
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Weighted Model Counting Without Parameter Variables

Citation for published version:
Dilkas, P & Belle, V 2021, Weighted Model Counting Without Parameter Variables. in Theory and
Applications of Satisfiability Testing – SAT 2021. Lecture Notes in Computer Science, vol. 12831, Springer,
pp. 134-151, 24th International Conference on Theory and Applications of Satisfiability Testing, Barcelona,
Spain, 5/07/21. https://doi.org/10.1007/978-3-030-80223-3_10

Digital Object Identifier (DOI):
10.1007/978-3-030-80223-3_10

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Theory and Applications of Satisfiability Testing – SAT 2021

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 22. Dec. 2021

https://doi.org/10.1007/978-3-030-80223-3_10
https://doi.org/10.1007/978-3-030-80223-3_10
https://www.research.ed.ac.uk/en/publications/14b213a8-8b3b-4dac-967a-aa297852019a


Weighted Model Counting Without Parameter
Variables

Paulius Dilkas1(�) and Vaishak Belle1,2

1 University of Edinburgh, Edinburgh, UK
p.dilkas@sms.ed.ac.uk, vaishak@ed.ac.uk

2 Alan Turing Institute, London, UK

Abstract. Weighted model counting (WMC) is a powerful computa-
tional technique for a variety of problems, especially commonly used for
probabilistic inference. However, the standard definition of WMC that
puts weights on literals often necessitates WMC encodings to include
additional variables and clauses just so each weight can be attached to
a literal. This paper complements previous work by considering WMC
instances in their full generality and using recent state-of-the-art WMC
techniques based on pseudo-Boolean function manipulation, competitive
with the more traditional WMC algorithms based on knowledge compi-
lation and backtracking search. We present an algorithm that transforms
WMC instances into a format based on pseudo-Boolean functions while
eliminating around 43 % of variables on average across various Bayesian
network encodings. Moreover, we identify sufficient conditions for such
a variable removal to be possible. Our experiments show significant im-
provement in WMC-based Bayesian network inference, outperforming
the current state of the art.

Keywords: Weighted model counting · Probabilistic inference · Bayesian
networks

1 Introduction

Weighted model counting (WMC), i.e., a generalisation of propositional model
counting that assigns weights to literals and computes the total weight of all
models of a propositional formula [11], has emerged as a powerful computa-
tional framework for problems in many domains, e.g., probabilistic graphical
models such as Bayesian networks and Markov networks [3, 8, 9, 15, 32], neuro-
symbolic artificial intelligence [37], probabilistic programs [26], and probabilis-
tic logic programs [21]. It has been extended to support continuous variables
[6], infinite domains [4], first-order logic [24, 36], and arbitrary semirings [5, 27].
However, as the definition of WMC puts weights on literals, additional variables
often need to be added for the sole purpose of holding a weight [3, 8, 9, 15, 32].
This can be particularly detrimental to WMC algorithms that rely on variable
ordering heuristics.

One approach to this problem considers weighted clauses and probabilistic
semantics based on Markov networks [22]. However, with a new representation



2 P. Dilkas and V. Belle

comes the need to invent new encodings and inference algorithms. Our work is
similar in spirit in that it introduces a new representation for computational
problems but can reuse recent WMC algorithms based on pseudo-Boolean func-
tion manipulation, namely, ADDMC [19] and DPMC [20]. Furthermore, we iden-
tify sufficient conditions for transforming a WMC instance into our new format.
As many WMC inference algorithms [16, 29] work by compilation to tractable
representations such as arithmetic circuits, deterministic, decomposable negation
normal form [14], and sentential decision diagrams (SDDs) [17], another way to
avoid parameter variables could be via direct compilation to a more convenient
representation. Direct compilation of Bayesian networks to SDDs has been in-
vestigated [13]. However, SDDs only support weights on literals, and so are not
expressive enough to avoid the issue. To the best of the authors’ knowledge,
neither approach [13, 22] has a publicly available implementation.

In this work, we introduce a way to transform WMC problems into a new
format based on pseudo-Boolean functions—pseudo-Boolean projection (PBP).
We formally show that every WMC problem instance has a corresponding PBP
instance and identify conditions under which this transformation can remove
parameter variables. Four out of the five known WMC encodings for Bayesian
networks [3, 8, 9, 15, 32] can indeed be simplified in this manner. We are able
to eliminate 43 % of variables on average and up to 99 % on some instances.
This transformation enables two encodings that were previously incompatible
with most WMC algorithms (due to using a different definition of WMC [8,
9]) to be run with ADDMC and DPMC and results in a significant performance
boost for one other encoding, making it about three times faster than the state
of the art. Finally, our theoretical contributions result in a convenient algebraic
way of reasoning about two-valued pseudo-Boolean functions and position WMC
encodings on common ground, identifying their key properties and assumptions.

