Manuscript version: Author's Accepted Manuscript

The version presented in WRAP is the author's accepted manuscript and may differ from the published version or Version of Record.

Persistent WRAP URL:

http://wrap.warwick.ac.uk/136441

How to cite:

Please refer to published version for the most recent bibliographic citation information. If a published version is known of, the repository item page linked to above, will contain details on accessing it.

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions.
© 2020 Elsevier. Licensed under the Creative Commons Attribution-NonCommercialNoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/.

C
 BY
 NC ND

Publisher's statement:

Please refer to the repository item page, publisher's statement section, for further information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

Three-coloring triangle-free graphs on surfaces V. Coloring planar graphs with distant anomalies*

Zdeněk Dvoráák ${ }^{\dagger}$
Robin Thomas ${ }^{\S}$

February 14, 2020

Abstract

We settle a problem of Havel by showing that there exists an absolute constant d such that if G is a planar graph in which every two distinct triangles are at distance at least d, then G is 3 -colorable. In fact, we prove a more general theorem. Let G be a planar graph, and let \mathcal{H} be a set of connected subgraphs of G, each of bounded size, such that every two distinct members of \mathcal{H} are at least a specified distance apart and all triangles of G are contained in $\bigcup \mathcal{H}$. We give a sufficient condition for the existence of a 3 -coloring ϕ of G such that for every $H \in \mathcal{H}$ the restriction of ϕ to H is constrained in a specified way.

1 Introduction

This paper is a part of a series aimed at studying the 3 -colorability of graphs on a fixed surface that are either triangle-free, or have their triangles restricted in some way. Here, we are concerned with 3-coloring planar graphs. All graphs in this paper are finite and simple; that is, have no loops or multiple edges. All colorings that we consider are proper, assigning different colors to adjacent vertices. The following is a classical theorem of Grötzsch [18].

Theorem 1.1. Every triangle-free planar graph is 3-colorable.

[^0]There is a long history of generalizations that extend the theorem to classes of graphs that include triangles. An easy modification of Grötzsch' proof shows that every planar graph with at most one triangle is 3 -colorable. Even more is true every planar graph with at most three triangles is 3 -colorable. This was first claimed by Grünbaum [19], however his proof contains an error. This error was fixed by Aksionov [1] and later Borodin [5] gave another proof. There are infinitely many 4 -critical planar graphs with four triangles, but they were recently completely characterized by Borodin et al. [6].

As another direction of research, Grünbaum [19] conjectured that every planar graph with no intersecting triangles is 3 -colorable. This was disproved by Havel [20], who formulated a more cautious question whether there exists a constant d such that every planar graph such that the distance between every two triangles is at least d is 3 -colorable. In [21], Havel shows that if such a constant d exists, then $d \geq 3$, and Aksionov and Mel'nikov [2] improved this bound to $d \geq 4$. Borodin [4] constructed a family of graphs that suggests that it may not be possible to obtain a positive answer to Havel's question using local reductions only.

The answer to Havel's question is known to be positive under various additional conditions (e.g., no 5 -cycles [8], no 5-cycles adjacent to triangles [7], a distance constraint on 4-cycles [9]), see the on-line survey of Montassier [22] for a more complete list. The purpose of this paper is to describe a solution to Havel's problem.

Theorem 1.2. There exists an absolute constant d such that if G is a planar graph and every two distinct triangles in G are at distance at least d, then G is 3 -colorable.

Let us remark that our proof gives an explicit upper bound on the constant d of Theorem 1.2 , which however is quite large (roughly 10^{100}), especially compared to the aforementioned lower bounds.

A natural extension of Havel's question is whether instead of triangles, we could allow other kinds of distant anomalies, such as 3 -colorable subgraphs containing several triangles (the simplest one being a diamond, that is, K_{4} without an edge) or even more strongly, prescribing specific colorings of some distant subgraphs. Similar questions have been studied for other graph classes. For example, Albertson [3] proved that if S is a set of vertices in a planar graph G that are precolored with colors $1, \ldots, 5$ and are at distance at least 4 from each other, then the precoloring of S can be extended to a 5 -coloring of G. Furthermore, using the results of the third paper of this series [12], it is easy to see that any precoloring of sufficiently distant vertices of a planar graph G of girth at least 5 can be extended to a 3 -coloring of G. We can even precolor larger connected subgraphs, as long as these precolorings can be extended locally to the vertices of G at some bounded distance from the precolored subgraphs. Both for 5 -coloring planar graphs and 3-coloring planar graphs of girth at least five this follows from the fact that the corresponding critical graphs satisfy a certain isoperimetric inequality [23].

The situation is somewhat more complicated for graphs of girth four. Firstly, as we will discuss in Section 4, there is a global constraint on 3-colorings of plane graphs based on winding number, which implies that in graphs with almost all faces of length four, precoloring a subgraph may give restrictions on possible colorings of distant parts of the graph. For example, if we prescribed specific colorings of the triangles in Theorem 1.2, the resulting claim would be false, even though such precolorings extend locally. Secondly, non-facial (separating) 4-cycles are problematic as well and they need to be treated with care in many of the results of this series, see e.g. Theorem 2.2 below. Specifically, we cannot replace triangles in Theorem 1.2 by diamonds, even though this seems viable when considering only the winding number argument, as shown by the class of graphs (with many separating 4-cycles) constructed by Thomas and Walls [24].

Thus, in our second result, we only deal with graphs without separating 4 -cycles, and we need to allow certain flexibility in the prescribed colorings of distant subgraphs. The exact formulation of the result (Theorem 5.1) is somewhat technical, and we postpone it till Section 5. Here, let us give just a special case covering several interesting kinds of anomalies. The pattern of a 3 -coloring ψ is the set $\left\{\psi^{-1}(1), \psi^{-1}(2), \psi^{-1}(3)\right\}$. That is, two 3 -colorings have the same pattern if they only differ by a permutation of colors.

Theorem 1.3. There exists an absolute constant $d \geq 2$ with the following property. Let G be a plane graph without separating 4-cycles. Let S_{1} be a set of vertices of G. Let S_{2} be a set of (≤ 5)-cycles of G. Let S_{3} be a set of vertices of G of degree at most 4. For each $v \in S_{1} \cup S_{3}$, let $c_{v} \in\{1,2,3\}$ be a color. For each $K \in S_{2}$, let ψ_{K} be a 3-coloring of K. Suppose that the distance between any two vertices or subgraphs belonging to $S_{1} \cup S_{2} \cup S_{3}$ is at least d. If all triangles in G belong to S_{2}, then G has a 3 -coloring φ such that

- $\varphi(v)=c_{v}$ for every $v \in S_{1}$,
- φ has the same pattern on K as ψ_{K} for every $K \in S_{2}$, and
- $\varphi(u)=c_{v}$ for every neighbor u of a vertex $v \in S_{3}$.

Let us remark that forbidding separating 4 -cycles is necessary when the anomalies S_{2} (except for triangles) and S_{3} are considered, as shown by simple variations of the construction of Thomas and Walls [24]. On the other hand, there does not appear to be any principal reason to exclude 4 -cycles when only precolored single vertices are allowed.

Conjecture 1.4. There exists an absolute constant $d \geq 2$ with the following property. Let G be a plane triangle-free graph, let S be a set of vertices of G and let $\psi: S \rightarrow\{1,2,3\}$ be an arbitrary function. If the distance between every two vertices of S is at least d, then ψ extends to a 3 -coloring of G.

In Theorem 5.1, we show that Conjecture 1.4 is implied by the following seemingly simpler statement.

Conjecture 1.5. There exists an absolute constant $d \geq 2$ with the following property. Let G be a plane triangle-free graph, let C be a 4-cycle bounding a face of G and let v be a vertex of G. Let ψ be a 3 -coloring of $C+v$. If the distance between C and v is at least d, then ψ extends to a 3 -coloring of G.

If an n-vertex planar triangle-free graph G has bounded maximum degree, then we can select a subset S_{1} of its vertices of size $\Omega(n)$ such that the distance between any two of vertices of S_{1} is at least d. If G does not contain separating 4 -cycles, then by Theorem 1.3, we can 3 -color G so that all vertices of S_{1} have prescribed colors. By choosing the colors of vertices in S_{1}, we obtain exponentially many 3 -colorings of G. This solves a special case of a conjecture of Thomassen [25] that all triangle-free planar graphs have exponentially many 3 -colorings.

Corollary 1.6. For every $k \geq 0$, there exists $c>1$ such that every planar triangle-free graph G of maximum degree at most k and without separating 4cycles has at least $\left.\right|^{|V(G)|} 3$-colorings.

While the current paper was undergoing review and revisions, Conjecture 1.5 was confirmed to be true by Dvořák and Lidický [16]. Consequently, Conjecture 1.4 is true as well, and in Corollary 1.6, the assumption that there are no separating 4 -cycles can be dropped.

The rest of the paper is structured as follows. In the next section, we state several previous results which we need in the proofs. In Section 3, we study the structure of graphs where no 4 -faces can be collapsed without decreasing distances between anomalies, showing that they contain long cylindrical quadrangulated subgraphs. In Section 4, we study the colorings of such cylindrical subgraphs. Finally, in Section 5, we prove a statement generalizing Theorems 1.2 and 1.3.

Proof outline

Let us finish the introduction by describing the main ideas of the proof of Theorem 1.2.

To deal with the aforementioned problems with separating 4-cycles, as well as with other technicalities arising in the argument, we are actually going to prove a stronger result: In the situation of Theorem 1.2, if either C is a 4 -cycle in G, or a 5 -cycle in G disjoint from all triangles, and ψ is a 3 -coloring of C, then ψ extends to a 3 -coloring of G. Then we can without loss of generality assume G has no separating 4-cycles: Otherwise, $G=G_{1} \cup G_{2}$ for proper induced subgraphs G_{1} and G_{2} intersecting in a 4 -cycle K, with $C \subset G_{1}$, and we can use induction to first extend ψ to a 3 -coloring of G_{1}, then extend the resulting coloring of K to G_{2}.

Suppose now for a contradiction G is a counterexample with $|V(G)|+|E(G)|$ minimum; clearly, the graph G is connected. Let t denote the number of triangles in G. We have $t \geq 2$, as otherwise ψ extends to a 3 -coloring of G by a result of Aksionov [1], see Lemma 2.1. By the main result of the previous paper in
this series [13], see Theorem 2.2 below, the minimality of G and the fact that G does not contain separating 4-cycles implies that the total length of (≥ 5)-faces of G is at most ηt, for a constant $\eta \ll d$. Since G is connected, $t \geq 2$, and every two triangles in G are at distance at least d from each other, observe that for some triangle $T \subset G$, there exist integers $a \leq b<d / 2$ such that $b-a=\Omega(d / \eta)$, all faces of G whose distance from T is between a and b have length 4, the total length of (≥ 5)-faces of G at distance less than a from T is at most 2η, and C is at distance more than b from T.

Let R denote the part of G at distance between a and b from T, and let f be a 4 -face in R. Let G^{\prime} be the graph obtained from G by identifying two vertices v_{1} and v_{2} that are opposite on f to a single vertex v. If G^{\prime} satisfies the assumptions of the theorem, then ψ extends to a 3 -coloring of G^{\prime} by the minimality of G, and giving v_{1} and v_{2} the color of v, we obtain a 3 -coloring of G extending ψ. This is a contradiction, and thus the described identification either creates a triangle, or decreases the distance between two triangles of G (one of these triangles necessarily has to be T, since f is at distance less than $d / 2$ from T). This has to be the case for every 4 -face in R, and as we show in Section 3 , this is basically only possible if R contains a regular cylindrical grid R^{\prime} whose length is significantly larger than its circumference.

Let C_{1} and C_{2} be the boundary cycles of this long cylindrical grid. In Section 4, we use the connection between 3-colorings and nowhere-zero 3-flows to show that any precoloring of $C_{1} \cup C_{2}$ satisfying a certain simple constrain (winding numbers on C_{1} and C_{2} match) extends to a 3 -coloring of R^{\prime}. This enables us to finish the argument: We cut G in the middle of R^{\prime}, obtaining two subgraphs H_{1} and H_{2} with $C \subseteq H_{1}$. For $i \in\{1,2\}$, we fill in the newly created face of H_{i} by a subgraph with a face bounded by a cycle C_{i}^{\prime} of length at most five and all other faces of length four, obtaining a plane graph H_{i}^{\prime}. By the minimality of G, we can extend ψ to a 3 -coloring φ_{1} of H_{1}^{\prime}, color C_{2}^{\prime} the same way as φ_{1} colors C_{1}^{\prime}, and extend this coloring to a 3-coloring φ_{2} of H_{2}^{\prime}. This is easily seen to ensure that the winding numbers on C_{1} and C_{2} in these colorings match. Hence, the coloring of $C_{1} \cup C_{2}$ given by φ_{1} and φ_{2} extends to a 3 -coloring φ_{3} of R^{\prime}. We can now combine the restrictions of φ_{1} and φ_{2} to $H_{1}-V\left(R^{\prime}\right)$ and $H_{2}-V\left(R^{\prime}\right)$ with φ_{3} to obtain a 3-coloring of G extending ψ.

