans to determine the extent to which each of them satisfies such requirements. In this chapter, we illustrate some of the existing solutions proposed for cloud plan selection and for supporting users in the specification of their (crisp and/or fuzzy) needs

    Design of a QoS-based Framework for Service Ranking and Selection in Cloud E-marketplaces

    Get PDF
    In most existing commercial cloud e-marketplaces, finding a suitable cloud service to perform user's objectives can be cognitively demanding and potentially affects the user satisfaction of both the process and outcome of decision making. Most existing cloud selection techniques have not sufficiently addressed the problem of service choice overload in a manner, that provides means that elicits subjective user preferences. Besides, only a few of these techniques suffice in situations where there are a large number of services to be evaluated and the results are presented in textual formats, either in a list or tables, which does not provide any means of comparison of results returned. Based on a comparative review of existing service selection techniques, a set of requirements was identified to guide the design of cloud service selection framework that would suffice in a cloud e-marketplace context. A cloud service selection framework was formulated that encapsulates the set of requirements. The increase in the number of available services on the e-marketplace leaves the users in the dilemma of which service to select, particularly when the services perform equivalent functionalities and may only differ with respect to their quality of service (QoS) attributes. The proposed framework is a viable proposition for the reduction service choice overload in cloud service e-marketplaces
    • …
    corecore