2 Weighted Model Counting

We begin with an overview of some notation and terminology. We use ∧, ∨, ¬,⇒,
and ⇔ to denote conjunction, disjunction, negation, material implication, and
material biconditional, respectively. Throughout the paper, we use set-theoretic
notation for many concepts in logic. A clause is a set of literals that are part of
an implicit disjunction. Similarly, a formula in CNF is a set of clauses that are
part of an implicit conjunction. We identify a model with a set of variables that
correspond to the positive literals in the model (and all other variables are the
negative literals of the model). We can then define the cardinality of a model as
the cardinality of this set. For example, let φ = (¬a ∨ b) ∧ a be a propositional
formula over variables a and b. Then an equivalent set-theoretic representation
of φ is {{¬a, b}, {a}}. Any subset of {a, b} is an interpretation of φ, e.g., {a, b} is
a model of φ (written {a, b} |= φ) of cardinality two, while ∅ is an interpretation
but not a model. We can now formally define WMC.

Definition 1 (WMC). A WMC instance is a tuple (φ,XI , XP , w), where XI

is the set of indicator variables, XP is the set of parameter variables (with



Weighted Model Counting Without Parameter Variables 3

XI ∩XP = ∅), φ is a propositional formula in CNF over XI ∪XP , and w : XI ∪
XP ∪{¬x | x ∈ XI ∪XP } → R is a weight function such that w(x) = w(¬x) = 1
for all x ∈ XI . The answer of the instance is

∑
Y |=φ

∏
Y |=l w(l).

That is, the answer to a WMC instance is the sum of the weights of all models
of φ, where the weight of a model is defined as the product of the weights of all
(positive and negative) literals in it. Our definition of WMC is largely based on
the standard definition [11], but explicitly partitions variables into indicator and
parameter variables. In practice, we identify this partition in one of two ways. If
an encoding is generated by Ace3, then variable types are explicitly identified in
a file generated alongside the encoding. Otherwise, we take XI to be the set of
all variables x such that w(x) = w(¬x) = 1. Next, we formally define a variation
of the WMC problem used by some of the Bayesian network encodings [8, 9].

Definition 2. Let φ be a formula over a set of variables X. Then Y ⊆ X is a
minimum-cardinality model of φ if Y |= φ and |Y | ≤ |Z| for all Z |= φ.

Definition 3 (Minimum-Cardinality WMC). A minimum-cardinality WMC
instance consists of the same tuple as a WMC instance, but its answer is defined
to be

∑
Y |=φ, |Y |=k

∏
Y |=l w(l) (where k = minY |=φ |Y |) if φ is satisfiable, and

zero otherwise.

Example 1. Let φ = (x ∨ y) ∧ (¬x ∨ ¬y) ∧ (¬x ∨ p) ∧ (¬y ∨ q) ∧ x, XI = {x, y},
XP = {p, q}, w(p) = 0.2, w(q) = 0.8, and w(¬p) = w(¬q) = 1. Then φ has two
models: {x, p} and {x, p, q} with weights 0.2 and 0.2 × 0.8 = 0.16, respectively.
The WMC answer is then 0.2+0.16 = 0.36, and the minimum-cardinality WMC
answer is 0.2.

2.1 Bayesian Network Encodings

A Bayesian network is a directed acyclic graph with random variables as ver-
tices and edges as conditional dependencies. As is common in related literature
[15, 32], we assume that each variable has a finite number of values. We call a
Bayesian network binary if every variable has two values. If all variables have
finite numbers of values, the probability function associated with each variable
v can be represented as a conditional probability table (CPT), i.e., a table with a
row for each combination of values that v and its parent vertices can take. Each
row then also has a probability, i.e., a number in [0, 1].

WMC is a well-established technique for Bayesian network inference, partic-
ularly effective on networks where most variables have only a few possible values
[15]. Many ways of encoding a Bayesian network into a WMC instance have
been proposed. We will refer to them based on the initials of the authors and
the year of publication. Darwiche was the first to suggest the d02 [15] encod-
ing that, in many ways, remains the foundation behind most other encodings.

3 Ace [11] implements most of the Bayesian network encodings and can also be used for
compilation (and thus inference). It is available at http://reasoning.cs.ucla.edu/ace/.



