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Abstract

This paper describes a new and robust method for estimating circular mo-
tion geometry from an uncalibrated image sequence. Under circular motion,
all the camera centers lie on a circle, and the mapping of the plane containing
this circle to the horizon line in the image can be modelled as a 1D projec-
tion. A 2×2 homography is introduced in this paper to relate the projections
of the camera centers in two 1D views. It is shown that the two imaged
circular points and the rotation angle between the two views can be derived
directly from the eigenvectors and eigenvalues of such a homography respec-
tively. The proposed 1D geometry can be nicely applied to circular motion
estimation using either point correspondences or silhouettes. The method in-
troduced here is intrinsically a multiple view approach as all the sequence
geometry embedded in the epipoles is exploited in the computation of the
homography for a view pair. This results in a robust method which gives
accurate estimated rotation angles and imaged circular points. Experimental
results are presented to demonstrate the simplicity and applicability of the
new method.

1 Introduction

In computer vision and computer graphics, a CCD camera is commonly modelled as a 2D
projective device. On the other hand, many imaging systems using laser beams, infra-red
or ultra-sound act only on a source plane, and can be modelled as a 1D projective device.
Many work has been done to solve the structure and motion problem for both calibrated
and uncalibrated 1D projective cameras [2, 11, 5]. It has been shown that under some
special situations, a 2D camera model can be reduced to a 1D camera to simplify the
vision problem. For instance, Faugeras et al. reduced 2D images under planar motion to
the trifocal line images and derived a simple solution for self-calibration [5].

This paper considers the problem of circular motion estimation. Circular motion can
be viewed as a special kind of planar motion, in which the camera rotates around a fixed
axis with the object remaining stationary. Under this setup, all the camera centers lie on
a circle, which is the trajectory of the rotating camera center. The projection of the plane
containing the camera centers onto the image plane gives a line known as thehorizon. It
follows that the images of the camera centers (i.e., the epipoles) must all lie on this line.
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This results in a 1D projective geometry which will be exploited here to solve the motion
problem. In this paper, a2×2 homography is introduced to relate the projections of the
camera centers in two views. It will be shown that both the imaged circular points and the
rotation angle between these two views can be extracted directly from this homography
simultaneously. This proposed geometry can ease the job of circular motion estimation.

Many studies have been conducted for circular motion [10, 6, 7, 9, 12, 14]. Traditional
method obtained the rotation angles by careful calibration [10]. In [6], Fitzgibbon et al.
developed a method to handle the case of uncalibrated camera with unknown rotation an-
gles based on a projective reconstruction. Their method requires tracking points in 2 and
3 views, respectively, for estimating the fundamental matrices and the trifocal tensors.
This method was further extended by Jiang et al. in [7], where the computation of the tri-
focal tensor is avoided. However, their method requires tracking a minimum of 2 points
in 4 images. An alternative approach is to exploit the silhouettes of the object. In [12],
Wong and Cipolla proposed a method which requires 2 outer epipolar tangents. Their
method involves a nonlinear optimization in a high dimensional space, and requires the
knowledge of camera intrinsics. In [9], Mendonça et al. proposed to recover the structure
and motion in several steps, each of which only involves a low dimensional optimization.
However, the camera intrinsics are still required in the procedure for recovering the rota-
tion angles and the subsequent Euclidean reconstruction. The work in [14] is an extension
of Mendonça’s method, and it removes the requirement of known camera intrinsics. How-
ever, the computation of each rotation angle in this method only involves 3 views, which
sometimes results in bad estimation.

Our proposed 1D geometry can be nicely applied to solve the circular motion problem
using either point correspondences or silhouettes. The key point is to obtain the epipoles
of all the view pairs. For the former case, the epipoles can be extracted from the funda-
mental matrices computed from point correspondences. Due to the special form of the
fundamental matrix under circular motion, after obtaining one fundamental matrix using
general methods, the minimum data required to compute the fundamental matrix for an-
other view pair is only one point correspondence. It is evident that our method is more
flexible than the approach proposed in [7] in that it requires no tracking of point in sev-
eral images. Further, our method converts the geometry embedded in the corresponding
points to the epipoles, and nicely exploits them in motion recovery. As for the silhouette-
based motion estimation, our method can be directly integrated with the work of [9]. The
advantage of our method over the existing one is that it is intrinsically a multiple view
approach as all geometric information from the whole sequence is nicely exploited.

This paper is organized as follows. Section 2 briefly reviews the 1D camera model.
The 1D homography relating two views in the circular motion is introduced in Section
3. Section 4 illustrates the application of our proposed method to circular motion. Ex-
periments on 3 sequences are presented in Section 5, followed by a short conclusion in
Section 6.

