3,488 research outputs found

    Recoloring graphs via tree decompositions

    Full text link
    Let kk be an integer. Two vertex kk-colorings of a graph are \emph{adjacent} if they differ on exactly one vertex. A graph is \emph{kk-mixing} if any proper kk-coloring can be transformed into any other through a sequence of adjacent proper kk-colorings. Jerrum proved that any graph is kk-mixing if kk is at least the maximum degree plus two. We first improve Jerrum's bound using the grundy number, which is the worst number of colors in a greedy coloring. Any graph is (tw+2)(tw+2)-mixing, where twtw is the treewidth of the graph (Cereceda 2006). We prove that the shortest sequence between any two (tw+2)(tw+2)-colorings is at most quadratic (which is optimal up to a constant factor), a problem left open in Bonamy et al. (2012). We also prove that given any two (χ(G)+1)(\chi(G)+1)-colorings of a cograph (resp. distance-hereditary graph) GG, we can find a linear (resp. quadratic) sequence between them. In both cases, the bounds cannot be improved by more than a constant factor for a fixed χ(G)\chi(G). The graph classes are also optimal in some sense: one of the smallest interesting superclass of distance-hereditary graphs corresponds to comparability graphs, for which no such property holds (even when relaxing the constraint on the length of the sequence). As for cographs, they are equivalently the graphs with no induced P4P_4, and there exist P5P_5-free graphs that admit no sequence between two of their (χ(G)+1)(\chi(G)+1)-colorings. All the proofs are constructivist and lead to polynomial-time recoloring algorithmComment: 20 pages, 8 figures, partial results already presented in http://arxiv.org/abs/1302.348

    Three-coloring triangle-free graphs on surfaces V. Coloring planar graphs with distant anomalies

    Get PDF
    We settle a problem of Havel by showing that there exists an absolute constant d such that if G is a planar graph in which every two distinct triangles are at distance at least d, then G is 3-colorable. In fact, we prove a more general theorem. Let G be a planar graph, and let H be a set of connected subgraphs of G, each of bounded size, such that every two distinct members of H are at least a specified distance apart and all triangles of G are contained in \bigcup{H}. We give a sufficient condition for the existence of a 3-coloring phi of G such that for every B\in H, the restriction of phi to B is constrained in a specified way.Comment: 26 pages, no figures. Updated presentatio

    Recoloring bounded treewidth graphs

    Full text link
    Let kk be an integer. Two vertex kk-colorings of a graph are \emph{adjacent} if they differ on exactly one vertex. A graph is \emph{kk-mixing} if any proper kk-coloring can be transformed into any other through a sequence of adjacent proper kk-colorings. Any graph is (tw+2)(tw+2)-mixing, where twtw is the treewidth of the graph (Cereceda 2006). We prove that the shortest sequence between any two (tw+2)(tw+2)-colorings is at most quadratic, a problem left open in Bonamy et al. (2012). Jerrum proved that any graph is kk-mixing if kk is at least the maximum degree plus two. We improve Jerrum's bound using the grundy number, which is the worst number of colors in a greedy coloring.Comment: 11 pages, 5 figure

    Subdivision into i-packings and S-packing chromatic number of some lattices

    Get PDF
    An ii-packing in a graph GG is a set of vertices at pairwise distance greater than ii. For a nondecreasing sequence of integers S=(s_1,s_2,…)S=(s\_{1},s\_{2},\ldots), the SS-packing chromatic number of a graph GG is the least integer kk such that there exists a coloring of GG into kk colors where each set of vertices colored ii, i=1,…,ki=1,\ldots, k, is an s_is\_i-packing. This paper describes various subdivisions of an ii-packing into jj-packings (j\textgreater{}i) for the hexagonal, square and triangular lattices. These results allow us to bound the SS-packing chromatic number for these graphs, with more precise bounds and exact values for sequences S=(s_i,i∈N∗)S=(s\_{i}, i\in\mathbb{N}^{*}), s_i=d+⌊(i−1)/n⌋s\_{i}=d+ \lfloor (i-1)/n \rfloor
    • …
    corecore