60,350 research outputs found

    2-User Multiple Access Spatial Modulation

    No full text
    International audienceSpatial modulation (SM) is a recently proposed approach to multiple-input-multiple-output (MIMO) systems which entirely avoids inter-channel interference (ICI) and requires no synchronisation between the transmit antennas, while achieving a spatial multiplexing gain. SM allows the system designer to freely trade off the number of transmit antennas with the signal constellation. Additionally, the number of transmit antennas is independent from the number of receive antennas which is an advantage over other multiplexing MIMO schemes. Most contributions thus far, however, have only addressed SM aspects for a point-to-point communication systems, i.e. the single-user scenario. In this work we seek to characterise the behaviour of SM in the interference limited scenario. The proposed maximumlikelihood (ML) detector can successfully decode incoming data from multiple sources in an interference limited scenario and does not suffer from the near-far problem

    A spatial interference minimization strategy for the correlated LTE downlink channel

    Get PDF

    Performance analysis of spatial modulation aided NOMA with full-duplex relay

    Get PDF
    A spatial modulation aided non-orthogonal multiple access with full-duplex relay (SM-NOMA-FDR) scheme is proposed for the coordinated direct and relay transmission in this paper. Specifically, the signal of the near user is mapped to an M-ary modulated symbol and the signal of the far user is mapped to an SM symbol. The base station first transmits signals to the near user and relay via SM-NOMA, and then the relay decodes and retransmits the signal of the far user. An SM-assisted FDR is used in this scheme to improve the spectral efficiency while reducing energy consumption and making full use of the antenna resources at the relay, since SM only activates one antenna in each transmission. We derive the ergodic capacity and bit error rate of the proposed scheme over independent Rayleigh fading channels. Numerical results validate the accuracy of the theoretical analysis and show the superior performance of the proposed SM-NOMA-FDR scheme

    On the performance of SU-MIMO and MU-MIMO in 3GPP LTE downlink

    Get PDF

    Performance Analysis of SSK-NOMA

    Full text link
    In this paper, we consider the combination between two promising techniques: space-shift keying (SSK) and non-orthogonal multiple access (NOMA) for future radio access networks. We analyze the performance of SSK-NOMA networks and provide a comprehensive analytical framework of SSK-NOMA regarding bit error probability (BEP), ergodic capacity and outage probability. It is worth pointing out all analysis also stand for conventional SIMO-NOMA networks. We derive closed-form exact average BEP (ABEP) expressions when the number of users in a resource block is equal to i.e., L=3L=3. Nevertheless, we analyze the ABEP of users when the number of users is more than i.e., L≄3L\geq3, and derive bit-error-rate (BER) union bound since the error propagation due to iterative successive interference canceler (SIC) makes the exact analysis intractable. Then, we analyze the achievable rate of users and derive exact ergodic capacity of the users so the ergodic sum rate of the system in closed-forms. Moreover, we provide the average outage probability of the users exactly in the closed-form. All derived expressions are validated via Monte Carlo simulations and it is proved that SSK-NOMA outperforms conventional NOMA networks in terms of all performance metrics (i.e., BER, sum rate, outage). Finally, the effect of the power allocation (PA) on the performance of SSK-NOMA networks is investigated and the optimum PA is discussed under BER and outage constraints
    • 

    corecore