2 1D Projective Camera

This section gives a short review of the 1D camera model (see [5]). Similar to a 2D
projective camera which projects a point inP3 to a point inP2, a 1D camera maps a
point inP2 to a point inP1. A 1D camera can be modelled by a2×3 matrix [5] in the
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Figure 1: (a) The relative positions of a 1D camera and the pointsX andX′ in the coor-
dinate system. (b) Special setup ofX andX′ in the coordinate system whereX′ overlaps
with the camera center.

form
P = K

(
R t

)
, (1)

whereK =
(

f u0
0 1

)
is the calibration matrix with focal lengthf and principle point

u0, andR andt are the rotation matrix and translation vector.R can be expressed as

R =
(

cosθ sinθ
−sinθ cosθ

)
.

The scene space for a 1D camera is a projective plane, and the two circular pointsI andJ
on the line at infinityl∞ are invariant under any similarity transformation. Similarly to the
2D camera case where the image of the absolute conic can be expressed in terms of the
intrinsic parameters, the imaged circular pointsi and j can be expressed in terms of the
intrinsic parameters of a 1D camera. The expression ofj follows directly by projecting
the circular pointJ = ( j 1 0 )T onto the image plane:

j =
(

f uo
0 1

)
( R t )




j
1
0


 = e−jθ

(
u0+ j f

1

)
. (2)

Equation (2) shows thatj can be formulated in terms of the camera intrinsicsf and
u0. The real part of the ratio of the two components isu0 and the imaginary part is the
focal lengthf .

3 1D Homography in Circular Motion

Suppose the world coordinates and the camera position are as in Fig. 1(a). The projection
matrix is given byP = KR

(
I t

)
, wheret = ( 0 1 )T.

Proposition 1: The 2D pointsX, X′ and the camera center are on a circle, as shown in
Fig. 1(a). The rotation angle of the two points with respect to the center of the circle isθ .
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Their projectionsu′ andu in the image are related by a 1D homographyH as follows

u′ = Hu = KR(
θ
2

)K−1u. (3)

If X′ overlaps with the camera center as illustrated in Fig. 1(b), its expression in (3) is
the vanishing pointv of the X-axis direction. The formula for the special case in Fig. 1(b)
is v = Hu.
Proof: Image pointu can be expressed as

u = PX

= KR
(

sinφ
cosφ +1

)

= KR
(

tanφ
2

1

)
. (4)

Similarly the image pointu′ can be expressed asu′ = KR
(

tan( θ+φ
2 )

1

)
. Since

tan( θ+φ
2 ) = tanθ

2 +tanφ
2

1−tanθ
2 tanφ

2

, the above equation can be rewritten as

u′ = KR

(
tanθ

2 + tanφ
2

1− tanθ
2 tanφ

2

)

= KR
(

1 tanθ
2

− tanθ
2 1

)(
tanφ

2
1

)

= KR
(

cosθ
2 sin θ

2
−sin θ

2 cosθ
2

)(
tanφ

2
1

)

= KR ·R(
θ
2

)
(

tanφ
2

1

)
. (5)

Substituting (4) into (5) gives

u′ = KR ·R( θ
2 ) ·R−1K−1u

= KR( θ
2 )K−1u.

The special case whereX′ overlaps with the camera center can be proved in a similar
manner.

Note that the eigenvalues ofH are{e− j θ
2 ,ej θ

2 }, which are functions of the rotation
angleθ , and the eigenvectors are the two imaged circular pointsi andj . H has only three
degrees of freedom,which indicates that only 3 constraints are required to determine it
uniquely.

4 Application of the 1D Homography to Circular
Motion Estimation

Circular motion refers to the case of a stationary camera viewing an object rotating around
an axis, or a camera rotating around an axis with the object being stationary. These two
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Figure 2:(a) Two views and one point configuration. View 2 is obtained by rotating view 1 by an
angle ofθ . (b) One view and two points configuration. The setup ofX′ and the camera is the same
as in (a).

cases are geometrically equivalent and the rotating camera case is used here for the ease
of explanation. As mentioned in Section 1, all the camera centers should lie on a circle,
and the projection of the plane containing this circle onto the image plane can be modeled
by a 1D camera projection.

Consider the projection of one camera centerX′ into two views, as shown in Fig. 2(a).
The rotation angle between the two views isθ . It is easy to see that the projection ofX′
in view 2 in Fig. 2(a) is equivalent to the projection ofX in view 1 in Fig. 2(b) where the
rotation angle betweenX andX′ is θ . FromProposition 1, u andu′ satisfies

u′ = Hu,

whereH = KR( θ
2 )K−1. It indicates that one such pair ofu andu′ induced by a camera

centerX′ provides a constraint on the homographyH relating a pair of views. In practice,
there are many images taken under circular motion. There should be enough constraints
for estimatingH relating any pair of views. The rotation angle and the imaged circular
points can thus be recovered easily from the eigenvalues and eigenvectors ofH.