4 P. Dilkas and V. Belle

He also introduced the distinction between indicator and parameter variables;
the former represent variable-value pairs in the Bayesian network, while the lat-
ter are associated with probabilities in the CPTs. The encoding sbk05 [32] is
the only encoding that deviates from this arrangement: for each variable in the
Bayesian network, one indicator variable acts simultaneously as a parameter
variable. Chavira and Darwiche propose cd05 [8] where they shift from WMC
to minimum-cardinality WMC because that allows the encoding to have fewer
variables and clauses. In particular, they propose a way to use the same param-
eter variable to represent all probabilities in a CPT that are equal and keep only
clauses that ‘imply’ parameter variables (i.e., omit clauses where a parameter
variable implies indicator variables).4 In their next encoding, cd06 [9], the same
authors optimise the aforementioned implication clauses, choosing the smallest
sufficient selection of indicator variables. A decade later, Bart et al. present
bklm16 [3] that improves upon cd06 in two ways. First, they optimise the num-
ber of indicator variables used per Bayesian network variable from a linear to
a logarithmic amount. Second, they introduce a scaling factor that can ‘absorb’
one probability per Bayesian network variable. However, for this work, we choose
to disable the latter improvement since this scaling factor is often small enough
to be indistinguishable from zero without the use of arbitrary precision arith-
metic, making it completely unusable on realistic instances. Indeed, the reader
is free to check that even a small Bayesian network with seven mutually inde-
pendent binary variables, 0.1 and 0.9 probabilities each, is already big enough
for the scaling factor to be exactly equal to zero (as produced by the bklm16

encoder5). We suspect that this issue was not identified during the original set
of experiments because the authors never looked at numerical answers.

Example 2. Let B be a Bayesian network with one variable X which has two
values x1 and x2 with probabilities Pr(X = x1) = 0.2 and Pr(X = x2) = 0.8.
Let x, y be indicator variables, and p, q be parameter variables. Then Example 1
is both the cd05 and the cd06 encoding of B. The bklm16 encoding is (x ⇒
p) ∧ (¬x⇒ q) ∧ x with w(p) = w(¬q) = 0.2, and w(¬p) = w(q) = 0.8. And the
d02 encoding is (¬x⇒ p)∧ (p⇒ ¬x)∧ (x⇒ q)∧ (q ⇒ x)∧¬x with w(p) = 0.2,
w(q) = 0.8, and w(¬p) = w(¬q) = 1. Note how all other encodings have fewer
clauses than d02. While cd05 and cd06 require minimum-cardinality WMC to
make this work, bklm16 achieves the same thing by adjusting weights.6

3 Pseudo-Boolean Functions

In this work, we propose a more expressive representation for WMC based on
pseudo-Boolean functions. A pseudo-Boolean function is a function of the form
{0, 1}n → R [7]. Equivalently, let X denote a set with n elements (we will refer to

4 Example 2 demonstrates what we mean by implication clauses.
5 http://www.cril.univ-artois.fr/kc/bn2cnf.html
6 Note that since cd05 and cd06 are minimum-cardinality WMC encodings, they are

not supported by most WMC algorithms.



Weighted Model Counting Without Parameter Variables 5

them as variables), and 2X denote its powerset. Then a pseudo-Boolean function
can have 2X as its domain (then it is also known as a set function).

Pseudo-Boolean functions, most commonly represented as algebraic decision
diagrams (ADDs) [2] (although a tensor-based approach has also been suggested
[18, 20]), have seen extensive use in value iteration for Markov decision pro-
cesses [25], both exact and approximate Bayesian network inference [10, 23], and
sum-product network [30] to Bayesian network conversion [38]. ADDs have been
extended to compactly represent additive and multiplicative structure [35], sen-
tences in first-order logic [33], and continuous variables [34], the last of which
was also applied to weighted model integration, i.e., the WMC extension for
continuous variables [6, 28].

Since two-valued pseudo-Boolean functions will be used extensively hence-
forth, we introduce some new notation. For any propositional formula φ over X
and p, q ∈ R, let [φ]pq : 2X → R be the pseudo-Boolean function defined as

[φ]pq(Y ) :=

{
p if Y |= φ

q otherwise

for any Y ⊆ X. Next, we define some useful operations on pseudo-Boolean
functions. The definitions of multiplication and projection are equivalent to those
in previous work [19, 20].