In the more general setting of Theorem 1.3, there are further complications arising from the fact that we need to avoid creating separating 4-cycles (or at least, creating separating 4 -cycles too close to the anomalies) and that we need to handle the case there is only one anomaly, essentially proving the analogue of Lemma 2.1 for a graph with one anomaly sufficiently far away from a precolored (≤ 5)-cycle.

2 Previous results

We use the following lemma of Aksionov [1].
Lemma 2.1. Let G be a plane graph with at most one triangle, and let C be either the null graph or a facial cycle of G of length at most five. If C has length
five and G contains a triangle T, also assume that C and T are edge-disjoint. Then every 3 -coloring of C extends to a 3-coloring of G.

We also need several results from previous papers of this series. Let G be a graph and C its subgraph. We say that G is C-critical if $G \neq C$ and for every proper subgraph G^{\prime} of G that includes C, there exists a 3-coloring of C that extends to a 3 -coloring of G^{\prime}, but does not extend to a 3 -coloring of G. The following claim is a special case of the general form of the main result of [13] (Theorem 4.1).

Theorem 2.2. There exists an absolute constant η with the following property. Let G be a plane graph and Z a (not necessarily connected) subgraph of G such that all triangles and all separating 4-cycles in G are contained in Z. If G is Z-critical, then $\sum|f| \leq \eta|V(Z)|$, where the summation is over all faces f of G of length at least five.

The following is a simple consequence of Corollary 5.3 of [13].
Lemma 2.3. Let G be a triangle-free plane graph with the outer face f_{0} bounded by a cycle and with another face f bounded by a cycle of length at least $\left|f_{0}\right|-1$. If every cycle separating f_{0} from f in G has length at least $\left|f_{0}\right|-1$, then every 3 -coloring of the cycle bounding f_{0} extends to a 3 -coloring of G.

Finally, let us state a basic property of critical graphs.
Proposition 2.4. Let G be a graph and C its subgraph such that G is C-critical. If $G=G_{1} \cup G_{2}, C \subseteq G_{1}$ and $G_{2} \nsubseteq G_{1}$, then G_{2} is $\left(G_{1} \cap G_{2}\right)$-critical.

3 Structure of graphs without collapsible 4-faces

Essentially all papers dealing with 3-colorability of triangle-free planar graphs first eliminate 4 -faces by identifying their opposite vertices, thus reducing the problem to graphs of girth 5. However, this reduction might decrease distances in the resulting graph, which constrains its applicability for the problems we consider. In this section, we give a structural result on graphs in that no 4 -face can be reduced.

Let F be a cycle in a graph G, and let $S \subseteq V(G)$. We say that the cycle F is S-tight if F has length four and the vertices of F can be numbered $v_{1}, v_{2}, v_{3}, v_{4}$ in order such that for some integer $t \geq 0$ the vertices v_{1}, v_{2} are at distance exactly t from S, and the vertices v_{3}, v_{4} are at distance exactly $t+1$ from S. We say that a face is S-tight if it is bounded by an S-tight cycle.

A triple (G, \mathcal{S}, C) is a scene if G is a connected plane graph, \mathcal{S} is a family of non-empty subsets of $V(G)$ each of which induces a connected subgraph of G, and C is either the null graph \varnothing or a cycle of length at most five bounding the outer face of G. For a positive integer d, the scene is d-distant if for all distinct $S, S^{\prime} \in \mathcal{S}$, the distance between S and S^{\prime} in G is at least d.

Lemma 3.1. Let $d \geq 1$ be an integer and let (G, \mathcal{S}, C) be a $2 d$-distant scene. Let F be a cycle in G of length four and assume that for each pair u, v of diagonally opposite vertices of F, two distinct sets in \mathcal{S} are at distance at most $2 d-1$ in the graph obtained from G by identifying u and v. Then there exists a unique set $S_{0} \in \mathcal{S}$ at distance at most $d-1$ from F. Furthermore, F is S_{0}-tight.

Proof. Let the vertices of F be $v_{1}, v_{2}, v_{3}, v_{4}$ in order. By hypothesis there exist sets $S_{1}, S_{2}, S_{3}, S_{4} \in \mathcal{S}$, where S_{i} is at distance d_{i} from v_{i}, such that $S_{1} \neq S_{3}$, $S_{2} \neq S_{4}, d_{1}+d_{3} \leq 2 d-1$, and $d_{2}+d_{4} \leq 2 d-1$. From the symmetry we may assume that $d_{1} \leq d-1$ and $d_{2} \leq d-1$. The distance between S_{1} and S_{2} is at most $d_{1}+d_{2}+1 \leq 2 d-1$, and thus $S_{1}=S_{2}$. Let us set $S_{0}=S_{1}$. If any $S \in \mathcal{S}$ is at distance at most $d-1$ from F, then the distance between S and S_{0} is at most $2(d-1)+1<2 d$, and thus $S=S_{0}$. It follows that S_{0} is the unique element of \mathcal{S} at distance at most $d-1$ from F.

Note that $S_{4} \neq S_{2}=S_{1}$, and hence $d_{1}+d_{4}+1 \geq 2 d$, because S_{1} and S_{4} are at distance at least $2 d$. This and the inequality $d_{2}+d_{4} \leq 2 d-1$ imply that $d_{1} \geq d_{2}$. But there is a symmetry between d_{1} and d_{2}, and hence an analogous argument shows that $d_{1} \leq d_{2}$. Thus for $t:=d_{1}=d_{2}$ the vertices v_{1}, v_{2} are both at distance t from $S_{0}=S_{1}=S_{2}$. If v_{4} were at distance t or less from S_{0}, then S_{0} and S_{4} would be at distance at most $t+d_{4}=d_{2}+d_{4} \leq 2 d-1$, a contradiction. The same holds for v_{3} by symmetry, and hence v_{3} and v_{4} are at distance $t+1$ from S_{0}; hence, F is S_{0}-tight.

We often use the following observation on vertices only incident with tight faces.

Observation 3.2. Let (G, \mathcal{S}, C) be a distant scene and let $v \in V(G)$ be a vertex such that for some $S \in \mathcal{S}$, every face incident with v is S-tight. Let t be the distance between v and S. Then v has even degree, and in the clockwise ordering of the neighbors of v in the drawing of G, every second neighbor is at distance exactly t from S, while every other neighbor is at distance $t-1$ or $t+1$ from S.

Let G be a graph, let $S \subseteq V(G)$ and let K be a cycle in G. We say that K is equidistant from S if for some integer $t \geq 0$, every vertex of K is at distance exactly t from S. We will also say that K is equidistant from S at distance t.

We say that a plane graph H is a cylindrical quadrangulation with boundary faces f_{1} and f_{2} if the distinct faces f_{1} and f_{2} of H are bounded by cycles and all other faces of H have length four. The union of the cycles bounding f_{1} and f_{2} is called the boundary of H. The cylindrical quadrangulation H is a joint if $\left|f_{1}\right|=\left|f_{2}\right|$, every cycle of H separating f_{1} from f_{2} has length at least $\left|f_{1}\right|$ and the distance between f_{1} and f_{2} in H is at least $4\left|f_{1}\right|$. If H appears as a subgraph of another plane graph G, we say that the appearance is clean if every face of H except for f_{1} and f_{2} is also a face of G. An $r \times s$ cylindrical grid is the Cartesian product of a path with r vertices and a cycle of length s.

Let (G, \mathcal{S}, C) be a scene, R a cycle in G, and $S \in \mathcal{S}$ a set disjoint from R. Removing R splits the plane into two open sets, and since $G[S]$ is connected, S is contained in one of them; let $\Omega_{S}(R)$ denote the other one. We say S is
tightly isolated by R if R is an equidistant cycle of length $s \geq 3$ at some distance $d_{0} \geq 1$ from S, and for $d_{1}=d_{0}+2(s-2)(s+3)$, letting $V_{G}(S, R)$ be the set of vertices of G at distance at most d_{1} from S that are drawn in the closure of $\Omega_{S}(R)$, every face of G drawn in $\Omega_{S}(R)$ and incident with a vertex of $V_{G}(S, R)$ is S-tight.

Lemma 3.3. Let $(G,\{S\}, \varnothing)$ be a scene. If S is tightly isolated by a cycle R_{0} in G and every vertex of $V_{G}\left(S, R_{0}\right)$ has degree at least three, then G contains a clean joint H such that $V(H) \subseteq V_{G}\left(S, R_{0}\right)$.

Proof. Let $s=\left|R_{0}\right|$ and let d_{0} be the distance between S and R_{0} in G. For an integer j, let $d(j)=d_{0}+2(s-j)(s+j+1)$. Note that $d(j)+4 j=d(j-1)$ for every $j, d_{0}=d(s)$, and every vertex of $V_{G}\left(S, R_{0}\right)$ is at distance at most $d_{1}=d_{0}+2(s-2)(s+3)=d(2)$ from S. Choose the smallest integer $j \in\{3, \ldots, s\}$ for that there exists an equidistant cycle R of length j at distance t from S such that $d_{0} \leq t \leq d(j)$ and R is drawn in the closure of $\Omega_{S}\left(R_{0}\right)$; note this implies $V(R) \subseteq V_{G}\left(S, R_{0}\right)$. Such an integer j exists, since R_{0} satisfies the requirements for $j=s$. Let $p \leq 4 j$ be the maximum integer such that G contains a clean $(p+1) \times|R|$ cylindrical grid H with boundary faces f_{1} and f_{2} as a subgraph such that f_{1} is bounded by R and f_{2} is bounded by an equidistant cycle K at distance $t+p$ from S, and f_{2} is drawn in $\Omega_{S}(R)$; note this implies $V(H) \subseteq V_{G}\left(S, R_{0}\right)$. Such an integer p exists, since R (treated as a $1 \times|R|$ cylindrical grid) satisfies the requirements for $p=0$.

We claim that $p=4 j$, and thus H satisfies the conclusion of the theorem. Suppose that $p \leq 4 j-1$. Note that every vertex of G drawn in $\Omega_{S}(K)$ is at distance at least $t+p+1$ from S. Observe that K has no chord contained in $\Omega_{S}(K)$, as otherwise there exists an equidistant cycle of length less than j at distance $t+p \leq t+4 j-1<d(j-1)$ from S contradicting the minimality of j. Hence, Observation 3.2 implies that every vertex $v \in V(K)$ has exactly one neighbor v^{\prime} drawn in $\Omega_{S}(K)$.

Let Z be the subgraph of G induced by $\left\{v^{\prime}: v \in V(K)\right\}$; note that $V(Z)$ consists exactly of all vertices drawn in $\Omega_{S}(K)$ at distance $t+p+1 \leq t+4 j \leq$ $d(j-1)$ from S, and in particular $V(Z) \subset V_{G}\left(S, R_{0}\right)$. By the assumptions of this lemma, all vertices in $V(Z)$ have degree at least three in G, and thus Observation 3.2 implies Z has minimum degree at least two. Consequently, Z contains a cycle Z^{\prime}. Note that Z^{\prime} is equidistant at distance at most $d(j-1)$ from S and $\left|Z^{\prime}\right| \leq|V(Z)| \leq|K|=j$. By the minimality of j, it follows that $\left|Z^{\prime}\right|=j$, and thus $|V(Z)|=|K|$. Therefore, $v_{1}^{\prime} \neq v_{2}^{\prime}$ for distinct vertices $v_{1}, v_{2} \in V(K)$. We conclude that we can extend H to a clean $(p+2) \times|R|$ cylindrical grid by adding Z^{\prime} and the edges $v v^{\prime}$ for $v \in V(K)$, contradicting the maximality of p. This finishes the proof.

Next, we consider the case that some of the relevant faces are not tight, but instead are near to a short separating cycle. A 4 -face f is attached to a cycle R if the boundary cycle of f and R intersect in a path of length two. Let $d_{2}<d_{3}$ and s be positive integers and let (G, \mathcal{S}, C) be a scene. For $S \in \mathcal{S}$, we say that a cycle R separates S from C if C is not the null graph, $R \neq C$, and S is drawn in
the open disk bounded by R (recall that C bounds the outer face of G). We say that the scene is $\left(d_{2}, d_{3}\right)$-tight if for every $S \in \mathcal{S}$, every 4 -face of G at distance at least d_{2} and at most d_{3} from S is bounded by C, or S-tight, or attached to a (≤ 6)-cycle separating S from C. An $\left(S, d_{2}, d_{3}\right)$-slice is a subset L of vertices of G such that

- each vertex $v \in L$ is at distance at least d_{2} and at most d_{3} from S,
- if $v \in L$ has a neighbor in G not belonging to L, then the distance between S and v is either exactly d_{2} or exactly d_{3}, and
- L contains a vertex at distance exactly $d_{3}-1$ from S.