Now let’s focus on the minimum data requirement for computingH relating a view
pair. Consider two views, if the vanishing pointv as illustrated inProposition 1 is known,
the two epipoles andv together can provide 2 constraints onH independently. Under this
situation, one more constraint provided by another view is enough to determineH. This
should be the minimum data required for determiningH. The computation ofH only
involves 3 views, which is the same as the work in [1]. Practically,H relating any view
pair can be computed more accurately by incorporating constraints induced by as many
views as possible.

4.1 Acquisition of Epipoles from Point Correspondences

Previous section describes how the proposed 1D homography can be used to solve the
circular motion problem. In this section, we will discuss how to compute this homography
from the images. The key point here is to get the epipoles from the view pairs. Since the
epipoles can be extracted from the fundamental matrices, the computation of epipoles
relating any pair of views is equivalent to computing the associated fundamental matrix.
In this section, we will summarize the idea on how to compute epipoles in an elegant
algebraic description resulting in a concise computational algorithm using the information
of point correspondences.
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The projective geometry of circular motion has been nicely studied by Fitzgibbon et
al. [6]. There are a number of fixed features under circular motion. The fundamental
matrixF can be parameterized in terms of these fixed features as [6]

F = [vx]×+ktan
θ
2

(lslTh + lhlTs ). (6)

where the fixed featuresvx, lh andls are scaled to unit norm andk is an unknown scalar
which is fixed throughout the sequence.ls is the image of the rotation axis, andlh is the
vanishing line of the horizontal plane and also the image line of the plane containing the
camera centers.vx is the vanishing point of the normal direction of the planeπd defined
by the camera center and the rotation axis. Besides, the two imaged circular points onlh
are also fixed features which are to be recovered from the proposed 1D homography.

Equation (6) reveals that the fundamental matrix relating different view pairs can be
obtained by changing the scalarktanθ

2 , with θ being the rotation angle between the cho-
sen views. Given a fundamental matrixF̂ relating a particular view pair, the fixed features
vx, ls andlh can be obtained by decomposingF̂ [6]. With the resultingvx, ls andlh, only a
minimum of one point correspondence is needed to compute the fundamental matrix re-
lating any two views in the sequence. This makes the computation of fundamental matrix
with largeθ possible. Note that the computation of epipoles here requires no point to be
tracked over several images, as opposed to the method in [7] which requires 2 points be-
ing available in 4 images. Based on the above analysis, a simple algorithm is developed,
which is summarized below:

1. Compute one fundamental matrix from any two given views. The two selected
views should be as distant as possible while sharing enough corresponding points.

2. Decompose the fundamental matrix obtained in step 1 into the form of (6) to get
vx, ls andlh.

3. Compute the fundamental matrices relating other view pairs using corresponding
points. Extract the epipoles from the fundamental matrices.

4. Compute the 1D homographyH for each neighboring view pair from the epipoles.
Recover the rotation angles and imaged circular points from the eigenvalues and
eigenvectors ofH.

4.2 Acquisition of Epipoles from Silhouettes

In [9], Mendonça et al. demonstrated that the epipoles relating any pair of views can
be computed by using the information of silhouettes. The degenerate case happens only
whenlh passes through the silhouettes and the rotation angle from two views are close to
π. Hence, the geometric information from the whole sequence can be nicely exploited in
the computation ofH relating a pair of views. In this section, we will briefly summarize
the algorithm as described in [9].

Consider a pair of camera matricesP1 andP2 with epipoleei , formed in the image of
cameraPi . The fundamental matrix under circular motion can be written in a plane plus
parallax representation, given by

F = [e2]×W, (7)
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whereW = I −2vxlT
s

vT
x ls

is the homography induced by the planeΠW that contains the axis

of rotation and bisects the line segment joining the 2 camera centers [9]. Note thatW is
also the harmonic homology associated with image of the surface of revolution swept by
the rotating object [13]. The imaged rotation axisls becomes the image of the axis of the
surface of revolution. It has been shown in [9] that given a dense image sequence taken
under complete circular motion, say that the rotation angles are about5◦, the imaged
envelope, obtained by overlapping all the images, can be viewed as an imaged surface of
revolution. As indicated in [13], the associated harmonic homologyW or equivalently
ls and vx can be estimated from this imaged surface of revolution by intersecting the
bitangents to the image profile.