Definition 4 (Operations). Let f, g : 2X → R be pseudo-Boolean functions,
x, y ∈ X, Y = {yi}ni=1 ⊆ X, and r ∈ R. Operations such as addition and
multiplication are defined pointwise, i.e., (f+g)(Y ) := f(Y )+g(Y ), and likewise
for multiplication. Note that properties such as associativity and commutativity
are inherited from R. By regarding a real number as a constant pseudo-Boolean
function, we can reuse the same definitions to define scalar operations as (r +
f)(Y ) = r + f(Y ), and (r · f)(Y ) = r · f(Y ).

Restrictions f |x=0, f |x=1 : 2X → R of f are defined as f |x=0(Y ) := f(Y \
{x}), and f |x=1(Y ) := f(Y ∪ {x}) for all Y ⊆ X.

Projection ∃x is an endomorphism ∃x : R2X → R2X defined as ∃xf := f |x=1+
f |x=0. Since projection is commutative (i.e., ∃x∃yf = ∃y∃xf) [19, 20], we can

define ∃Y : R2X → R2X as ∃Y := ∃y1∃y2 . . . ∃yn . Throughout the paper, projection
is assumed to have the lowest precedence (e.g., ∃xfg = ∃x(fg)).

Below we list some properties of the operations on pseudo-Boolean functions
discussed in this section that can be conveniently represented using our syntax.
The proofs of all these properties follow directly from the definitions.

Proposition 1 (Basic Properties). For any propositional formulas φ and ψ,
and a, b, c, d ∈ R,

– [φ]ab = [¬φ]ba;
– c+ [φ]ab = [φ]a+cb+c ;
– c · [φ]ab = [φ]acbc ;
– [φ]ab · [φ]cd = [φ]acbd;



6 P. Dilkas and V. Belle

– [φ]10 · [ψ]10 = [φ ∧ ψ]10.

And for any pair of pseudo-Boolean functions f, g : 2X → R and x ∈ X, (fg)|x=i =
f |x=i · g|x=i for i = 0, 1.

Remark 1. Note that our definitions of binary operations assumed equal do-
mains. For convenience, we can assume domains to shrink whenever a function
is independent of some of the variables (i.e., f |x=0 = f |x=1) and expand for
binary operations to make the domains of both functions equal. For instance,
let [x]10, [¬x]10 : 2{x} → R and [y]10 : 2{y} → R be pseudo-Boolean functions. Then
[x]10 · [¬x]10 has 2∅ as its domain. To multiply [x]10 and [y]10, we expand [x]10
into

(
[x]10
)′

: 2{x,y} → R which is defined as
(
[x]10
)′

(Z) := [x]10(Z ∩ {x}) for all
Z ⊆ {x, y} (and equivalently for [y]10).

4 Pseudo-Boolean Projection

We introduce a new type of computational problem called pseudo-Boolean pro-
jection based on two-valued pseudo-Boolean functions. While the same computa-
tional framework can handle any pseudo-Boolean functions, two-valued functions
are particularly convenient because DPMC can be easily adapted to use them
as input. Since we will only encounter functions of the form [φ]ab , where φ is a
conjunction of literals, we can represent it in text as w 〈φ〉 a b where 〈φ〉 is a
representation of φ analogous to the representation of a clause in the DIMACS
CNF format.

Definition 5 (PBP Instance). A PBP instance is a tuple (F,X, ω), where
X is the set of variables, F is a set of two-valued pseudo-Boolean functions

2X → R, and ω ∈ R is the scaling factor.7 Its answer is ω ·
(
∃X
∏
f∈F f

)
(∅).

4.1 From WMC to PBP

In this section, we describe an algorithm for transforming WMC instances to
the PBP format while removing all parameter variables. We chose to transform
existing encodings instead of creating a new one to reuse already-existing tech-
niques for encoding each CPT to its minimal logical representation such as prime
implicants and limited forms of resolution [3, 8, 9]. The transformation algorithm
works on four out of the five Bayesian network encodings: bklm16 [3], cd05 [8],
cd06 [9], and d02 [15]. There is no obvious way to adjust it to work with sbk05

because the roles of indicator and parameter variables overlap [32].
The algorithm is based on several observations that will be made more pre-

cise in Section 4.2. First, all weights except for {w(p) | p ∈ XP } are redundant

7 Adding scaling factor ω to the definition allows us to remove clauses that consist
entirely of a single parameter variable. The idea of extracting some of the structure
of the WMC instance into an external multiplicative factor was loosely inspired by
the bklm16 encoding, where it is used to subsume the most commonly occurring
probability of each CPT [3].



Weighted Model Counting Without Parameter Variables 7

Algorithm 1: WMC to PBP transformation

Data: WMC (or minimum-cardinality WMC) instance (φ,XI , XP , w)
Result: PBP instance (F,XI , ω)

1 F ← ∅;
2 ω ← 1;
3 foreach clause c ∈ φ do
4 if c ∩XP = {p} for some p and w(p) 6= 1 then
5 if |c| = 1 then
6 ω ← ω × w(p);
7 else

8 F ← F ∪
{[∧

l∈c\{p} ¬l
]w(p)

1

}
;

9 else if {p | ¬p ∈ c} ∩XP = ∅ then
10 F ← F ∪ {[c]10};

11 foreach v ∈ XI such that {[v]p1, [¬v]q1} ⊆ F for some p and q do
12 F ← F \ {[v]p1, [¬v]q1} ∪ {[v]pq};

as they either duplicate an already-defined weight or are equal to one. Second,
each clause has at most one parameter variable. Third, if the parameter variable
is negated, we can ignore the clause (this idea first appears in the cd05 paper
[8]). Note that while we formulate our algorithm as a sequel to the WMC en-
coding procedure primarily because the implementations of Bayesian network
WMC encodings are all closed-source, as all transformations in the algorithm
are local, it can be efficiently incorporated into a WMC encoding algorithm with
no slowdown.

The algorithm is listed as Algorithm 1. The main part of the algorithms is
the first loop that iterates over clauses. If a clause consists of a single parameter
variable, we incorporate it into ω. If a clause is of the form α⇒ p, where p ∈ XP ,
and α is a conjunction of literals over XI , we transform it into a pseudo-Boolean

function [α]
w(p)
1 . If a clause c ∈ φ has no parameter variables, we reformulate

it into a pseudo-Boolean function [c]10. Finally, clauses with negative parameter
literals are omitted.

As all ‘weighted’ pseudo-Boolean functions produced by the first loop are
of the form [α]p1 (for some p ∈ R and formula α), the second loop merges two
functions into one whenever α is a literal. Note that taking into account the
order in which clauses are typically generated by encoding algorithms allows us
to do this in linear time (i.e., the two mergeable functions will be generated one
after the other).

4.2 Correctness Proofs

In this section, we outline key conditions that a (WMC or minimum-cardinality
WMC) encoding has to satisfy for Algorithm 1 to output an equivalent PBP
instance. We divide the correctness proof into two theorems: Theorem 2 for



8 P. Dilkas and V. Belle

WMC encodings (i.e., bklm16 and d02) and Theorem 3 for minimum-cardinality
WMC encodings (i.e., cd05 and cd06). We begin by listing some properties
of pseudo-Boolean functions and establishing a canonical transformation from
WMC to PBP.

Theorem 1 (Early Projection [19, 20]). Let X and Y be sets of variables.
For all pseudo-Boolean functions f : 2X → R and g : 2Y → R, if x ∈ X \Y , then
∃x(f · g) = (∃xf) · g.

Lemma 1. For any pseudo-Boolean function f : 2X → R, we have that (∃Xf)(∅) =∑
Y⊆X f(Y ).

Proof. If X = {x}, then (∃xf)(∅) = (f |x=1 + f |x=0)(∅) = f |x=1(∅) + f |x=0(∅) =∑
Y⊆{x} f(Y ). This easily extends to |X| > 1 by the definition of projection on

sets of variables.

Proposition 2. Let (φ,XI , XP , w) be a WMC instance. Then({
[c]10

∣∣ c ∈ φ} ∪ {[x]
w(x)
w(¬x)

∣∣∣ x ∈ XI ∪XP

}
, XI ∪XP , 1

)
(1)

is a PBP instance with the same answer (as defined in Definitions 1 and 5).

Proof. Let f =
∏
c∈φ[c]10, and g =

∏
x∈XI∪XP

[x]
w(x)
w(¬x). Then the WMC an-

swer of (1) is (∃XI∪XP
fg)(∅) =

∑
Y⊆XI∪XP

(fg)(Y ) =
∑
Y⊆XI∪XP

f(Y )g(Y )
by Lemma 1. Note that

f(Y ) =

{
1 if Y |= φ,

0 otherwise,
and g(Y ) =

∏
Y |=l

w(l),

which means that
∑
Y⊆XI∪XP

f(Y )g(Y ) =
∑
Y |=φ

∏
Y |=l w(l) as required.