Note that the last two conditions imply that L contains vertices at any distance d from S such that $d_{2} \leq d \leq d_{3}-1$. The interior L° of L is the set of vertices at distance at least $d_{2}+1$ and at most $d_{3}-1$ from S. When the parameters are clear from the context, we call L just a slice. For a positive integer s, we say that a set $S \in \mathcal{S}$ is $\left(d_{2}, d_{3}, s\right)$-isolated by an $\left(S, d_{2}, d_{3}\right)$-slice L if

- $L \cap V(C)=\emptyset$ and every vertex of L has degree at least three,
- every face of G incident with a vertex of L has length four, and
- every cycle $K \subseteq G[L]$ equidistant from S has length at most s.

Lemma 3.4. Let $d_{2} \geq 4$ and $s \geq 3$ be integers, let $d_{3}=d_{2}+34(s-2)(s+3)+474$, and let $(G,\{S\}, C)$ be a $\left(d_{2}, d_{3}\right)$-tight scene. If S is $\left(d_{2}, d_{3}, s\right)$-isolated by a slice L, then G contains a clean joint H with $V(H) \subseteq L^{\circ}$.

Proof. Let \mathcal{K} be the set of all (≤ 6)-cycles $K \subset G\left[L^{\circ}\right]$ that separate S from C in G. For an integer t such that $d_{2} \leq t \leq d_{3}$, let G_{t} denote the subgraph of $G[L]$ induced by vertices at distance exactly t from S. By assumptions, every cycle in G_{t} has length at most s.

If $d_{2}+4 \leq t \leq d_{3}-4$ and $v \in V\left(G_{t}\right)$ is at distance at least two from every element of \mathcal{K}, then all faces incident with v are S-tight and $\operatorname{deg}_{G_{t}}(v) \geq 2$.

Subproof. Since $v \in L$, any face f of G incident with v is a 4-face not bounded by C. Since $d_{2}+4 \leq t \leq d_{3}-4$, if f were attached to a (≤ 6)-cycle K separating S from C, then we would have $K \subset G\left[L^{\circ}\right]$, and thus K would be an element of \mathcal{K} at distance at most one from v, contradicting the assumptions. Since the scene is $\left(d_{2}, d_{3}\right)$-tight, we conclude every face incident with v is S-tight. Since $\operatorname{deg}_{G}(v) \geq 3$, Observation 3.2 implies $\operatorname{deg}_{G_{t}}(v) \geq 2$.

For a cycle $K \in \mathcal{K}$, let Δ_{K} be the closed disk bounded by K. For distinct $K_{1}, K_{2} \in \mathcal{K}$, we write $K_{1} \prec K_{2}$ if K_{1} is drawn in $\Delta_{K_{2}}$, and we write $G_{K_{1}, K_{2}}$ for the subgraph of G drawn in $\Delta_{K_{2}} \backslash \Delta_{K_{1}}^{\circ}$.

Consider cycles $K_{1}, K_{2} \in \mathcal{K}$ of the same length r such that $K_{1} \prec K_{2}$ and no cycle $K \in \mathcal{K}$ of length less than r satisfies $K_{1} \prec K \prec K_{2}$. For $i \in\{1,2\}$, let k_{i} denote the distance between S and K_{i}. If $k_{1}+4 r+3 \leq k_{2} \leq d_{3}-2(s-2)(s+3)-12$, then G contains a clean joint H such that $V(H) \subseteq L^{\circ}$.

Subproof. Note that by the assumptions of the claim, no cycle in $G_{K_{1}, K_{2}}$ that separates K_{1} from K_{2} has length less than r and the distance between K_{1} and K_{2} is at least $4 r$. If $V\left(G_{K_{1}, K_{2}}\right) \subseteq L^{\circ}$, then since S is $\left(d_{2}, d_{3}, s\right)$-isolated by L, all faces of $G_{K_{1}, K_{2}}$ not bounded by K_{1} or K_{2} have length four, and thus we can set $H=G_{K_{1}, K_{2}}$.

Therefore, assume that $G_{K_{1}, K_{2}}$ contains a vertex not in L°; since L is a slice and G is connected, we conclude $G_{K_{1}, K_{2}} \cap G[L]$ contains vertices at any distance between k_{1} and d_{3} from S. Let $t=k_{2}+8$ and let Q be a connected component of G_{t} contained in $G_{K_{1}, K_{2}}$. Observe that every cycle $K \in \mathcal{K}$ which intersects $G_{K_{1}, K_{2}}$ is at distance at most k_{2} from S if $K \prec K_{2}$, and at most $k_{2}+3$ if K intersects K_{2}, and thus its distance from Q is at least two. By (1), Q has minimum degree at least two, and thus Q contains a cycle R, necessarily of length at most s. Furthermore, (1) implies every face f incident with a vertex $v \in V_{G}(S, R)$ is S-tight. By Lemma 3.3, G contains a clean joint H with $V(H) \subseteq V_{G}(S, R) \subseteq L^{\circ}$, as required.

Let $b_{2}=d_{2}-1$ and $e_{2}=d_{3}-2(s-2)(s+3)-11$. For $3 \leq r \leq 6$, let b_{r} and e_{r} be chosen so that $b_{r-1} \leq b_{r} \leq e_{r} \leq e_{r-1}$, every cycle in $\overline{\mathcal{K}}$ of length r is at distance either at most b_{r} or at least e_{r} from S, and subject to these conditions, $e_{r}-b_{r}$ is as large as possible.

Consider a fixed $r \in\{3,4,5,6\}$. If no cycle in \mathcal{K} has length r and is at distance more than b_{r-1} and less than e_{r-1} from S, then we have $b_{r}=b_{r-1}$ and $e_{r}=e_{r-1}$. Otherwise, let $K_{1} \in \mathcal{K}$ be a cycle of length r whose distance k_{1} from S satisfies $b_{r-1}<k_{1}<e_{r-1}$ and subject to that, k_{1} is as small as possible; and, let $K_{2} \in \mathcal{K}$ be a cycle of length r whose distance k_{2} from S satisfies $b_{r-1}<k_{2}<$ e_{r-1} and subject to that, k_{2} is as large as possible. If $k_{2} \geq k_{1}+4 r+3$, then (2) implies that the conclusion of this lemma holds, and thus we can assume that $k_{2} \leq k_{1}+4 r+2$. Note that the distance of every cycle in \mathcal{K} of length r from S is at most b_{r-1}, or between k_{1} and k_{2} (inclusive), or at least e_{r-1}. Furthermore, $\left(k_{1}-b_{r-1}\right)+\left(e_{r-1}-k_{2}\right)=\left(e_{r-1}-b_{r-1}\right)-\left(k_{2}-k_{1}\right) \geq\left(e_{r-1}-b_{r-1}\right)-4 r-2$, and thus, considering $\left(b_{r-1}, k_{1}\right)$ and $\left(k_{2}, e_{r-1}\right)$ as possible choices for $\left(b_{r}, e_{r}\right)$, we have $e_{r}-b_{r} \geq \max \left(k_{1}-b_{r-1}, e_{r-1}-k_{2}\right) \geq \frac{e_{r-1}-b_{r-1}}{2}-2 r-1$.

It follows that $e_{6}-b_{6}>\frac{e_{2}-b_{2}}{16}-22=\frac{d_{3}-d_{2}-2(s-2)(s+3)-362}{16}=2(s-2)(s+$ $3)+7$. Let $t=b_{6}+5$ and let Q be a connected component of G_{t} (note that G_{t} is non-empty, since L is a slice). Observe the distance between Q and every element of \mathcal{K} is at least two, and thus by (1), Q has minimum degree at least two. Consequently, Q contains a cycle R, necessarily of length at most s. Since $t+2(s-2)(s+3) \leq e_{6}-2$, every vertex $v \in V_{G}(S, R)$ is at distance at least $b_{6}+5$ and at most $e_{6}-2$ from S, and thus every cycle $K \in \mathcal{K}$ is at distance at
least two from v. Consequently, (1) implies all faces incident with v are S-tight. By Lemma $3.3, G$ contains a clean joint H such that $V(H) \subseteq V_{G}(S, R) \subseteq L^{\circ}$, as required.

Let G be a plane graph. For a set $S \subseteq V(G)$, a path P from a vertex v to S is S-geodesic if P is a shortest path from v to S. Let B be an odd cycle in G, let Λ be one of the two connected open subsets of the plane bounded by B, let $u v$ be an edge of B, let w be the vertex of B that is farthest (as measured in B) from $u v$ and let z be a vertex of G such that either $z=w$, or z does not belong to the closure of Λ. Let P_{u} and P_{v} be the paths in $B-u v$ joining u and v, respectively, with w. We say that Λ is a z-petal with top $u v$ if there exists a path Q in G between w and z such that the paths $Q \cup P_{u}$ and $Q \cup P_{v}$ are $\{z\}$-geodesic.

Let S be a set of vertices inducing a connected subgraph of G and consider a cycle K which is equidistant at some distance $t \geq 1$ from S. The removal of K splits the plane into two open sets, let Δ be the one containing S. For each $v \in V(K)$, choose an S-geodesic path P_{v}. We can choose the paths so that for every $u, v \in V(K)$, the paths P_{u} and P_{v} are either disjoint or intersect in a path ending in S. Removing $G[S]$ and the paths P_{v} for $v \in V(K)$ splits Δ to several parts; for each $e \in E(K)$, let Δ_{e} be the one whose boundary contains e. Clearly, Δ_{e} and $\Delta_{e^{\prime}}$ are disjoint for distinct $e, e^{\prime} \in E(K)$. We call the collection $\left\{\Delta_{e}: e \in E(K)\right\}$ a flower of K with respect to S. Let us remark that not all elements of a flower are necessarily petals: Δ_{e} is a z-petal with top e for some $z \in S$ if and only of the boundary of Δ_{e} does not contain any edge of $G[S]$.

Since a petal is bounded by an odd cycle, it contains an odd face of G. However, this face could in general be arbitrarily far from S. In the next lemma, we exploit the presence of S-tight faces to find a face of length other than four close to S.

Lemma 3.5. Let d_{4} be a positive integer and let $(G,\{S\}, \varnothing)$ be a scene such that every vertex v at distance exactly d_{4} from S has degree at least three and all 4-faces incident with v are S-tight. For some $d \leq d_{4}$, let $u v$ be an edge of G such that both u and v are at distance exactly d from S, and suppose $z \in S$ is at distance exactly d from both u and v. For every z-petal Δ with top uv, there exists a face $f \subseteq \Delta$ of G of length other than four at distance at most d_{4} from S.

Proof. We can assume that Δ is minimal, i.e., there is no $\Delta^{\prime} \subsetneq \Delta$ such that Δ^{\prime} is a z-petal satisfying the assumptions of the lemma. Since Δ is bounded by an odd cycle, there exists an odd face f contained in Δ. It suffices to consider the case that the distance between f and S is at least $d_{4}+1$. Let Q be the subgraph of G induced by vertices at distance exactly d_{4} from S that are contained in the closure of Δ. Note that Q is non-empty since G is connected, and can intersect the boundary of Δ only in the edge $u v$.

If $Q=u v$, then $\{u, v\}$ forms a cut in G that separates the rest of the boundary of Δ from the vertices incident with f. Observe that this implies that there exists a face f^{\prime} contained in Δ in whose boundary u and v appear
non-consecutively. This implies f^{\prime} is not S-tight, and thus it is not a 4 -face. Hence, the conclusion of this lemma is satisfied.

Therefore, we can assume that $Q \neq u v$. By Observation 3.2, all vertices of Q other than u and v have degree at least two in Q. Since $u v \in E(Q)$, it follows that Q contains a cycle K, which is equidistant at distance d_{4} from S. Let $F=\left\{\Delta_{e}: e \in E(K)\right\}$ be a flower of K with respect to S and let e_{0} be the unique edge of K such that the closure of $\Delta_{e_{0}}$ contains the edge $u v$. Note that since every vertex in the boundary of Δ is contained in an S-geodesic path ending in z, every vertex of K is at distance exactly d_{4} from z, and thus we can choose F so that $\Delta_{e} \subset \Delta$ and Δ_{e} is a z-petal for every $e \in E(K) \backslash\left\{e_{0}\right\}$. Since $|F|=|K| \geq 3$, it follows that each such z-petal Δ_{e} is a proper subset of Δ. This contradicts the minimality of Δ.

