8 research outputs found

    Author index

    Get PDF

    Department of Computer Science Activity 1998-2004

    Get PDF
    This report summarizes much of the research and teaching activity of the Department of Computer Science at Dartmouth College between late 1998 and late 2004. The material for this report was collected as part of the final report for NSF Institutional Infrastructure award EIA-9802068, which funded equipment and technical staff during that six-year period. This equipment and staff supported essentially all of the department\u27s research activity during that period

    Closest and Farthest-Line Voronoi Diagrams in the Plane

    Get PDF
    Voronoi diagrams are a geometric structure containing proximity information useful in efficiently answering a number of common geometric problems associated with a set of points in the plane.. They have applications in fields ranging from crystallography to biology. Diagrams of sites other than points and with different distance metrics have been studied. This paper examines the Voronoi diagram of a set of lines, which has escaped study in the computational geometry literature. The combinatorial and topological properties of the closest and farthest Voronoi diagrams are analyzed and O(n^2) and O(n log n) algorithms are presented for their computation respectively

    GEOMETRIC OPTIMIZATION IN SOME PROXIMITY AND BIOINFORMATICS PROBLEMS

    Get PDF
    The theme of this dissertation is geometric optimization and its applications. We study geometric proximity problems and several bioinformatics problems with a geometric content, requiring the use of geometric optimization tools. We have investigated the following type of proximity problems. Given a point set in a plane with n distinct points, for each point in the set find a pair of points from the remaining points in the set such that the three points either maximize or minimize some geometric measure defined on these. The measures include (a) sum and product; (b) difference; (c) line–distance; (d) triangle area; (e) triangle perimeter; (f) circumcircle–radius; and (g) triangle–distance in three dimensions. We have also studied the application of a linear time incremental geometric algorithm to test the linear separability of a set of blue points from a set of red points, in two and three–dimensional Euclidean spaces. We have used this geometric separability tool on 4 different gene expression data–sets, enumerating gene–pairs and gene–triplets that are linearly separable. Pushing on further, we have exploited this novel tool to identify some bio–marker genes for a classifier. The gene selection method proposed in the dissertation exhibits good classification accuracy as compared to other known feature (or gene) selection methods such as t–values, FCS (Fisher Criterion Score) and SAM (Significance Analysis of Microarrays). Continuing this line of investigation further, we have also designed an efficient algorithm to find the minimum number of outliers when the red and blue point sets are not fully linearly separable. We have also explored the applicability of geometric optimization techniques to the problem of protein structure similarity. We have come up with two new algorithms, EDAlignres and EDAlignsse, for pairwise protein structure alignment. EDAlignres identifies the best structural alignment of two equal length proteins by refining the correspondence obtained from eigendecomposition and to maximize the similarity measure for the refined correspondence. EDAlignsse, on the other hand, does not require the input proteins to be of equal length. These have been fully implemented and tested against well-established protein alignment program

    МодСли ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Ρ‹Ρ… Π·Π°Π΄Π°Ρ‡ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ разбиСния мноТСств: Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅, Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅, динамичСскиС Π·Π°Π΄Π°Ρ‡ΠΈ