Theorem 2 (Correctness for WMC). Algorithm 1, when given a WMC in-
stance (φ,XI , XP , w), returns a PBP instance with the same answer (as defined
in Definitions 1 and 5), provided either of the two conditions is satisfied:

1. for all p ∈ XP , there is a non-empty family of literals (li)
n
i=1 such that

(a) w(¬p) = 1,
(b) li ∈ XI or ¬li ∈ XI for all i = 1, . . . , n,
(c) and {c ∈ φ | p ∈ c or ¬p ∈ c} = {p ∨

∨n
i=1 ¬li} ∪ {li ∨¬p | i = 1, . . . , n};

2. or for all p ∈ XP ,
(a) w(p) + w(¬p) = 1,
(b) for any clause c ∈ φ, |c ∩XP | ≤ 1,
(c) there is no clause c ∈ φ such that ¬p ∈ c,
(d) if {p} ∈ φ, then there is no clause c ∈ φ such that c 6= {p} and p ∈ c,
(e) and for any c, d ∈ φ such that c 6= d, p ∈ c and p ∈ d,

∧
l∈c\{p} ¬l ∧∧

l∈d\{p} ¬l is false.



Weighted Model Counting Without Parameter Variables 9

Condition 1 (for d02) simply states that each parameter variable is equivalent
to a conjunction of indicator literals. Condition 2 is for encodings that have im-
plications rather than equivalences associated with parameter variables (which,
in this case, is bklm16). It ensures that each clause has at most one positive
parameter literal and no negative ones, and that at most one implication clause
per any parameter variable p ∈ XP can ‘force p to be positive’.

Proof. By Proposition 2,({
[c]10

∣∣ c ∈ φ} ∪ {[x]
w(x)
w(¬x)

∣∣∣ x ∈ XI ∪XP

}
, XI ∪XP , 1

)
(2)

is a PBP instance with the same answer as the given WMC instance. By Defi-

nition 5, its answer is
(
∃XI∪XP

(∏
c∈φ[c]10

)∏
x∈XI∪XP

[x]
w(x)
w(¬x)

)
(∅). Since both

Conditions 1 and 2 ensure that each clause in φ has at most one parameter vari-
able, we can partition φ into φ∗ := {c ∈ φ | Vars(c) ∩XP = ∅} and φp := {c ∈
φ | Vars(c)∩XP = {p}} for all p ∈ XP . We can then use Theorem 1 to reorder the

answer into
(
∃XI

(∏
x∈XI

[x]
w(x)
w(¬x)

)(∏
c∈φ∗

[c]10

)∏
p∈XP

∃p[p]w(p)
w(¬p)

∏
c∈φp

[c]10

)
(∅).

Let us first consider how the unfinished WMC instance (F,XI , ω) after the
loop on Lines 3 to 10 differs from (2). Note that Algorithm 1 leaves each c ∈ φ∗
unchanged, i.e., adds [c]10 to F . We can then fix an arbitrary p ∈ XP and let Fp
be the set of functions added to F as a replacement of φp. It is sufficient to show
that

ω
∏
f∈Fp

f = ∃p[p]w(p)
w(¬p)

∏
c∈φp

[c]10. (3)

Note that under Condition 1,
∧
c∈φp

c ≡ p⇔
∧n
i=1 li for some family of indicator

variable literals (li)
n
i=1. Thus, ∃p[p]w(p)

w(¬p)
∏
c∈φp

[c]10 = ∃p[p]w(p)
1 [p⇔

∧n
i=1 li]

1

0
. If

w(p) = 1, then

∃p[p]w(p)
1

[
p⇔

n∧
i=1

li

]1
0

=

[
p⇔

n∧
i=1

li

]1
0

∣∣∣∣∣∣
p=1

+

[
p⇔

n∧
i=1

li

]1
0

∣∣∣∣∣∣
p=0

. (4)

Since for any input,
∧n
i=1 li is either true or false, exactly one of the two sum-

mands in Eq. (4) will be equal to one, and the other will be equal to zero, and so

[p⇔
∧n
i=1 li]

1

0

∣∣∣
p=1

+ [p⇔
∧n
i=1 li]

1

0

∣∣∣
p=0

= 1, where 1 is a pseudo-Boolean func-

tion that always returns one. On the other side of Eq. (3), since Fp = ∅, and ω is
unchanged, we get ω

∏
f∈Fp

f = 1, and so Eq. (3) is satisfied under Condition 1

when w(p) = 1.