Next, we apply Theorem 2.2 to prove existence of sufficiently isolated anomalies in hypothetical minimal counterexamples to Theorem 1.3. To this end, we need a few more definitions. For $p \geq 1$, we say that a scene (G, \mathcal{S}, C) is p-small if every set in \mathcal{S} has size at most p. The scene is internally triangle-free if for every triangle $T \neq C$ in G, there exists $S \in \mathcal{S}$ such that $T \subseteq G[S]$. For $S \in \mathcal{S}$, a cycle $F \neq C$ in G is S-private if the open disk bounded by F contains a vertex of S, but not of any other set from \mathcal{S}. For an integer $d \geq 1$, we say the scene has no d-distant private 4 -cycles if for every $S \in \mathcal{S}$, every S-private 4-cycle in G is at distance less than d from S. We say that a 4 -cycle is \mathcal{S}-private if it is S-private for some $S \in \mathcal{S}$.

Consider a face f of G, bounded by a closed walk $v_{1} v_{2} \ldots v_{m}$ going clockwise around f. A pair $\left(v_{i-1} v_{i} v_{i+1}, f\right)$ for $1 \leq i \leq m$ (where $v_{0}=v_{m}$ and $v_{m+1}=v_{1}$) is called an angle in G, and v_{i} is its tip.

Lemma 3.6. For all integers $D_{1} \geq 2$ and $p \geq 1$ and for every function h : $\mathbb{N} \rightarrow \mathbb{N}$, there exist integers $s \geq 1$ and $D_{2}>D_{1}$ with the following property. Let (G, \mathcal{S}, C) be a $\left(D_{1}, D_{2}\right)$-tight $2 D_{2}$-distant p-small internally triangle-free scene with no D_{1}-distant private 4-cycles. If $|\mathcal{S}|=1$, assume furthermore that C is not the null graph and the distance between C and the unique element of \mathcal{S} is at least $D_{2}-1$.

Let $Z=C \cup \bigcup_{S \in \mathcal{S}} G[S]$. If G is Z-critical, then there exists an integer $d \geq D_{1}$ such that $d+h(s) \leq D_{2}$ and some element of \mathcal{S} is $(d, d+h(s), s)$ isolated.

Proof. Let $\mu=2 \eta(3 p+5)$, where η is the constant from Theorem 2.2, $s=\mu+6 p$, and $D_{2}=D_{1}+3+(\mu+1)(h(s)+1)$.

By removing some of the edges of $E(Z) \backslash E(C)$ from G if necessary, we can assume G contains no triangle other than C. Since G is Z-critical, note that Lemma 2.1 implies $\mathcal{S} \neq \emptyset$ and the open disk bounded by any separating 4 -cycle in G contains a vertex of $\bigcup \mathcal{S}$. If G contains a non- \mathcal{S}-private separating 4-cycle, then let C_{0} be such a 4 -cycle with the closed disk Δ_{0} bounded by C_{0} minimal. Otherwise, let Δ_{0} be the whole plane and $C_{0}=C$.

For each $S \in \mathcal{S}$, let \mathcal{F}_{S} denote the set of S-private 4-cycles F in G such that the open disk Λ_{F} bounded by F is contained in Δ_{0} and is inclusionwise-maximal
among all 4-cycles with this property. We claim that for distinct $F, F^{\prime} \in \mathcal{F}_{S}$, the disks Λ_{F} and $\Lambda_{F^{\prime}}$ are disjoint. Indeed, since G contains at most one triangle, the cycles F and F^{\prime} are induced, and thus if $\Lambda_{F} \cap \Lambda_{F^{\prime}} \neq \emptyset$, then the open disk $\Lambda_{F} \cup \Lambda_{F^{\prime}}$ is also bounded by an S-private 4-cycle, contradicting the maximality of Λ_{F} or $\Lambda_{F^{\prime}}$. Since each of the disks contains a vertex of S, we conclude $\left|\mathcal{F}_{S}\right| \leq|S|$.

Furthermore, for distinct $S, S^{\prime} \in \mathcal{S}$ and any $F \in \mathcal{F}_{S}$ and $F^{\prime} \in \mathcal{F}_{S^{\prime}}$, the disks Λ_{F} and $\Lambda_{F^{\prime}}$ are disjoint. Indeed, since the scene has no D_{1}-distant private 4-cycles, the distance between S and F, and between S^{\prime} and F^{\prime}, is less than D_{1}, and since the scene is $2 D_{2}$-distant, the cycles F and F^{\prime} are vertex-disjoint. Futhermore $\Lambda_{F} \nsubseteq \Lambda_{F^{\prime}}$ since Λ_{F} contains a vertex of S and F^{\prime} is S^{\prime}-private, and symmetrically $\Lambda_{F^{\prime}} \nsubseteq \Lambda_{F}$. This implies $\Lambda_{F} \cap \Lambda_{F^{\prime}}=\emptyset$.

Let $\mathcal{S}_{1} \subseteq \mathcal{S}$ consist of the sets $S \in \mathcal{S}$ intersecting Δ_{0}; note that $\mathcal{S}_{1} \neq \emptyset$. For $S \in \mathcal{S}_{1}$, let Δ_{S} be the complement of $\bigcup_{F \in \mathcal{F}_{S}} \Lambda_{S}$ and let B_{S} be the subgraph of $G[S] \cup \bigcup \mathcal{F}_{S}$ drawn in $\Delta_{S} \cap \Delta_{0}$. Let G_{1} be the subgraph of G drawn in the subset $\Delta_{1}=\Delta_{0} \cap \bigcap_{S \in \mathcal{S}_{1}} \Delta_{S}$ of the plane. Let $Z_{1}=C_{0} \cup \bigcup_{S \in \mathcal{S}_{1}} B_{S}$; Proposition 2.4 implies that G_{1} is Z_{1}-critical.

If some cycle $F \in \mathcal{F}_{S}$ is vertex-disjoint from S, then since $G[S]$ is connected, we conclude $\mathcal{F}_{S}=\{F\}$ and $B_{S}=F$. Otherwise, every cycle $F \in \mathcal{F}_{S}$ intersects S, and thus $G[S] \cup \bigcup \mathcal{F}_{S}$ is connected, and either B_{S} is connected or every component of B_{S} intersects C_{0}; and furthermore, $\left|V\left(B_{S}\right)\right| \leq 3|S| \leq 3 p$. Since the scene has no D_{1}-distant private 4-cycles, every vertex of B_{S} is at distance at most $D_{1}+1$ from S.

Since the scene is $2 D_{2}$-distant, at most one set in \mathcal{S}_{1} is at distance at most $D_{2}-2$ from C_{0}. Moreover, if $\left|\mathcal{S}_{1}\right|=1$, then we could not have chosen C_{0} as a non- \mathcal{S}-private separating 4 -cycle, and thus $C_{0}=C$ is at distance at least $D_{2}-1$ from the unique element of $\mathcal{S}_{1}=\mathcal{S}$ by the assumptions of this lemma. Therefore, letting \mathcal{S}_{1}^{\prime} consist of the sets $S \in \mathcal{S}_{1}$ at distance at least $D_{2}-1$ from C_{0}, we have $\left|\mathcal{S}_{1}^{\prime}\right| \geq\left|\mathcal{S}_{1}\right| / 2$.

A face f of G is poisonous if $f \subseteq \Delta_{1}$ and f has length at least 5 . The construction of G_{1} ensures that it has no separating 4-cycles, and thus Theorem 2.2 implies

$$
\begin{equation*}
\sum|f| \leq \eta\left|V\left(Z_{1}\right)\right| \leq \eta\left(3 p\left|\mathcal{S}_{1}\right|+5\right) \leq \mu\left|\mathcal{S}_{1}^{\prime}\right| \tag{3}
\end{equation*}
$$

where the summation is over all poisonous faces of G. Consider $S \in \mathcal{S}_{1}^{\prime}$. We say that an angle $(x y z, f)$ in G is S-contaminated if f is poisonous and the distance between S and y in G is at most $D_{2}-1$. Since every S-contaminated angle contributes at least one toward the sum in (3), we deduce that there exists $S \in \mathcal{S}_{1}^{\prime}$ such that there are at most μ angles that are S-contaminated. Let us fix such a set S.

By the choice of D_{2}, there exists an integer $d \geq D_{1}+2$ such that $d+h(s) \leq$ $D_{2}-2$ and no angle with tip at distance at least d and at most $d+h(s)$ is S-contaminated. Let L consist of the vertices of G drawn in Δ_{1} at distance at least d and at most $d+h(s)$ from S. Observe that L is an $(S, d, d+h(s))$-slice and every vertex of L is contained in the interior of Δ_{1}, since C_{1} is at distance at least $D_{2}-1$ from S, every vertex of B_{S} is at distance at most $D_{1}+1$ from S,
and for $S^{\prime} \in \mathcal{S}_{1}$, the subgraph $B_{S^{\prime}}$ is at distance at least $2 D_{2}-\left(D_{1}+1\right)>D_{2}-1$ from S. In particular, $L \cap V(C)=\emptyset$. Since G_{1} is Z_{1}-critical, every vertex of L has degree at least three. The choice of d implies that every face of G incident with a vertex of L has length four.

Hence, it remains to argue that every cycle $K \subseteq G[L]$ equidistant from S has length at most s. First, observe the argument from the previous paragraph also implies that every face f of G contained in Δ_{S} and at distance less than $D_{2}-1$ from S is contained in Δ_{1}. Let f_{S} be the face of B_{S} containing K, and let $W=\left\{\Delta_{e}: e \in E(K)\right\}$ be a flower of K in G with respect to S. Observe that if the closure of Δ_{e} does not contain any edge of the boundary of f_{S}, then Δ_{e} is a z-petal for some $z \in S$ and $\Delta_{e} \subset \Delta_{S}$. Lemma 3.5 applied with $d_{4}=D_{2}-2$ to the scene $(G,\{S\}, \varnothing)$ implies that there exists a face $f \subseteq \Delta_{e}$ of G of length other than four at distance less than $D_{2}-1$ from S, and as we observed, this implies that f is contained in Δ; hence, f is poisonous and contributes an S contaminated angle. Consequently, all but at most μ elements of W contain an edge of the boundary of f_{S} in their closure. Since $\left|V\left(B_{S}\right)\right| \leq 3 p, f_{S}$ has length at most $6 p$, and thus $|K|=|W| \leq \mu+6 p=s$, as required.

We can now combine the lemmas to obtain the main structural result of this section.

Lemma 3.7. There exists a function $f_{3.7}: \mathbb{N}^{2} \rightarrow \mathbb{N}$ with the following property. Let $D_{1} \geq 2$ and $p \geq 1$ be integers and let $D_{2}=f_{3.7}\left(D_{1}, p\right)$. Let (G, \mathcal{S}, C) be a $\left(D_{1}, D_{2}\right)$-tight $2 D_{2}$-distant p-small internally triangle-free scene with no D_{1} distant private 4 -cycles. If $|\mathcal{S}|=1$, assume furthermore that C is not the null graph and the distance between C and the unique element of \mathcal{S} is at least $D_{2}-1$. Let $Z=C \cup \bigcup_{S \in \mathcal{S}} G[S]$. If G is Z-critical, then G contains a clean joint H whose vertices are at distance at least D_{1} and at most $D_{2}-1$ from some element of \mathcal{S}. Furthermore, H is vertex-disjoint from C.

Proof. We choose D_{2} and s according to Lemma 3.6 for the function $h(s)=$ $34(s-2)(s+3)+474$. By Lemma 3.6, there exists an integer $d_{2} \geq D_{1}$ such that $d_{3}=d_{2}+h(s) \leq D_{2}$ and some $S \in \mathcal{S}$ is $\left(d_{2}, d_{3}, s\right)$-isolated by some slice L. By Lemma 3.4 applied to $(G,\{S\}, C), G$ contains a clean joint H with $V(H) \subseteq L^{\circ}$. Consequently, H is vertex-disjoint from C and at distance at least $d_{2}+1>D_{1}$ and at most $d_{3}-1 \leq D_{2}-1$ from S.

4 Colorings of quadrangulations of a cylinder

In this section, we give a lemma on extending a precoloring of boundaries of a quadrangulated cylinder. This is a special case of a more general theory which we develop in the following paper of the series [14].

Let C be a cycle drawn in plane, let $v_{1}, v_{2}, \ldots, v_{k}$ be the vertices of C listed in the clockwise order of their appearance on C, and let $\varphi: V(C) \rightarrow\{1,2,3\}$ be a 3-coloring of C. We can view φ as a mapping of $V(C)$ to the vertices of a triangle, and speak of the winding number of φ on C, defined as the number of
indices $i \in\{1,2, \ldots, k\}$ such that $\varphi\left(v_{i}\right)=1$ and $\varphi\left(v_{i+1}\right)=2$ minus the number of indices i such that $\varphi\left(v_{i}\right)=2$ and $\varphi\left(v_{i+1}\right)=1$, where v_{k+1} means v_{1}. We denote the winding number of φ on C by $W_{\varphi}(C)$.

