6 research outputs found

    1D Camera Geometry and Its Application to Circular Motion Estimation

    Full text link

    1D camera geometry and its application to the self-calibration of circular motion sequences

    Get PDF
    This paper proposes a novel method for robustly recovering the camera geometry of an uncalibrated image sequence taken under circular motion. Under circular motion, all the camera centers lie on a circle and the mapping from the plane containing this circle to the horizon line observed in the image can be modelled as a 1D projection. A 2×2 homography is introduced in this paper to relate the projections of the camera centers in two 1D views. It is shown that the two imaged circular points of the motion plane and the rotation angle between the two views can be derived directly from such a homography. This way of recovering the imaged circular points and rotation angles is intrinsically a multiple view approach, as all the sequence geometry embedded in the epipoles is exploited in the estimation of the homography for each view pair. This results in a more robust method compared to those computing the rotation angles using adjacent views only. The proposed method has been applied to self-calibrate turntable sequences using either point features or silhouettes, and highly accurate results have been achieved. © 2008 IEEE.published_or_final_versio

    Self-calibration of turntable sequences from silhouettes

    Get PDF
    This paper addresses the problem of recovering both the intrinsic and extrinsic parameters of a camera from the silhouettes of an object in a turntable sequence. Previous silhouette-based approaches have exploited correspondences induced by epipolar tangents to estimate the image invariants under turntable motion and achieved a weak calibration of the cameras. It is known that the fundamental matrix relating any two views in a turntable sequence can be expressed explicitly in terms of the image invariants, the rotation angle, and a fixed scalar. It will be shown that the imaged circular points for the turntable plane can also be formulated in terms of the same image invariants and fixed scalar. This allows the imaged circular points to be recovered directly from the estimated image invariants, and provide constraints for the estimation of the imaged absolute conic. The camera calibration matrix can thus be recovered. A robust method for estimating the fixed scalar from image triplets is introduced, and a method for recovering the rotation angles using the estimated imaged circular points and epipoles is presented. Using the estimated camera intrinsics and extrinsics, a Euclidean reconstruction can be obtained. Experimental results on real data sequences are presented, which demonstrate the high precision achieved by the proposed method. © 2009 IEEE.published_or_final_versio

    1d camera geometry and its application to circular motion estimation

    Get PDF
    This paper describes a new and robust method for estimating circular motion geometry from an uncalibrated image sequence. Under circular motion, all the camera centers lie on a circle, and the mapping of the plane containing this circle to the horizon line in the image can be modelled as a 1D projection. A 2 × 2 homography is introduced in this paper to relate the projections of the camera centers in two 1D views. It is shown that the two imaged circular points and the rotation angle between the two views can be derived directly from the eigenvectors and eigenvalues of such a homography respectively. The proposed 1D geometry can be nicely applied to circular motion estimation using either point correspondences or silhouettes. The method introduced here is intrinsically a multiple view approach as all the sequence geometry embedded in the epipoles is exploited in the computation of the homography for a view pair. This results in a robust method which gives accurate estimated rotation angles and imaged circular points. Experimental results are presented to demonstrate the simplicity and applicability of the new method.

    3D object reconstruction using computer vision : reconstruction and characterization applications for external human anatomical structures

    Get PDF
    Tese de doutoramento. Engenharia Informática. Faculdade de Engenharia. Universidade do Porto. 201
    corecore