If w(p) 6= 1, then Fp =
{

[
∧n
i=1 li]

w(p)

1

}
, and ω = 1, and so we want to show

that [
∧n
i=1 li]

w(p)

1
= ∃p[p]w(p)

1 [p⇔
∧n
i=1 li]

1

0
. Indeed, ∃p[p]w(p)

1 [p⇔
∧n
i=1 li]

1

0
=

w(p) · [
∧n
i=1 li]

1

0
+[
∧n
i=1 li]

0

1
= [
∧n
i=1 li]

w(p)

1
. This finishes the proof of the correct-

ness of the first loop under Condition 1.



10 P. Dilkas and V. Belle

Now let us assume Condition 2. We still want to prove Eq. (3). If w(p) = 1,
then Fp = ∅, and ω = 1, and so the left-hand side of Eq. (3) is equal to one. Then

the right-hand side is ∃p[p]10
∏
c∈φp

[c]10 = ∃p
[
p ∧

∧
c∈φp

c
]1
0

= ∃p[p]10 = 0 + 1 = 1

since p ∈ c for every clause c ∈ φp.
If w(p) 6= 1, and {p} ∈ φp, then, by Condition 2d, φp = {{p}}, and Algo-

rithm 1 produces Fp = ∅, and ω = w(p), and so ∃p[p]w(p)
w(¬p)[p]

1
0 = ∃p[p]w(p)

0 =

w(p) = ω
∏
f∈Fp

f . The only remaining case is when w(p) 6= 1 and {p} 6∈ φp.

Then ω = 1, and Fp =

{[∧
l∈c\{p} ¬l

]w(p)

1

∣∣∣∣ c ∈ φp}, so we need to show that∏
c∈φp

[∧
l∈c\{p} ¬l

]w(p)

1
= ∃p[p]w(p)

1−w(p)

∏
c∈φp

[c]10. We can rearrange the right-

hand side as

∃p[p]w(p)
1−w(p)

∏
c∈φp

[c]10 = ∃p[p]w(p)
1−w(p)

p ∨ ∧
c∈φp

c \ {p}

1

0

= w(p) + (1− w(p))

 ∧
c∈φp

c \ {p}

1

0

=

 ∧
c∈φp

c \ {p}

1

w(p)

=

 ∨
c∈φp

∧
l∈c\{p}

¬l

w(p)

1

.

By Condition 2e,
∧
l∈c\{p} ¬l can be true for at most one c ∈ φp, and so[∨

c∈φp

∧
l∈c\{p} ¬l

]w(p)

1
=
∏
c∈φp

[∧
l∈c\{p} ¬l

]w(p)

1
which is exactly what we

needed to show. This ends the proof that the first loop of Algorithm 1 preserves
the answer under both Condition 1 and Condition 2. Finally, the loop on Lines 11
to 12 of Algorithm 1 replaces [v]p1[¬v]q1 with [v]pq (for some v ∈ XI and p, q ∈ R),
but, of course, [v]p1[¬v]q1 = [v]p1[v]1q = [v]pq , i.e., the answer is unchanged.

Theorem 3 (Minimum-Cardinality Correctness). Let (φ,XI , XP , w) be
a minimum-cardinality WMC instance that satisfies Conditions 2b to 2e of The-
orem 2 as well as the following:

1. for all parameter variables p ∈ XP , w(¬p) = 1.
2. all models of {c ∈ φ | c ∩ XP = ∅} (as subsets of XI) have the same

cardinality;
3. minZ⊆XP

|Z| such that Y ∪Z |= φ is the same for all Y |= {c ∈ φ | c∩XP =
∅}.

Then Algorithm 1, when applied to (φ,XI , XP , w), outputs a PBP instance with
the same answer (as defined in Definitions 3 and 5).

In this case, we have to add some assumptions about the cardinality of mod-
els. Condition 2 states that all models of the indicator-only part of the for-
mula have the same cardinality. Bayesian network encodings such as cd05 and



Weighted Model Counting Without Parameter Variables 11

cd06 satisfy this condition by assigning an indicator variable to each possible
variable-value pair and requiring each random variable to be paired with exactly
one value. Condition 3 then says that the smallest number of parameter vari-
ables needed to turn an indicator-only model into a full model is the same for all
indicator-only models. As some ideas duplicate between the proofs of Theorems 2
and 3, the following proof is slightly less explicit and assumes that ω = 1.