SinceW satisfiesW = W−1, it follows that the corresponding epipolar linesl1 andl2
are mapped byWT mutually, as

l2 = WT l1. (8)

Note that the outer epipolar tangents are special epipolar lines in that they are tangent
to the silhouettes of the object. This geometric constraint together with (8) makes the
computation of the two outer epipolar tangents possible. The search for one outer epipolar
tangent proceeds as a one-dimensional optimization of its orientation (see [9] for details).
The epipoles can be directly computed as the intersection of the two recovered outer
epipolar tangents, andlh can then be obtained by robustly fitting a line to these estimated
epipoles. Finally, the epipoles can be refined by constraining them to lie onlh. Given the
epipoles, the 1D homography can be recovered and the solution to the motion problem
follows.

5 Experimental Results

The new method of computing rotation angles and imaged circular points from 1D projec-
tive geometry is implemented and tested using both the information of point correspon-
dences and silhouettes, respectively.

5.1 Point-Based Experiment

The sequence tested is the popular dinosaur sequence from the University of Hannover.
It contains 36 images taken under circular motion with a constant rotation angle of10◦.
The angular accuracy is about0.05◦ [10].

The fundamental matrixF from the 7th and 10th images was computed to extract the
fixed features. To improve the antinoise ability, robust linear regression algorithm was
exploited to estimate the homograhy. Since the 1D imaged circular points(a± jb,1)T

should be fixed over the sequence, they were estimated from the histograms of the com-
ponentsa andb obtained by randomly selecting the view pairs in the computation of the
1D homography, as shown in Fig. 3. The distributions are close to a Gaussian distribution.
Note that the best solutions are very distinct which are denoted by the dashed lines. The
final computed results of the 2D imaged circular points are(254.2±3193.6 j,−1159.5∓
93.04j,1)T.

To get the best solution of each rotation angle, the optimized imaged circular points
were exploited. Note that the 1D homographyH relating a view pair has only 3 degrees
of freedom. This number is far less than the constraints onH provided by the projections
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Figure 3:Histogram ofa andb which are the coordinates of the 1D imaged circular points(a±
jb,1)T. The dashed lines indicate the best solutions computed.

Figure 4:(a) Recovered rotation angles for the dinosaur sequence. (b) Recovered rotation angles
for the David sequence.

of other camera centers. For a pair of neighboring views,H was computed many times,
each time with a portion of the constraints randomly selected from the whole set. The
homography that gives the imaged circular points closest to the optimized one was taken
as the best solution. The rotation angle was then extracted from it. Figure 4(a) gives the
recovered angles for the whole sequence. The RMS error is0.117◦, which indicates the
estimation was very good. Assuming that the camera satisfies unit aspect ratio and zero-
skew restriction, the intrinsics of the camera were estimated from the imaged circular
points and the constraints provided byls andvx [4]. The visual hull of the dinosaur were
computed as in [8], and three views of the 3D model are shown in Fig. 5.

5.2 Silhouette-Based Experiment

In this experiment, the silhouettes are represented by the Cubic B-spline snake [3]. It
provides a compact representation of silhouettes of various complexity, and can achieve
sub-pixel localization accuracy. The epipoles were estimated using the method as de-
scribed in Section 4.2. After obtaining the epipoles, the remaining steps are similar to the
point-based experiment.

Experiment on a David sequence was carried out to test the applicability of our pro-
posed approach. The sequence consists of 72 images with a resolution of800× 531,
acquired with an electronic turntable. The rotation angle between successive views is5◦
with a resolution of0.2◦. Figure 6 shows two selected images. The distributions of the
histograms on the estimated components of the 1D circular points are similar to those
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Figure 5:3D reconstruction of the dinosaur using motion estimated from point correspondences.

Figure 6:Two images of David under circular motion.

of the dinosaur sequence. Due to space limit, it is not shown here. In the procedure of
rotation angle estimation and 3D reconstruction, a subsequence of 36 views were selected
from the whole set with a rotation angle of10◦. The estimated rotation angles are shown
in Fig. 4(b), with a RMS error of0.21◦. Some views of the 3D model constructed are
shown in Fig. 7. The experiments on other sequences were also performed, and the results
were impressive.

6 Conclusion

In this paper, we have introduced a 1D homography between two 1D projective cameras,
induced by the points lying on a circle passing through the two camera centers. We have
shown that the eigenvectors of such a homography are the imaged circular points and the
rotation angle between the two cameras with respect to the center of the circle can be
extracted from the eigenvalues of the homography.

We have demonstrated that this 1D geometry can be nicely applied to circular motion
estimation. Circular motion is a special kind of planar motion with all the camera centers
lying on a circle. This configuration exactly satisfies the requirement of the proposed 1D
geometry. Experiments using both point correspondences and silhouettes, respectively,
demonstrate that the recovered rotation angles achieve a very high precision. This is
because that the algorithm efficiently and effectively exploits the underlying multiple view
information. The high quality of the reconstructed models demonstrates the practicality
of our work.
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Figure 7:3D reconstruction of David using motion estimated from silhouettes.
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