Consider a plane graph G and its 3-coloring φ. For a face f of G bounded by a cycle C, we define the winding number of φ on f, which is denoted by $w_{\varphi}(f)$, as $-W_{\varphi}(C)$ if f is the outer face of G and as $W_{\varphi}(C)$ otherwise. The following two propositions are easy to prove.

Proposition 4.1. Let G be a plane graph such that every face of G is bounded by a cycle, and let $\varphi: V(G) \rightarrow\{1,2,3\}$ be a 3-coloring of G. Then the sum of the winding numbers of all the faces of G is zero.

Proposition 4.2. The winding number of every 3 -coloring on a cycle of length four is zero.

Let G be a cylindrical quadrangulation with boundary faces f_{1} and f_{2}. We say that the cylindrical quadrangulation is boundary-linked if every cycle K in G separating f_{1} from f_{2} and not bounding either of these faces has length at least $\max \left(\left|f_{1}\right|,\left|f_{2}\right|\right)$, and if $|K|=\left|f_{i}\right|=\max \left(\left|f_{1}\right|,\left|f_{2}\right|\right)$ for some $i \in\{1,2\}$, then $V(K) \cap V\left(f_{3-i}\right) \neq \emptyset$. The cylindrical quadrangulation is long if the distance between f_{1} and f_{2} is at least $\left|f_{1}\right|+\left|f_{2}\right|$.

Lemma 4.3. Let G be a long boundary-linked cylindrical quadrangulation with boundary faces f_{1} and f_{2} and let ψ be a 3-coloring of the boundary of G. Suppose that $\left|f_{1}\right| \geq \max \left(5,\left|f_{2}\right|\right)$ and let $v_{1} v_{2} v_{3}$ be a subpath of the cycle bounding f_{1}, where $\psi\left(v_{1}\right)=\psi\left(v_{3}\right)$. Then, there exists a long boundary-linked cylindrical quadrangulation G^{\prime} with boundary faces f_{1}^{\prime} and f_{2}^{\prime} such that $\left|f_{1}^{\prime}\right|=\left|f_{1}\right|-2$ and $\left|f_{2}^{\prime}\right|=\left|f_{2}\right|$ together with a 3-coloring ψ^{\prime} of the boundary of G^{\prime} such that $w_{\psi^{\prime}}\left(f_{1}^{\prime}\right)=w_{\psi}\left(f_{1}\right), w_{\psi^{\prime}}\left(f_{2}^{\prime}\right)=w_{\psi}\left(f_{2}\right)$, and if ψ^{\prime} extends to a 3-coloring of G^{\prime}, then ψ extends to a 3-coloring of G.

Proof. Note that since $\max \left(\left|f_{1}\right|,\left|f_{2}\right|\right) \geq 5$ and G is boundary-linked, it follows that G contains no triangle other than possibly the cycle bounding f_{2}, and thus the neighbors of v_{2} form an independent set in G_{2}. Furthermore, f_{1} is an induced cycle. Let G^{\prime} be the cylindrical quadrangulation obtained from $G-v_{2}$ by contracting all neighbors of v_{2} (including v_{1} and v_{3}) to a single vertex w and by suppressing the arising 2 -faces. Let f_{1}^{\prime} and f_{2}^{\prime} be the faces of G^{\prime} corresponding to f_{1} and f_{2}, respectively. Clearly, G^{\prime} is long.

Let ψ^{\prime} be the coloring of the boundary of G^{\prime} such that $\psi^{\prime}(w)=\psi\left(v_{1}\right)$ and $\psi^{\prime}(z)=\psi(z)$ for all vertices $z \neq w$ in the boundary. If ψ^{\prime} extends to a 3 coloring φ of G^{\prime}, then we can turn φ into a 3 -coloring of G extending ψ by setting $\varphi(z)=\psi\left(v_{1}\right)$ for every neighbor z of v_{2} and $\varphi\left(v_{2}\right)=\psi\left(v_{2}\right)$.

Consider a cycle K^{\prime} separating f_{1}^{\prime} from f_{2}^{\prime} in G^{\prime} and not bounding either of these faces. Let K be the corresponding cycle in G (equal to K^{\prime}, or obtained from K^{\prime} by replacing w by a neighbor of v_{2}, or obtained from K^{\prime} by replacing w by a path $x v_{2} y$ for some neighbors x and y of v_{2}).

Let us first consider the case that $\left|f_{1}\right|>\left|f_{2}\right|$. Note that $\left|f_{1}\right|$ and $\left|f_{2}\right|$ have the same parity, and thus $\left|f_{1}\right| \geq\left|f_{2}\right|+2$ and $\left|f_{1}^{\prime}\right| \geq\left|f_{1}\right|-2 \geq\left|f_{2}\right|$. Consequently,
$\left|K^{\prime}\right| \geq|K|-2 \geq\left|f_{1}\right|-2=\max \left(\left|f_{1}^{\prime}\right|,\left|f_{2}^{\prime}\right|\right)$. Furthermore, the equality only holds if $v_{2} \in V(K)$ and $|K|=\left|f_{1}\right|$. Since G is boundary-linked, the latter implies that K also contains a vertex incident with f_{2}. However, this contradicts the assumption that G is long. Therefore, we have $\left|K^{\prime}\right|>\max \left(\left|f_{1}^{\prime}\right|,\left|f_{2}^{\prime}\right|\right)$.

Next, we consider the case that $\left|f_{1}\right|=\left|f_{2}\right|$, and thus $\max \left(\left|f_{1}^{\prime}\right|,\left|f_{2}^{\prime}\right|\right)=\left|f_{2}\right|>$ $\left|f_{1}^{\prime}\right|$. If $|K|=\left|f_{2}\right|$, then since G is boundary-linked, it would follow that K intersects both f_{1} and f_{2}, contrary to the assumption that G is long. Therefore, $|K|>\left|f_{2}\right|$, and by parity, $|K| \geq\left|f_{2}\right|+2$. Consequently, $\left|K^{\prime}\right| \geq|K|-2 \geq\left|f_{2}\right|$. The equality can only hold when K contains v_{2}, and thus K^{\prime} contains the vertex w incident with f_{1}^{\prime}. We conclude that G^{\prime} is boundary-linked.

Lemma 4.4. Let G be a long cylindrical quadrangulation with boundary faces f_{1} and f_{2} and let ψ be a 3-coloring of the boundary of G. If $\left|f_{1}\right|=\left|f_{2}\right|=4$, then ψ extends to a 3-coloring of G.

Proof. Let $v_{1} v_{2} v_{3} v_{4}$ be the cycle bounding f_{1}. Since ψ uses only three colors, we can without loss of generality assume $\psi\left(v_{1}\right)=\psi\left(v_{3}\right)$. Note that G is bipartite, and thus the vertices at distance exactly three from $\left\{v_{2}, v_{4}\right\}$ form an independent set. Let G^{\prime} be the quadrangulation of the plane obtained from G by removing all vertices at distance at most two from $\left\{v_{2}, v_{4}\right\}$, identifying all vertices at distance exactly three from $\left\{v_{2}, v_{4}\right\}$ to a single (non-boundary) vertex w and by suppressing the arising 2 -faces.

Let ψ^{\prime} be a restriction of ψ to the 4 -cycle bounding the face of G^{\prime} corresponding to f_{2}. By Lemma 2.3, ψ^{\prime} extends to a 3 -coloring φ of G^{\prime}. We can extend φ to a 3 -coloring of G as follows. Give all vertices at distance exactly 1 from $\left\{v_{2}, v_{4}\right\}$ the color $\psi\left(v_{1}\right)=\psi\left(v_{3}\right)$, all vertices at distance exactly 3 from $\left\{v_{2}, v_{4}\right\}$ the color $\varphi(w)$ and all vertices at distance exactly 2 from $\left\{v_{2}, v_{4}\right\}$ an arbitrary color different from $\psi\left(v_{1}\right)$ and $\varphi(w)$. The resulting assignment is a 3 -coloring of G extending ψ.

Next, we aim to use the connection between colorings and nowhere-zero flows first noticed by Tutte [26]. We only need the following implication from flows to colorings. A nowhere-zero \mathbb{Z}_{3}-flow in a graph G is an orientation of G such that the difference between the indegree and the outdegree of each vertex is divisible by 3 . Given an orientation \vec{G}^{\star} of the dual G^{\star} of a connected plane graph G and a directed edge $e \in E\left(\vec{G}^{\star}\right)$, we define $l(e)=u$ and $r(e)=v$, where $u v$ is the edge of G crossing e and u is to the left of e.

Proposition 4.5. Let G be a connected plane graph and let G^{\star} be its dual. If \vec{G}^{\star} is a nowhere-zero \mathbb{Z}_{3}-flow, then G has a 3 -coloring φ such that $\varphi(r(e))$ $\varphi(l(e)) \equiv 1(\bmod 3)$ for every $e \in E\left(\vec{G}^{\star}\right)$.

We say that a 3 -coloring ψ of a cycle $C=v_{1} \ldots v_{k}$ is rotating if $3 \mid k, \psi\left(v_{1}\right)=$ $\psi\left(v_{4}\right)=\ldots=\psi\left(v_{3 k-2}\right), \psi\left(v_{2}\right)=\psi\left(v_{5}\right)=\ldots=\psi\left(v_{3 k-1}\right)$, and $\psi\left(v_{3}\right)=\psi\left(v_{6}\right)=$ $\ldots=\psi\left(v_{3 k}\right)$. Note that for any 3 -coloring ψ of C, we have $W_{\psi}(C) \leq|C| / 3$, with equality if and only if ψ is rotating.

Lemma 4.6. Let G be a long boundary-linked cylindrical quadrangulation with boundary faces f_{1} and f_{2} and let ψ be a 3-coloring of the boundary of G. The coloring ψ extends to a 3-coloring of G if and only if $w_{\psi}\left(f_{1}\right)+w_{\psi}\left(f_{2}\right)=0$.

Proof. If ψ extends to a 3 -coloring of G, then $w_{\psi}\left(f_{1}\right)+w_{\psi}\left(f_{2}\right)=0$ by Propositions 4.1 and 4.2 .

Let us now show the converse implication. We proceed by induction on $\left|f_{1}\right|+\left|f_{2}\right|$, and thus we can assume that the claim holds for all graphs whose boundary has less than $\left|f_{1}\right|+\left|f_{2}\right|$ vertices. By symmetry, we can assume that $\left|f_{1}\right| \geq\left|f_{2}\right|$.

If $\left|f_{1}\right|=4$, then since $\left|f_{1}\right|$ and $\left|f_{2}\right|$ have the same parity, we have $\left|f_{2}\right|=4$, and ψ extends to a 3 -coloring of G by Lemma 4.4. Thus, assume $\left|f_{1}\right| \geq 5$.

If the cycle bounding f_{1} contains a path $v_{1} v_{2} v_{3}$ with $\psi\left(v_{1}\right)=\psi\left(v_{3}\right)$, then ψ extends to a 3 -coloring of G by Lemma 4.3 and the induction hypothesis. Therefore, we can assume that the boundary cycle of f_{1} contains no such path, and thus ψ is rotating on this cycle. It follows that $\left|f_{1}\right|$ is a multiple of 3 and $\left|w_{\psi}\left(f_{1}\right)\right|=\left|f_{1}\right| / 3$. Since $w_{\psi}\left(f_{1}\right)+w_{\psi}\left(f_{2}\right)=0$, we have $\left|w_{\psi}\left(f_{2}\right)\right|=\left|f_{1}\right| / 3$, and since $\left|f_{2}\right| \leq\left|f_{1}\right|$, we conclude that ψ is also rotating on the boundary of f_{2} and $\left|f_{2}\right|=\left|f_{1}\right|$. Since G is long and boundary-linked, every cycle in G that separates f_{1} from f_{2} and does not bound either of the faces has length at least $\left|f_{1}\right|+2$.

