145 research outputs found

    Urban Anomaly Analytics: Description, Detection, and Prediction

    Get PDF
    Urban anomalies may result in loss of life or property if not handled properly. Automatically alerting anomalies in their early stage or even predicting anomalies before happening is of great value for populations. Recently, data-driven urban anomaly analysis frameworks have been forming, which utilize urban big data and machine learning algorithms to detect and predict urban anomalies automatically. In this survey, we make a comprehensive review of the state-of-the-art research on urban anomaly analytics. We first give an overview of four main types of urban anomalies, traffic anomaly, unexpected crowds, environment anomaly, and individual anomaly. Next, we summarize various types of urban datasets obtained from diverse devices, i.e., trajectory, trip records, CDRs, urban sensors, event records, environment data, social media and surveillance cameras. Subsequently, a comprehensive survey of issues on detecting and predicting techniques for urban anomalies is presented. Finally, research challenges and open problems as discussed.Peer reviewe

    EdgeSense: Edge-Mediated Spatial-Temporal Crowdsensing

    Get PDF
    Edge computing recently is increasingly popular due to the growth of data size and the need of sensing with the reduced center. Based on Edge computing architecture, we propose a novel crowdsensing framework called Edge-Mediated Spatial-Temporal Crowdsensing. This algorithm targets on receiving the environment information such as air pollution, temperature, and traffic flow in some parts of the goal area, and does not aggregate sensor data with its location information. Specifically, EdgeSense works on top of a secured peer-To-peer network consisted of participants and propose a novel Decentralized Spatial-Temporal Crowdsensing framework based on Parallelized Stochastic Gradient Descent. To approximate the sensing data in each part of the target area in each sensing cycle, EdgeSense uses the local sensor data in participants\u27 mobile devices to learn the low-rank characteristic and then recovers the sensing data from it. We evaluate the EdgeSense on the real-world data sets (temperature [1] and PM2.5 [2] data sets), where our algorithm can achieve low error in approximation and also can compete with the baseline algorithm which is designed using centralized and aggregated mechanism

    Predicting Temporal Aspects of Movement for Predictive Replication in Fog Environments

    Full text link
    To fully exploit the benefits of the fog environment, efficient management of data locality is crucial. Blind or reactive data replication falls short in harnessing the potential of fog computing, necessitating more advanced techniques for predicting where and when clients will connect. While spatial prediction has received considerable attention, temporal prediction remains understudied. Our paper addresses this gap by examining the advantages of incorporating temporal prediction into existing spatial prediction models. We also provide a comprehensive analysis of spatio-temporal prediction models, such as Deep Neural Networks and Markov models, in the context of predictive replication. We propose a novel model using Holt-Winter's Exponential Smoothing for temporal prediction, leveraging sequential and periodical user movement patterns. In a fog network simulation with real user trajectories our model achieves a 15% reduction in excess data with a marginal 1% decrease in data availability

    Innovating with Artificial Intelligence: Capturing the Constructive Functional Capabilities of Deep Generative Learning

    Get PDF
    As an emerging species of artificial intelligence, deep generative learning models can generate an unprecedented variety of new outputs. Examples include the creation of music, text-to-image translation, or the imputation of missing data. Similar to other AI models that already evoke significant changes in society and economy, there is a need for structuring the constructive functional capabilities of DGL. To derive and discuss them, we conducted an extensive and structured literature review. Our results reveal a substantial scope of six constructive functional capabilities demonstrating that DGL is not exclusively used to generate unseen outputs. Our paper further guides companies in capturing and evaluating DGL’s potential for innovation. Besides, our paper fosters an understanding of DGL and provides a conceptual basis for further research
    corecore