    Get PDF
    Π˜Π·Π»Π°Π³Π°Π΅Ρ‚ΡΡ матСматичСская тСория Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Ρ‹Ρ… Π·Π°Π΄Π°Ρ‡ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ разбиСния мноТСств n-ΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ Π΅Π²ΠΊΠ»ΠΈΠ΄ΠΎΠ²Π° пространства, ΡΠ²Π»ΡΡŽΡ‰ΠΈΡ…ΡΡ нСклассичСскими Π·Π°Π΄Π°Ρ‡Π°ΠΌΠΈ бСсконСчномСрного матСматичСского программирования. ОсобоС Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ удСляСтся Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ слоТным Π·Π°Π΄Π°Ρ‡Π°ΠΌ, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‰ΠΈΠΌΡΡ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΡΡ‚ΡŒΡŽ ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠ΅Π² ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ разбиСния, Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ΠΌ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½ΠΈΠΉ, динамичСским Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΎΠΌ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ². Π Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡ Ρ‚Π°ΠΊΠΆΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Ρ‹Ρ… Π·Π°Π΄Π°Ρ‡ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ разбиСния мноТСств, Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡŽΡ‰ΠΈΡ… ΠΏΡ€ΠΈ ΡƒΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ распрСдСлСнными систСмами, Π² частности, систСмами параболичСского Ρ‚ΠΈΠΏΠ°. ΠŸΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ΡΡ ΡˆΠΈΡ€ΠΎΠΊΠΈΠΉ спСктр практичСских ΠΏΡ€ΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Ρ‹Ρ… Π·Π°Π΄Π°Ρ‡ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ разбиСния мноТСств ΠΈ родствСнных с Π½ΠΈΠΌΠΈ Π·Π°Π΄Π°Ρ‡ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ покрытия, гСомСтричСского проСктирования. ΠžΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‚ΡΡ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ направлСния дальнСйшСго развития Ρ‚Π΅ΠΎΡ€ΠΈΠΈ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Ρ‹Ρ… Π·Π°Π΄Π°Ρ‡ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ разбиСния мноТСств. Для спСциалистов Π² области Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΈ ΠΏΡ€ΠΈΠΊΠ»Π°Π΄Π½ΠΎΠΉ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ, Π½Π°ΡƒΡ‡Π½Ρ‹Ρ… Ρ€Π°Π±ΠΎΡ‚Π½ΠΈΠΊΠΎΠ², аспирантов ΠΈ студСнтов, ΠΈΠ½Ρ‚Π΅Ρ€Π΅ΡΡƒΡŽΡ‰ΠΈΡ…ΡΡ соврСмСнными ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ°ΠΌΠΈ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ, Π² Ρ‚ΠΎΠΌ числС Π½Π΅Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠΉ, матСматичСским ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ, ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ°ΠΌΠΈ Ρ‚Π΅Ρ€Ρ€ΠΈΡ‚ΠΎΡ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ планирования, ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ размСщСния ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ² Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΉ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Ρ‹ Π² Π·Π°Π΄Π°Π½Π½ΠΎΠΉ области, Π΄Ρ€ΡƒΠ³ΠΈΡ… Π·Π°Π΄Π°Ρ‡, сводящихся ΠΊ модСлям ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ разбиСния мноТСств.Π’ΠΈΠΊΠ»Π°Π΄Π°Ρ”Ρ‚ΡŒΡΡ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π½Π° тСорія Π½Π΅ΠΏΠ΅Ρ€Π΅Ρ€Π²Π½ΠΈΡ… Π·Π°Π΄Π°Ρ‡ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ розбиття ΠΌΠ½ΠΎΠΆΠΈΠ½ n-Π²ΠΈΠΌΡ–Ρ€Π½ΠΎΠ³ΠΎ Π΅Π²ΠΊΠ»Ρ–Π΄ΠΎΠ²ΠΎΠ³ΠΎ простору, які Ρ” нСкласичними Π·Π°Π΄Π°Ρ‡Π°ΠΌΠΈ нСскінчСнновимірного ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π½ΠΎΠ³ΠΎ програмування. Особлива ΡƒΠ²Π°Π³Π° ΠΏΡ€ΠΈΠ΄Ρ–Π»ΡΡ”Ρ‚ΡŒΡΡ Π½Π°ΠΉΠ±Ρ–Π»ΡŒΡˆ складним Π·Π°Π΄Π°Ρ‡Π°ΠΌ, Ρ‰ΠΎ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‚ΡŒΡΡ Π½Π΅Π»Ρ–Π½Ρ–ΠΉΠ½Ρ–ΡΡ‚ΡŽ ΠΊΡ€ΠΈΡ‚Π΅Ρ€Ρ–Ρ—Π² ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΡΡ‚Ρ– розбиття, Π½Π°ΡΠ²Π½Ρ–ΡΡ‚ΡŽ Π΄ΠΎΠ΄Π°Ρ‚ΠΊΠΎΠ²ΠΈΡ… обмСТСнь, Π΄ΠΈΠ½Π°ΠΌΡ–Ρ‡Π½ΠΈΠΌ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΎΠΌ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ–Π². Π ΠΎΠ·Π³Π»ΡΠ΄Π°ΡŽΡ‚ΡŒΡΡ Ρ‚Π°ΠΊΠΎΠΆ ΠΌΠΎΠ΄Π΅Π»Ρ– Ρ– ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈ Ρ€ΠΎΠ·Π²'язання Π½Π΅ΠΏΠ΅Ρ€Π΅Ρ€Π²Π½ΠΈΡ… Π·Π°Π΄Π°Ρ‡ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ розбиття ΠΌΠ½ΠΎΠΆΠΈΠ½, Ρ‰ΠΎ Π²ΠΈΠ½ΠΈΠΊΠ°ΡŽΡ‚ΡŒ ΠΏΡ€ΠΈ ΠΊΠ΅Ρ€ΡƒΠ²Π°Π½Π½Ρ– Ρ€ΠΎΠ·ΠΏΠΎΠ΄Ρ–Π»Π΅Π½ΠΈΠΌΠΈ систСмами, Π·ΠΎΠΊΡ€Π΅ΠΌΠ°, систСмами ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ–Ρ‡Π½ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΡƒ. ΠΠ°Π²ΠΎΠ΄ΠΈΡ‚ΡŒΡΡ ΡˆΠΈΡ€ΠΎΠΊΠΈΠΉ спСктр ΠΏΡ€Π°ΠΊΡ‚ΠΈΡ‡Π½ΠΈΡ… Π·Π°ΡΡ‚ΠΎΡΡƒΠ²Π°Π½ΡŒ Π½Π΅ΠΏΠ΅Ρ€Π΅Ρ€Π²Π½ΠΈΡ… Π·Π°Π΄Π°Ρ‡ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ розбиття ΠΌΠ½ΠΎΠΆΠΈΠ½ Ρ– споріднСних Π· Π½ΠΈΠΌΠΈ Π·Π°Π΄Π°Ρ‡ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ покриття, Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π½ΠΎΠ³ΠΎ проСктування. ΠžΠΏΠΈΡΡƒΡŽΡ‚ΡŒΡΡ дСякі напрямки подальшого Ρ€ΠΎΠ·Π²ΠΈΡ‚ΠΊΡƒ Ρ‚Π΅ΠΎΡ€Ρ–Ρ— Ρ– ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ–Π² Ρ€ΠΎΠ·Π²'язання Π½Π΅ΠΏΠ΅Ρ€Π΅Ρ€Π²Π½ΠΈΡ… Π·Π°Π΄Π°Ρ‡ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ розбиття ΠΌΠ½ΠΎΠΆΠΈΠ½. Для Ρ„Π°Ρ…Ρ–Π²Ρ†Ρ–Π² Ρƒ Π³Π°Π»ΡƒΠ·Ρ– ΠΎΠ±Ρ‡ΠΈΡΠ»ΡŽΠ²Π°Π»ΡŒΠ½ΠΎΡ— Ρ‚Π° ΠΏΡ€ΠΈΠΊΠ»Π°Π΄Π½ΠΎΡ— ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ, Π½Π°ΡƒΠΊΠΎΠ²Ρ†Ρ–Π², аспірантів Ρ– студСнтів, які Ρ†Ρ–ΠΊΠ°Π²Π»ΡΡ‚ΡŒΡΡ сучасними ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ°ΠΌΠΈ Ρ‚Π΅ΠΎΡ€Ρ–Ρ— ΠΎΠΏΡ‚ΠΈΠΌΡ–Π·Π°Ρ†Ρ–Ρ—, Ρƒ Ρ‚ΠΎΠΌΡƒ числі Π½Π΅Π΄ΠΈΡ„Π΅Ρ€Π΅Π½Ρ†Ρ–ΠΉΠΎΠ²Π½ΠΎΡ—, ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π½ΠΈΠΌ модСлюванням, ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ°ΠΌΠΈ Ρ‚Π΅Ρ€ΠΈΡ‚ΠΎΡ€Ρ–Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ планування, ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ розміщСння ΠΎΠ±'Ρ”ΠΊΡ‚Ρ–Π² Ρ€Ρ–Π·Π½ΠΎΡ— ΠΏΡ€ΠΈΡ€ΠΎΠ΄ΠΈ Π² Π·Π°Π΄Π°Π½Ρ–ΠΉ області, Ρ–Π½ΡˆΠΈΡ… Π·Π°Π΄Π°Ρ‡, Ρ‰ΠΎ Π·Π²ΠΎΠ΄ΡΡ‚ΡŒΡΡ Π΄ΠΎ ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ розбиття ΠΌΠ½ΠΎΠΆΠΈΠ½.E.M. Kiseleva, L.S. KorΡ–ashkina. Models and Methods for Solving Continuous Problems of Optimal Set Partitioning: Linear, Nonlinear, and Dynamic Problems: a monograph [in Russian]. – K .: Naukova Dumka, 2013. – 606 p. We present the mathematical theory of continuous problems of optimal partitioning of sets from an n-dimensional Euclidean space, which are non-classical problems of infinite-dimensional mathematical programming. Particular attention is given to the most complex problems characterized by non-linearity of partition optimality criteria, additional restrictions, dynamic nature of the parameters. We also consider the models and methods for solving of continuous problems of optimal partitioning of sets arising in the control of distributed systems, in particular parabolic type systems. We present a wide range of practical applications of continuous problems of optimal partitioning of sets, optimal covering and geometric design. We describe some areas for further development of theory and methods for solving continuous problems of optimal partitioning of sets. For experts in the field of computational and applied mathematics, researchers and students interested in modern problems of the optimization theory, including non-differentiable, mathematical modeling, the problems of spatial planning, optimal location of different nature objects in a given area, the other problems that reduce to models of optimal sets partitioning

    2-Point Site Voronoi Diagrams

    No full text
    . In this paper we investigate a new type of Voronoi diagrams in which every region is defined by a pair of point sites and some distance function from a point to two points. We analyze the complexity of the respective nearest- and furthest-neighbor diagrams of several such distance functions, and show how to compute the diagrams efficiently. 1 Introduction The standard Voronoi Diagram of a set of n given points (called sites) is a subdivision of the plane into n regions, one associated with each site. Each site's region consists of all points in the plane closer to it than to any of the other sites. One application is what Knuth called the "post office" problem. Given a letter to be delivered, the nearest post office to the destination can be found by locating the destination point in the Voronoi diagram of the post office sites. This is called a "locus approach" to solving the problem---points in the plane are broken into sets by the answer to a query (in this case, "Which post offi..
    corecore