Let G^{\star} be the dual of G. Let K_{i} be the edge-cut in G consisting of the edges incident with $V\left(f_{i}\right)$ that do not belong to $E\left(f_{i}\right)$. Note that the dual K_{i}^{\star} of K_{i} is a cycle in G^{\star}. Let $H=G^{\star}-\left(E\left(K_{1}^{\star}\right) \cup E\left(K_{2}^{\star}\right)\right)$. Let f_{1}^{\star} and f_{2}^{\star} be the vertices of the dual corresponding to f_{1} and f_{2}, respectively. Suppose that H contains an edge-cut of size less than $\left|f_{1}\right|$ separating f_{1}^{\star} from f_{2}^{\star}, and thus G^{\star} contains an edge cut K^{\star} separating f_{1}^{\star} from f_{2}^{\star} with less than $\left|f_{1}\right|$ edges belonging to $E\left(K_{1}^{\star}\right) \cup E\left(K_{2}^{\star}\right)$. Choose K^{\star} as a minimal edge-cut with this property; then the dual K to K^{\star} is a cycle in G separating f_{1} from f_{2} such that $\left|E(K) \backslash\left(E\left(K_{1}\right) \cup E\left(K_{2}\right)\right)\right|<\left|f_{1}\right|$. In particular, this implies K bounds neither f_{1} nor f_{2}. Since G is long, K does not intersect both K_{1} and K_{2}. As we observed before, $|K| \geq\left|f_{1}\right|+2$, and thus we can by symmetry assume that K intersects K_{1} in at least three edges. Let us choose such a cycle K that shares as many edges with the cycle bounding f_{1} as possible. Let P be a subpath of K with both endpoints incident with f_{1}, but no other vertex or edge incident with f_{1}. Let Q_{1} and Q_{2} be the two subpaths of the cycle bounding f_{1} joining the endpoints of P labelled so that $P \cup Q_{2}$ is a cycle separating f_{1} from f_{2}. Consider the cycle $K^{\prime}=(K-P) \cup Q_{1}$. Since K intersects K_{1} in at least three edges, K^{\prime} is not the cycle bounding f_{1}. Since K^{\prime} shares more edges with the cycle bounding f_{1} than K, the choice of K implies that

$$
\begin{gathered}
\left|E\left(K^{\prime}\right) \backslash\left(E\left(K_{1}\right) \cup E\left(K_{2}\right)\right)\right| \geq\left|f_{1}\right|>\left|E(K) \backslash\left(E\left(K_{1}\right) \cup E\left(K_{2}\right)\right)\right|, \text { and thus } \\
\left|E\left(Q_{1}\right) \backslash\left(E\left(K_{1}\right) \cup E\left(K_{2}\right)\right)\right|>\left|E(P) \backslash\left(E\left(K_{1}\right) \cup E\left(K_{2}\right)\right)\right| .
\end{gathered}
$$

Since $\left|E\left(Q_{1}\right) \cap\left(E\left(K_{1}\right) \cup E\left(K_{2}\right)\right)\right|=0$ and $\left|E(P) \cap\left(E\left(K_{1}\right) \cup E\left(K_{2}\right)\right)\right|=2$, we conclude that $\left|Q_{1}\right|>|P|-2$. However, then the cycle $P \cup Q_{2}$ has length less than $\left|f_{1}\right|+2$, contradicting the assumption that G is boundary-linked.

Therefore, H does not contain any edge-cut of size less than $\left|f_{1}\right|$ separating f_{1}^{\star} from f_{2}^{\star}, and by Menger's theorem, H contains pairwise edge-disjoint paths $P_{1}, \ldots, P_{\left|f_{1}\right|}$ joining f_{1}^{\star} with f_{2}^{\star}. Note that all vertices of $H^{\prime}=H-E\left(P_{1} \cup P_{2} \cup\right.$ $\ldots \cup P_{\left|f_{1}\right|}$) have even degree, and thus H^{\prime} is a union of pairwise edge-disjoint cycles C_{1}, \ldots, C_{m}. For $1 \leq i \leq m$, direct the edges of C_{i} so that all vertices of C_{i} have outdegree 1 . For $1 \leq i \leq\left|f_{1}\right|$, direct the edges of P_{i} so that all its vertices except for f_{1}^{\star} have outdegree 1 . This gives an orientation \vec{H} of H such that the indegree of every vertex of $V(H) \backslash\left\{f_{1}^{\star}, f_{2}^{\star}\right\}$ equals its outdegree, f_{1}^{\star} has outdegree 0 and f_{2}^{\star} has indegree 0 . Let \vec{G}_{1}^{\star} be the orientation of G^{\star} obtained from \vec{H} by orienting all edges of K_{1}^{\star} and K_{2}^{\star} in the clockwise direction along the cycles. Let \vec{G}_{2}^{\star} be the orientation of G^{\star} obtained from \vec{G}_{1}^{\star} by reversing the orientation of the edges of K_{1}^{\star}, and let \vec{G}_{3}^{\star} be the orientation of G^{\star} obtained from \vec{G}_{2}^{\star} by reversing the orientation of the edges of K_{2}^{\star}.

Since $\left|f_{1}\right|=\left|f_{2}\right|$ is a multiple of 3 , it follows that the orientations $\vec{G}_{1}^{\star}, \vec{G}_{2}^{\star}$ and \vec{G}_{3}^{\star} define nowhere-zero \mathbb{Z}_{3}-flows in G^{\star}. Let φ_{1}, φ_{2} and φ_{3} be the corresponding 3-colorings of G arising from Proposition 4.5. Since f_{1}^{\star} has outdegree 0 in all three orientations, these 3 -colorings are rotating on the boundary of f_{1}, and thus we can permute the colors so that the restrictions of φ_{1}, φ_{2}, and φ_{3} to the cycle bounding f_{1} match ψ. Similarly, for $i \in\{1,2,3\}$, the coloring φ_{i} is rotating on the boundary of f_{2}. Propositions 4.1 and 4.2 imply $w_{\varphi_{i}}\left(f_{1}\right)+w_{\varphi_{i}}\left(f_{2}\right)=0$, and since $w_{\psi}\left(f_{1}\right)+w_{\psi}\left(f_{2}\right)=0$ and $w_{\psi}\left(f_{1}\right)=w_{\varphi_{i}}\left(f_{1}\right)$, we conclude $w_{\varphi_{i}}\left(f_{2}\right)=$ $w_{\psi}\left(f_{2}\right)$. Consequently, the restrictions of φ_{1}, φ_{2} and φ_{3} to the boundary of f_{2} differ from ψ only by a cyclic permutation of colors. Observe that the colors $\varphi_{1}(v), \varphi_{2}(v)$ and $\varphi_{3}(v)$ are pairwise distinct for every $v \in V\left(f_{2}\right)$, since the reversals of the orientations of K_{1}^{\star} and K_{2}^{\star} cyclically permute the colors on the boundary of f_{2}. Consequently, one of these colorings matches ψ on the boundary of f_{2}, and thus there exists $i \in\{1,2,3\}$ such that φ_{i} is a 3 -coloring of G extending ψ.

The inspection of the proofs of Lemmas 4.3, 4.4, and 4.6 shows that they are constructive and can be implemented as linear-time algorithms to find the described 3 -colorings (Lemma 2.3 is only used in the proof of Lemma 4.4 to extend the precoloring of a 4 -cycle, and a linear-time algorithm for this special case appears in [10]). Hence, we obtain the following corollary which we use in the next paper of the series [14].

Corollary 4.7. For all positive integers d_{1} and d_{2}, there exists a linear-time algorithm as follows. Let G be a cylindrical quadrangulation with boundary faces f_{1} and f_{2} and let ψ be a 3-coloring of the boundary of G such that $w_{\psi}\left(f_{1}\right)+w_{\psi}\left(f_{2}\right)=0$. Suppose that $\left|f_{1}\right|=d_{1},\left|f_{2}\right|=d_{2}$, every cycle in G separating f_{1} from f_{2} and not bounding either of these faces has length greater than $\max \left(d_{1}, d_{2}\right)$, and the distance between f_{1} and f_{2} is at least $d_{1}+d_{2}$. Then the algorithm returns a 3-coloring of G that extends ψ.

We also need another result similar to Lemma 4.6.

Corollary 4.8. Let G be a joint with boundary faces f_{1} and f_{2} and let ψ be a 3 -coloring of the boundary of G such that $w_{\psi}\left(f_{1}\right)+w_{\psi}\left(f_{2}\right)=0$. If $\left|w_{\psi}\left(f_{1}\right)\right|<$ $\left|f_{1}\right| / 3$, then ψ extends to a 3 -coloring of G.

Proof. Since $\left|w_{\psi}\left(f_{1}\right)\right|<\left|f_{1}\right| / 3$, we have $\left|f_{1}\right| \neq 3$. If $\left|f_{1}\right|=4$, then ψ extends to a 3 -coloring of G by Lemma 4.4. Therefore, assume $\left|f_{1}\right| \geq 5$. Since $\left|w_{\psi}\left(f_{1}\right)\right|<$ $\left|f_{1}\right| / 3$ and $\left|w_{\psi}\left(f_{2}\right)\right|<\left|f_{2}\right| / 3$, the coloring ψ is not rotating on the boundaries of f_{1} and f_{2}, and thus there exist paths $u_{1} u_{2} u_{3}$ and $v_{1} v_{2} v_{3}$ in the cycles bounding f_{1} and f_{2}, respectively, such that $\psi\left(u_{1}\right)=\psi\left(u_{3}\right)$ and $\psi\left(v_{1}\right)=\psi\left(v_{3}\right)$. Let G^{\prime} be the cylindrical quadrangulation obtained from $G-u_{2}-v_{2}$ by identifying all neighbors of u_{2} to a single vertex w_{1} and all neighbors of v_{2} to a single vertex w_{2}. Let ψ^{\prime} be the coloring of the boundary of G^{\prime} such that $\psi^{\prime}\left(w_{1}\right)=\psi\left(u_{1}\right)$, $\psi^{\prime}\left(w_{2}\right)=\psi\left(v_{1}\right)$ and $\psi^{\prime}(z)=\psi(z)$ for any other boundary vertex of G^{\prime}. Clearly, it suffices to show that ψ^{\prime} extends to a 3 -coloring of G^{\prime}.

Let f_{1}^{\prime} and f_{2}^{\prime} be the boundary faces of G^{\prime} corresponding to f_{1} and f_{2}, respectively. Note that every cycle in G^{\prime} separating f_{1}^{\prime} from f_{2}^{\prime} has length at least $\left|f_{1}^{\prime}\right|$, and each such cycle of length $\left|f_{1}^{\prime}\right|$ contains either w_{1} or w_{2}. We can assume that G^{\prime} is drawn so that f_{1}^{\prime} is its outer face. Let A be a subset of the plane homeomorphic to the closed annulus such that the boundary of A is formed by cycles in G^{\prime} of length $\left|f_{1}^{\prime}\right|$ separating f_{1}^{\prime} from f_{2}^{\prime}, one of them containing w_{1}, the other one containing w_{2}, such that no other cycle separating f_{1}^{\prime} from f_{2}^{\prime} is contained in A. Let G_{0} be the subgraph of G^{\prime} drawn in A. Removing A splits the plane into two connected open sets B_{1} and B_{2}, where $f_{1}^{\prime} \subset B_{1}$. For $i \in\{1,2\}$, let G_{i} be the subgraph of G^{\prime} drawn in the closure of B_{i}. Note that G_{0} is a long boundary-linked cylindrical quadrangulation. By Lemma 2.3, ψ^{\prime} extends to a 3 -coloring of $G_{1} \cup G_{2}$, and by Lemma 4.6, the resulting coloring of the boundary of G_{0} extends to a 3-coloring of G_{0}. This gives a 3-coloring of G^{\prime} extending ψ^{\prime}.

To use the results of this section, we need means to constrain the winding number of a coloring on a boundary of a face. We achieve this by filling the face by a carefully chosen cylindrical quadrangulation. An s-cap is a cylindrical quadrangulation G with boundary faces f_{1} and f_{2}, such that G does not contain triangles and separating 4-cycles, $\left|f_{1}\right|=s,\left|f_{2}\right|=4+(s \bmod 2)$ and for every $u, v \in V\left(f_{1}\right)$, the distance between u and v in G is the same as their distance in the cycle bounding f_{1}. We call f_{2} the special face of the s-cap.

Lemma 4.9. For every $s \geq 4$, there exists an s-cap G that has fewer vertices than every joint with boundary faces of length s.

Proof. Let G be an s-cap obtained from the $s \times s$ cylindrical quadrangulation by adding chords to one of its boundary faces. We have $|V(G)|=s^{2}$.

Consider any joint H with boundary faces f_{1} and f_{2} of length s. For $1 \leq i \leq$ $4 s-1$, let V_{i} denote the set of vertices of H at distance exactly i from f_{1}. Observe that since all faces of H other than f_{1} and f_{2} have length $4, H\left[V_{i} \cup V_{i+1}\right]$ contains a cycle separating f_{1} from f_{2} for $1 \leq i \leq 4 s-2$, and thus $\left|V_{i}\right|+\left|V_{i+1}\right| \geq s$. Therefore, $|V(H)| \geq\left|f_{1}\right|+\left|f_{2}\right|+(2 s-1) s=(2 s+1) s>|V(G)|$.

