1,045 research outputs found

    Parameterized Compilation Lower Bounds for Restricted CNF-formulas

    Full text link
    We show unconditional parameterized lower bounds in the area of knowledge compilation, more specifically on the size of circuits in decomposable negation normal form (DNNF) that encode CNF-formulas restricted by several graph width measures. In particular, we show that - there are CNF formulas of size nn and modular incidence treewidth kk whose smallest DNNF-encoding has size nΩ(k)n^{\Omega(k)}, and - there are CNF formulas of size nn and incidence neighborhood diversity kk whose smallest DNNF-encoding has size nΩ(k)n^{\Omega(\sqrt{k})}. These results complement recent upper bounds for compiling CNF into DNNF and strengthen---quantitatively and qualitatively---known conditional low\-er bounds for cliquewidth. Moreover, they show that, unlike for many graph problems, the parameters considered here behave significantly differently from treewidth

    Weighted Model Counting Without Parameter Variables

    Get PDF

    Generating Random Instances of Weighted Model Counting:An Empirical Analysis with Varying Primal Treewidth

    Get PDF

    Constraint capture and maintenance in engineering design

    Get PDF
    The Designers' Workbench is a system, developed by the Advanced Knowledge Technologies (AKT) consortium to support designers in large organizations, such as Rolls-Royce, to ensure that the design is consistent with the specification for the particular design as well as with the company's design rule book(s). In the principal application discussed here, the evolving design is described against a jet engine ontology. Design rules are expressed as constraints over the domain ontology. Currently, to capture the constraint information, a domain expert (design engineer) has to work with a knowledge engineer to identify the constraints, and it is then the task of the knowledge engineer to encode these into the Workbench's knowledge base (KB). This is an error prone and time consuming task. It is highly desirable to relieve the knowledge engineer of this task, and so we have developed a system, ConEditor+ that enables domain experts themselves to capture and maintain these constraints. Further we hypothesize that in order to appropriately apply, maintain and reuse constraints, it is necessary to understand the underlying assumptions and context in which each constraint is applicable. We refer to them as “application conditions” and these form a part of the rationale associated with the constraint. We propose a methodology to capture the application conditions associated with a constraint and demonstrate that an explicit representation (machine interpretable format) of application conditions (rationales) together with the corresponding constraints and the domain ontology can be used by a machine to support maintenance of constraints. Support for the maintenance of constraints includes detecting inconsistencies, subsumption, redundancy, fusion between constraints and suggesting appropriate refinements. The proposed methodology provides immediate benefits to the designers and hence should encourage them to input the application conditions (rationales)

    The Requirements for Ontologies in Medical Data Integration: A Case Study

    Full text link
    Evidence-based medicine is critically dependent on three sources of information: a medical knowledge base, the patients medical record and knowledge of available resources, including where appropriate, clinical protocols. Patient data is often scattered in a variety of databases and may, in a distributed model, be held across several disparate repositories. Consequently addressing the needs of an evidence-based medicine community presents issues of biomedical data integration, clinical interpretation and knowledge management. This paper outlines how the Health-e-Child project has approached the challenge of requirements specification for (bio-) medical data integration, from the level of cellular data, through disease to that of patient and population. The approach is illuminated through the requirements elicitation and analysis of Juvenile Idiopathic Arthritis (JIA), one of three diseases being studied in the EC-funded Health-e-Child project.Comment: 6 pages, 1 figure. Presented at the 11th International Database Engineering & Applications Symposium (Ideas2007). Banff, Canada September 200

    The role of ontologies in creating and maintaining corporate knowledge: a case study from the aero industry

    No full text
    The Designers’ Workbench is a system, developed to support designers in large organizations, such as Rolls-Royce, by making sure that the design is consistent with the specification for the particular design as well as with the company’s design rule book(s). The evolving design is described against a jet engine ontology. Currently, to capture the constraint information, a domain expert (design engineer) has to work with a knowledge engineer to identify the constraints, and it is then the task of the knowledge engineer to encode these into the Workbench’s knowledge base (KB). This is an error prone and time consuming task. It is highly desirable to relieve the knowledge engineer of this task, and so we have developed a tool, ConEditor+ that enables domain experts themselves to capture and maintain these constraints. The tool allows the user to combine selected entities from the domain ontology with keywords and operators of a constraint language to form a constraint expression. Further, we hypothesize that to apply constraints appropriately, it is necessary to understand the context in which each constraint is applicable. We refer to this as “application conditions”. We show that an explicit representation of application conditions, in a machine interpretable format, along with the constraints and the domain ontology can be used to support the verification and maintenance of constraints

    A Parameterisation of Algorithms for Distributed Constraint Optimisation via Potential Games

    No full text
    This paper introduces a parameterisation of learning algorithms for distributed constraint optimisation problems (DCOPs). This parameterisation encompasses many algorithms developed in both the computer science and game theory literatures. It is built on our insight that when formulated as noncooperative games, DCOPs form a subset of the class of potential games. This result allows us to prove convergence properties of algorithms developed in the computer science literature using game theoretic methods. Furthermore, our parameterisation can assist system designers by making the pros and cons of, and the synergies between, the various DCOP algorithm components clear

    Winnowing ontologies based on application use

    Get PDF
    The requirements of specific applications and services are often over estimated when ontologies are reused or built. This sometimes results in many ontologies being too large for their intended purposes. It is not uncommon that when applications and services are deployed over an ontology, only a few parts of the ontology are queried and used. Identifying which parts of an ontology are being used could be helpful to winnow the ontology, i.e., simplify or shrink the ontology to smaller, more fit for purpose size. Some approaches to handle this problem have already been suggested in the literature. However, none of that work showed how ontology-based applications can be used in the ontology-resizing process, or how they might be affected by it. This paper presents a study on the use of the AKT Reference Ontology by a number of applications and services,and investigates the possibility of relying on this usage information to winnow that ontology
    corecore