5 3-coloring with distant anomalies

An anomaly is a triple $T=\left(H_{T}, B_{T}, \Phi_{T}\right)$, where H_{T} is a connected plane graph, $B_{T} \subseteq V\left(H_{T}\right)$ and Φ_{T} is a set of 3-colorings of H_{T} such that for every $\psi \in \Phi_{T}$, there exist distinct colors a and b such that the 3 -coloring obtained from ψ by swapping the colors a and b also belongs to Φ_{T}. An anomaly T appears in a plane graph G if H_{T} is an induced subgraph of G (where the plane embedding of H_{T} is induced by the embedding of G) and every $v \in B_{T}$ satisfies $\operatorname{deg}_{G}(v)=\operatorname{deg}_{H_{T}}(v)$. Given a 3 -coloring φ of a plane graph G and an anomaly T appearing in G, we say that φ is compatible with T if $\varphi \upharpoonright V\left(H_{T}\right) \in \Phi_{T}$.

An anomaly T is locally extendable if the following holds for every plane graph G : if T appears in G and all triangles in G are contained in H_{T}, then there exists a 3 -coloring of G compatible with T. For an integer $r \geq 0$, an anomaly T is strongly locally extendable with margin r if for every plane graph G in that T appears so that all triangles of G are contained in H_{T}, and for every 4-face f of G at distance at least r from H_{T}, every 3-coloring ψ of the boundary of f extends to a 3 -coloring of G compatible with T.

The following anomalies are of interest for Theorems 1.2 and 1.3. Recall that the pattern of a 3 -coloring ψ is the set $\left\{\psi^{-1}(1), \psi^{-1}(2), \psi^{-1}(3)\right\}$.

- A single precolored vertex $\left(H_{T}\right.$ is a single vertex, B_{T} is empty and Φ_{T} consists of a coloring assigning to the vertex of H_{T} the prescribed color). This anomaly is locally extendable by Grötzsch' theorem. It is also strongly locally extendable with some margin, as we hypothesized in Conjecture 1.5 and was later proved in [16].
- A cycle of length at most 5 with a prescribed pattern of coloring (H_{T} is a (≤ 5)-cycle, B_{T} is empty and Φ_{T} consists of all 3-colorings of H_{T} with the prescribed pattern). This anomaly is locally extendable by Lemma 2.1. Furthermore, the same lemma implies that if the cycle has length 3, then the anomaly is strongly locally extendable with margin 0 .
- A vertex of degree at most 4 with neighborhood precolored by one color (H_{T} is a star with at most 4 rays, B_{T} contains the center of the star and Φ_{T} consists of all 3 -colorings of H_{T} which assign the prescribed color to the rays). This anomaly is locally extendable by the results of Gimbel and Thomassen [17] for degree at most 3 and Dvořák and Lidický [15] for degree 4 (given a vertex v of degree $k \leq 4$ with precolored neighborhood, split v into k vertices of degree two colored arbitrarily and extend the coloring of the resulting $2 k$-cycle).

Thus, both Theorem 1.2 and Theorem 1.3 are implied by the following general statement (which also shows that Conjecture 1.5 implies Conjecture 1.4), by letting C be the null graph, $p=5$ and $r=0$.

Theorem 5.1. For all integers $p \geq 1$ and $r \geq 0$, there exist constants $0<$ $d_{0}<d_{1}$ with the following property. Let G be a plane graph and let $\mathcal{T}=\left\{T_{i}\right.$: $1 \leq i \leq n\}$ be a set of locally extendable anomalies appearing in G, such that
$\left|V\left(H_{T_{i}}\right)\right| \leq p$ for $1 \leq i \leq n$. Let C be either the null graph or a facial cycle of G of length at most five, at distance at least $2 d_{0}$ from H_{T} for each $T \in \mathcal{T}$. Suppose that

- for $1 \leq i<j \leq n$, the distance between $H_{T_{i}}$ and $H_{T_{j}}$ in G is at least $2 d_{1}$,
- every triangle in G distinct from C is contained in H_{T} for some $T \in \mathcal{T}$, and
- if a separating 4-cycle K is at distance less than $2 d_{0}$ from H_{T} for some $T \in$ \mathcal{T}, then either K is contained in H_{T}, or T is strongly locally extendable with margin r.

Then, every 3-coloring of C extends to a 3-coloring of G compatible with all elements of \mathcal{T}.

Proof. For the function $f_{3.7}: \mathbb{N}^{2} \rightarrow \mathbb{N}$ from Lemma 3.7, let $d_{0}=\max \left(r, f_{3.7}(r+\right.$ $4, p))+1$ and $d_{1}=\max \left(2 d_{0}, f_{3.7}\left(2 d_{0}+3, p\right)\right)$. We will prove by induction on $|V(G)|$ that d_{0} and d_{1} satisfy the conclusion of the theorem.

Let G be as stated, let ψ be a 3-coloring of C, and assume for a contradiction that ψ does not extend to a 3-coloring of G compatible with all elements of \mathcal{T}. Let $\mathcal{S}=\left\{V\left(H_{T}\right): T \in \mathcal{T}\right\}, Z_{0}=\bigcup_{S \in \mathcal{S}} G[S]$ and $Z=C \cup Z_{0}$. For a set $X \subseteq V(G)$, let $\mathcal{T}[X]=\left\{T \in \mathcal{T}: V\left(H_{T}\right) \subseteq X\right\}$. Note that G is connected, as otherwise we can color each component of G separately by the induction hypothesis. Without loss of generality, we can assume that if C is not null, then it bounds the outer face of G. Hence, (G, \mathcal{S}, C) is a $2 d_{1}$-distant p-small internally triangle-free scene. Note also that if C is not null then C is an induced cycle, since otherwise a triangle containing a chord of C would be contained in H_{T} for some $T \in \mathcal{T}$ and the distance between H_{T} and C would be zero, contradicting the assumptions.

Suppose H is a clean joint in G vertex-disjoint from Z, with boundary faces f_{1} and f_{2} labelled so that the face of G bounded by C (if any) is contained in f_{1}. For $i \in\{1,2\}$, let G_{i}^{\prime} be the subgraph of G drawn in the closure of f_{i}. Then $\left|\mathcal{T}\left[V\left(G_{2}^{\prime}\right)\right]\right| \geq 2$ and H is at distance less than $2 d_{0}$ from H_{T} in G for some $T \in \mathcal{T}\left[V\left(G_{2}^{\prime}\right)\right]$.

Subproof. Suppose for a contradiction that either $\left|\mathcal{T}\left[V\left(G_{2}^{\prime}\right)\right]\right| \leq 1$ or H is at distance at least $2 d_{0}$ from every subgraph H_{T} with $T \in \mathcal{T}\left[V\left(G_{2}^{\prime}\right)\right]$.

For $i \in\{1,2\}$, let H_{i} be an $\left|f_{i}\right|$-cap with its non-special boundary cycle equal to the boundary of f_{i}, but otherwise disjoint from G_{i}^{\prime}, such that $\left|V\left(H_{i}\right)\right|<$ $|V(H)|$, which exists by Lemma 4.9. Let h_{i} be the special face of H_{i}. Let $G_{i}=G_{i}^{\prime}+H_{i}$. Note that the distance between any two elements of $\mathcal{S} \cup\{C\}$ in G_{i} is the same as the distance between them in G_{i}^{\prime}, which is greater or equal to their distance in G. By the induction hypothesis, ψ extends to a 3-coloring φ_{1} of G_{1} compatible with all the elements of $\mathcal{T}\left[V\left(G_{1}^{\prime}\right)\right]$. Consider the restriction of φ_{1} to H_{1}. Propositions 4.1 and 4.2 imply that $w_{\varphi_{1}}\left(f_{1}\right)+w_{\varphi_{1}}\left(h_{1}\right)=0$. Furthermore,
since h_{1} has length at most 5 , we have $w_{\varphi_{1}}\left(h_{1}\right)=0$ if $\left|h_{1}\right|=4\left(f_{1}\right.$ has even length) and $\left|w_{\varphi_{1}}\left(h_{1}\right)\right|=1$ if $\left|h_{1}\right|=5$ (f_{1} has odd length).

We now obtain a 3 -coloring φ_{2} of G_{2} compatible with all the elements of $\mathcal{T}\left[V\left(G_{2}^{\prime}\right)\right]$ such that $w_{\varphi_{2}}\left(h_{2}\right)=w_{\varphi_{1}}\left(f_{1}\right)$. Let C_{2} be the cycle bounding h_{2}.

- Suppose $\mathcal{T}\left[V\left(G_{2}^{\prime}\right)\right]=\emptyset$. Since h_{2}, h_{1}, and f_{1} have the same parity and $\left|w_{\varphi_{1}}\left(f_{1}\right)\right| \leq 1$, there exists a 3 -coloring ψ_{2} of C_{2} such that $w_{\psi_{2}}\left(h_{2}\right)=$ $w_{\varphi_{1}}\left(f_{1}\right)$. Since G_{2} is planar and triangle-free, ψ_{2} extends to a 3-coloring φ_{2} of G_{2} by Lemma 2.1.
- Suppose $\left|\mathcal{T}\left[V\left(G_{2}^{\prime}\right)\right]\right|=1$. Then there exists a 3 -coloring φ_{2}^{\prime} of G_{2} compatible with T by the local extendability of T. Let a and b be distinct colors such that the 3 -coloring $\varphi_{2}^{\prime \prime}$ obtained from φ_{2}^{\prime} by swapping the colors a and b is also compatible with T. Note that $w_{\varphi_{2}^{\prime}}\left(h_{2}\right)=-w_{\varphi_{2}^{\prime \prime}}\left(h_{2}\right)$, $\left|w_{\varphi_{2}^{\prime}}\left(h_{2}\right)\right| \leq 1$ and $w_{\varphi_{2}^{\prime}}\left(h_{2}\right)$ and $w_{\varphi_{1}}\left(f_{1}\right)$ have the same parity, and thus we can choose φ_{2} as one of φ_{2}^{\prime} and $\varphi_{2}^{\prime \prime}$.
- Suppose $\left|\mathcal{T}\left[V\left(G_{2}^{\prime}\right)\right]\right| \geq 2$, and thus H is at distance at least $2 d_{0}$ from every subgraph H_{T} with $T \in \mathcal{T}\left[V\left(G_{2}^{\prime}\right)\right]$. Choose ψ_{2} be an arbitrary 3coloring of C_{2} such that $w_{\psi_{2}}\left(h_{2}\right)=w_{\varphi_{1}}\left(f_{1}\right)$. The distance from C_{2} to any subgraph H_{T} with $T \in \mathcal{T}\left[V\left(G_{2}^{\prime}\right)\right]$ is also at least $2 d_{0}$, and thus by the induction hypothesis, ψ_{2} extends to a 3-coloring φ_{2} of G_{2} compatible with all elements of $\mathcal{T}\left[V\left(G_{2}^{\prime}\right)\right]$.

By Propositions 4.1 and 4.2 for H_{2}, we have $w_{\varphi_{2}}\left(f_{2}\right)=-w_{\varphi_{2}}\left(h_{2}\right)=-w_{\varphi_{1}}\left(f_{1}\right)$. By Corollary 4.8, the restriction of $\varphi_{1} \cup \varphi_{2}$ to the boundary cycles of f_{1} and f_{2} extends to a 3 -coloring φ_{3} of H. Consequently, the restriction of φ_{1} to G_{1}^{\prime}, the restriction of φ_{2} to G_{2}^{\prime}, and φ_{3} together give a 3-coloring of G extending ψ and compatible with all the elements of \mathcal{T}. This is a contradiction.

We may assume, by taking a subgraph of G, that ψ extends to a 3-coloring compatible with all elements of \mathcal{T} for every proper subgraph of G that includes Z. Using the fact that G is connected, we have $G \neq Z$, as otherwise either $\mathcal{T}=\emptyset, G=C$, and the claim is trivial, or C is the null graph and $|\mathcal{T}|=1$ and the claim follows by the local extendability of the anomaly in \mathcal{T}. Consequently, G is Z-critical.

If K is a separating (≤ 5)-cycle and Δ_{K} is the open disk in the plane bounded by K, then at least one vertex or edge of Z is drawn in Δ_{K}, since G is Z-critical and every 3 -coloring of a (≤ 5)-cycle extends to a 3 -coloring of a triangle-free planar graph by Lemma 2.1. We claim that
if K is a separating cycle of length at most five in G, then K is at distance less than $2 d_{0}$ from Z_{0}. Furthermore, if $|K| \leq 4$ and K is S-private for some $S \in \mathcal{S}$, then the distance between K and S is less than r.

Subproof. Without loss of generality, we can assume that K does not have a chord e drawn in Δ_{K}; otherwise, e is contained in a triangle, and thus K
intersects Z_{0}, and moreover, if $|K|=4$ and K is S-private, then one of the triangles in $K+e$ is S-private and we can consider it instead of K.

Suppose that for some anomaly $T \in \mathcal{T}, H_{T}$ intersects Δ_{K} but is not contained in Δ_{K}. Since K does not have a chord drawn in Δ_{K}, a vertex of H_{T} is drawn in Δ_{K}, and thus if K is S-private, then $S=V\left(H_{T}\right)$. Since H_{T} is not contained in Δ_{K}, it follows that K is at distance 0 from H_{T}, and the claim follows.

Let G_{1} be the subgraph of G drawn in the complement of Δ_{K} and G_{2} the subgraph drawn in the closure of Δ_{K}. By the previous paragraph, we can assume the sets $\mathcal{T}_{1}=\mathcal{T}\left[V\left(G_{1}\right)\right]$ and $\mathcal{T}_{2}=\mathcal{T}\left[V\left(G_{2}\right) \backslash V(K)\right]$ partition \mathcal{T}. By the induction hypothesis, G_{1} has a 3-coloring φ_{1} extending ψ and compatible with all elements of \mathcal{T}_{2}. Since ψ does not extend to a 3 -coloring of G compatible with all elements of \mathcal{T}, it follows the restriction of φ_{1} to K does not extend to a 3-coloring of G_{2} compatible with all elements of \mathcal{T}_{2}. By the induction hypothesis, we conclude that K is at distance less than $2 d_{0}$ from H_{T} for some element $T \in \mathcal{T}_{1}$.

Furthermore, if K is S-private for some $S \in \mathcal{S}$, then $\mathcal{T}_{1}=\{T\}$ and $S=$ $V\left(H_{T}\right)$. If K is a triangle, then since K is at distance less then $2 d_{0}$ from H_{T}, the assumptions of this lemma imply $K \subseteq H_{T}$. If K is a 4-cycle not contained in H_{T}, then the assumptions of this lemma imply H_{T} is strongly locally extendable with margin r, and thus the distance between K and S is at most r since the restriction of φ_{1} to K does not extend to a 3-coloring of G_{2} compatible with T.

In particular, the scene (G, \mathcal{S}, C) contains no r-distant private 4 -cycles. We now consider 4 -faces of G.

Let f be a 4-face of G at distance at least $2 d_{0}+3$ from Z_{0}. If f is not bounded by C, then f is S-tight for a unique set $S \in \mathcal{S}$ at distance at most $d_{1}-1$ from f.

Subproof. Let the vertices of f be numbered $u_{1}, u_{2}, u_{3}, u_{4}$ in order. By (5), no vertex of f is contained in a separating 4 -cycle. Since additionally C is an induced cycle if it is not null, the intersection of the boundary of f with C is a path of length at most two.

If the intersection contains three vertices, say u_{1}, u_{2} and u_{3}, then note that u_{2} has degree two. Consider the graph $G-u_{2}$ and color u_{4} by $\psi\left(u_{2}\right)$. By the induction hypothesis, this coloring extends to a 3 -coloring of $G-u_{2}$ compatible with all elements of \mathcal{T}, which also gives a 3-coloring of G extending ψ and compatible with all elements of \mathcal{T}, a contradiction.

Therefore, we can assume that $u_{3}, u_{4} \notin V(C)$. Note that $u_{1} u_{2} u_{3}$ and $u_{1} u_{4} u_{3}$ are the only paths of length at most three joining u_{1} with u_{3}, as otherwise, since f is at distance at least $2 d_{0}+3$ from Z_{0}, G would contain a separating (≤ 5)cycle contradicting (5). Let G_{13} be the graph obtained from G by identifying u_{1} and u_{3} and suppressing parallel edges, and observe that G_{13} contains no new
triangles. Furthermore, C as well as every new separating 4-cycle in G_{13} is at distance at least $2 d_{0}$ from Z_{0}. Let G_{24} be defined analogously.

If G_{13} or G_{24} satisfies the assumptions of Theorem 5.1, then it has a 3coloring extending ψ and compatible with all elements of \mathcal{T} by induction, which would give such a 3-coloring of G. Otherwise, both G_{13} and G_{24} contain a pair of anomalies at distance at most $2 d_{1}-1$ from each other, and thus f is S-tight for a unique $S \in \mathcal{S}$ at distance at most $d_{1}-1$ from f by Lemma 3.1.

Therefore, the scene (G, \mathcal{S}, C) is $\left(2 d_{0}+3, d_{1}\right)$-tight. If $|\mathcal{S}| \geq 2$, then the choice of d_{1} and Lemma 3.7 implies G contains a clean joint vertex-disjoint from C whose vertices are at distance at least $2 d_{0}+3$ and at most $d_{1}-1$ from some element $S \in \mathcal{S}$. By (4), H is at distance less than $2 d_{0}$ from some element $S^{\prime} \in \mathcal{S}$, necessarily distinct from S. But then the distance between S and S^{\prime} is less than $d_{1}+2 d_{0}-1 \leq 2 d_{1}$, contradicting the assumptions of this lemma.

Therefore, $|\mathcal{S}| \leq 1$. If $\mathcal{S}=\emptyset$, then ψ extends to a 3 -coloring of G by Lemma 2.1. Therefore, we can assume that $|\mathcal{S}|=1$; let $\mathcal{S}=\{S\}$ and $\mathcal{T}=\{T\}$. If C is the null graph, then G has a 3 -coloring compatible with T, since T is locally extendable. Hence, suppose that C is a (≤ 5)-cycle. By (5) and the assumptions of this theorem, if T is not strongly locally extendable with margin r, then all separating 4-cycles of G are contained in H_{T}.

Let f be a 4-face of G at distance at least $r+4$ and at most $d_{0}-1$ from S. If f is not S-tight, then f is attached to $a(\leq 6)$-cycle separating S from C.

Subproof. Let the vertices of f be numbered $u_{1}, u_{2}, u_{3}, u_{4}$ in order. For $i \in$ $\{1,2\}$, let $G_{i(i+2)}$ the graph obtained from G by identifying u_{i} with u_{i+2} to a new vertex z_{i} and suppressing parallel edges. If the distance between S and C in both G_{13} and G_{24} is less than $2 d_{0}$, then Lemma 3.1 applied to $(G,\{S, C\}, \varnothing)$ implies f is S-tight. Hence, we can assume that the distance between S and C in G_{13} is at least $2 d_{0}$.

Suppose there exists a triangle in G_{13} not contained in H_{T}, which was necessarily created by identification of u_{1} with u_{3}. Then G contains a 5 -cycle $K=u_{1} u_{2} u_{3} x y$. Since G is Z-critical, u_{2} has degree at least three, and thus K does not bound a face. Lemma 2.1 implies that K separates S from C, and thus the conclusion of the claim holds since f is attached to K. Therefore, we can assume every triangle in G_{13} is contained in H_{T}.

Since ψ does not extend to a 3-coloring of G compatible with T, ψ also does not extend to a 3 -coloring of G_{13} compatible with T. Let G_{13}^{\prime} be a minimal subgraph of G_{13} containing C and H_{T} such that ψ does not extend to a 3coloring of G_{13}^{\prime} compatible with T. It follows that the induction hypothesis cannot apply to G_{13}^{\prime}, and thus T is not strongly locally extendable with margin r and there exists a separating 4-cycle K^{\prime} in G_{13}^{\prime} not contained in H_{T}, which was necessarily created by the identification of u_{1} with u_{3}. The minimality of G_{13}^{\prime} and Lemma 2.1 imply that K^{\prime} separates S from C. Let K be the cycle in
G obtained from K^{\prime} by replacing z_{1} by the path $u_{1} u_{2} u_{3}$. Then f is attached to the 6 -cycle K separating S from C.

Therefore, the scene (G, \mathcal{S}, C) is $\left(r+4, d_{0}-1\right)$-tight. Since the distance between S and C is at least $2 d_{0}>d_{0}-2$, Lemma 3.7 and the choice of d_{0} implies H contains a clean joint vertex-disjoint from Z. Since $|\mathcal{T}|=1$, this contradicts (4) and finishes the proof.

References

[1] Aksionov, V. A. On continuation of 3-colouring of planar graphs. Diskret. Anal. Novosibirsk 26 (1974), 3-19. In Russian.
[2] Aksionov, V. A., and Mel'nikov, L. S. Some counterexamples associated with the Three Color Problem. J. Combin. Theory, Ser. B 28 (1980), 1-9.
[3] Albertson, M. O. You can't paint yourself into a corner. J. Combin. Theory, Ser. $B 73,2$ (1998), 189-194.
[4] Borodin, O. V. Irreducible graphs in the Grünbaum-havel 3-colour problem. Discrete Math. 159 (1996), 247-249.
[5] Borodin, O. V. A new proof of Grünbaum's 3 color theorem. Discrete Math. 169 (1997), 177-183.
[6] Borodin, O. V., Dvořák, Z., Kostochka, A., Lidický, B., and Yancey, M. Planar 4-critical graphs with four triangles. European J. Combin. 41 (2014), 138-151.
[7] Borodin, O. V., Glebov, A. N., and Jensen, T. R. A step towards the strong version of Havel's three color conjecture. J. Comb. Theory Ser. B 102, 6 (2012), 1295-1320.
[8] Borodin, O. V., and Raspaud, A. A sufficient condition for a planar graph to be 3-colorable. J. Combin. Theory, Ser. B 88 (2003), 17-27.
[9] DvořÁk, Z. 3-choosability of planar graphs with (≤ 4)-cycles far apart. Journal of Combinatorial Theory, Series B 104 (2014), 28-59.
[10] Dvořák, Z., Kawarabayashi, K., and Thomas, R. Three-coloring triangle-free planar graphs in linear time. Trans. on Algorithms 7 (2011), article no. 41.
[11] Dvořák, Z., Král', D., and Thomas, R. Coloring planar graphs with triangles far apart. ArXiv $0911.0885 v 1$ (Nov. 2009).
[12] Dvořák, Z., Král', D., and Thomas, R. Three-coloring triangle-free graphs on surfaces III. Graphs of girth five. ArXiv 1402.4710 (Feb. 2014).
[13] Dvořák, Z., Král', D., and Thomas, R. Three-coloring triangle-free graphs on surfaces IV. Bounding face sizes of 4 -critical graphs. ArXiv 1404.6356v3 (May 2015).
[14] Dvořák, Z., Král', D., and Thomas, R. Three-coloring trianglefree graphs on surfaces VI. 3-colorability of quadrangulations. ArXiv 1509.01013 (Sept. 2015).
[15] Dvořák, Z., AND Lidický, B. 3-coloring triangle-free planar graphs with a precolored 8-cycle. J. Graph Theory 80 (2015), 98-111.
[16] Dvořák, Z., and Lidický, B. Fine structure of 4-critical triangle-free graphs II. Planar triangle-free graphs with two precolored 4-cycles. SIAM J. Discrete Math. 31 (2017), 865-874.
[17] Gimbel, J., and Thomassen, C. Coloring graphs with fixed genus and girth. Trans. Amer. Math. Soc. 349 (1997), 4555-4564.
[18] Gröтzsch, H. Ein Dreifarbensatz für dreikreisfreie Netze auf der Kugel. Math.-Natur. Reihe 8 (1959), 109-120.
[19] Grünbaum, B. Grötzsch's theorem on 3-colorings. Michigan Math. J. 10 (1963), 303-310.
[20] Havel, I. On a conjecture of B. Grünbaum. J. Combin. Theory, Ser. B 7 (1969), 184-186.
[21] Havel, I. O zbarvitelnosti rovinných grafů třemi barvami. Mathematics (Geometry and Graph Theory) (1970), 89-91.
[22] Montassier, M. The 3-color problem. http://www.lirmm.fr/ ~montassier/index.php?n=Site.ThreeColorProblem.
[23] Postle, L., and Thomas, R. Hyperbolic families and coloring graphs on surfaces. Transactions of the American Mathematical Society, Series B 5 (2018), 167-221.
[24] Thomas, R., and Walls, B. Three-coloring Klein bottle graphs of girth five. J. Combin. Theory, Ser. B 92 (2004), 115-135.
[25] Thomassen, C. Many 3-colorings of triangle-free planar graphs. J. Combin. Theory, Ser. B 97 (2007), 334-349.
[26] Tutte, W. A contribution on the theory of chromatic polynomials. Canad. J. Math. 6 (1954), 80-91.

[^0]: *A preprint of an earlier version of this paper appeared (under different title) as [11].
 ${ }^{\dagger}$ Computer Science Institute (CSI) of Charles University, Malostranské náměstí 25, 118 00 Prague, Czech Republic. E-mail: rakdver@iuuk.mff.cuni.cz. Supported by the Center of Excellence - Inst. for Theor. Comp. Sci., Prague, project P202/12/G061 of Czech Science Foundation and by project LH12095 (New combinatorial algorithms - decompositions, parameterization, efficient solutions) of Czech Ministry of Education.
 ${ }^{\ddagger}$ Faculty of Informatics, Masaryk University, Botanická 68A, 60200 Brno, Czech Republic, and Mathematics Institute, DIMAP and Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK. E-mail: dkral@fi.muni.cz
 §School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332. E-mail: thomas@math.gatech.edu. Partially supported by NSF Grants No. DMS-0739366 and DMS1202640.