Proof. Let (F,XI , ω) be the tuple returned by Algorithm 1 and note that F ={
[c]10 | c ∈ φ, c ∩XP = ∅

}
∪
{[∧

l∈c\{p} ¬l
]w(p)

1

∣∣∣∣ p ∈ XP , p ∈ c ∈ φ, c 6= {p}
}

. We

split the proof into two parts. In the first part, we show that there is a bijection

between minimum-cardinality models of φ and Y ⊆ XI such that
(∏

f∈F f
)

(Y ) 6=
0.8 Let Y ⊆ XI and Z ⊆ XI ∪ XP be related via this bijection. Then in the
second part we will show that

∏
Z|=l

w(l) =

∏
f∈F

f

 (Y ). (5)

On the one hand, if Z ⊆ XI ∪ XP is a minimum-cardinality model of φ,

then
(∏

f∈F

)
(Z ∩ XI) 6= 0 under the given assumptions. On the other hand,

if Y ⊆ XI is such that
(∏

f∈F

)
(Y ) 6= 0, then Y |= {c ∈ φ | c ∩XP = ∅}. Let

Y ⊆ Z ⊆ XI ∪XP be the smallest superset of Y such that Z |= φ (it exists by
Condition 2c of Theorem 2). We need to show that Z has minimum cardinality.
Let Y ′ and Z ′ be defined equivalently to Y and Z. We will show that |Z| = |Z ′|.
Note that |Y | = |Y ′| by Condition 2, and |Z \ Y | = |Z ′ \ Y ′| by Condition 3.
Combining that with the general property that |Z| = |Y |+ |Z \ Y | finishes the
first part of the proof.

For the second part, let us consider the multiplicative influence of a single
parameter variable p ∈ XP on Eq. (5). If the left-hand side is multiplied by w(p)
(i.e., p ∈ Z), then there must be some clause c ∈ φ such that Z \ {p} 6|= c. But
then Y |=

∧
l∈c\{p} ¬l, and so the right-hand side is multiplied by w(p) as well

(exactly once because of Condition 2e of Theorem 2). This argument works in
the other direction as well.

5 Experimental Evaluation

We run a set of experiments, comparing all five original Bayesian network en-
codings (bklm16, cd05, cd06, d02, sbk05) as well as the first four with Algo-
rithm 1 applied afterwards.9 For each encoding e, we write e++ to denote the
combination of encoding a Bayesian network as a WMC instance using e and
transforming it into a PBP instance using Algorithm 1. Along with DPMC10,

8 For convenience and without loss of generality we assume that w(p) 6= 0 for all
p ∈ XP .

9 Recall that cd05 and cd06 are incompatible with DPMC.
10 https://github.com/vardigroup/DPMC



12 P. Dilkas and V. Belle

we also include WMC algorithms used in the papers that introduce each en-
coding: Ace for cd05, cd06, and d02; Cachet11 [31] for sbk05; and c2d12 [16]
with query-dnnf13 for bklm16. Ace is also used to encode Bayesian networks into
WMC instances for all encodings except for bklm16 which uses another encoder
mentioned previously. We focus on the following questions:

– Can parameter variable elimination improve inference speed?
– How does DPMC combined with encodings without (and with) parameter

variables compare with other WMC algorithms and other encodings?
– Which instances is our approach particularly successful on (compared to

other algorithms and encodings and to the same encoding before our trans-
formation)?

– What proportion of variables is typically eliminated?
– Do some encodings benefit from this transformation more than others?

5.1 Setup

DPMC is run with tree decomposition-based planning and ADD-based execution—
the best-performing combination in the original set of experiments [20]. We use a
single iteration of htd [1] to generate approximately optimal tree decompositions—
we found that this configuration is efficient enough to handle huge instances, and
yet the width of the returned decomposition is unlikely to differ from optimal by
more than one or two. We also enabled DPMC’s greedy mode. This mode (which
was not part of the original paper [20]) optimises the order in which ADDs are
multiplied by prioritising those with small representations.

For experimental data, we use Bayesian networks available with Ace and Ca-
chet. We split them into the following groups: – DQMR (390 instances) and
– Grid networks (450 instances) as described by Sang et al. [32]; – Mastermind
(144 instances) and – Random Blocks (256 instances) by Chavira et al. [12];
– other binary Bayesian networks (50 instances) including Plan Recognition
[32], Friends and Smokers, Students and Professors [12], and tcc4f; – non-bi-
nary classic networks (176 instances): alarm, diabetes, hailfinder, mildew,
munin1–4, pathfinder, pigs, and water.

To perform Bayesian network inference with DPMC (or with any other WMC
algorithm not based on compilation such as Cachet), one needs to select a prob-
ability to compute [20, 31]. If a network comes with an evidence file, we compute
the probability of this evidence. Otherwise, let X be the variable last mentioned
in the Bayesian network file. If true is one of the values of X, then we compute
Pr(X = true), otherwise we choose the first-mentioned value of X.

The experiments were run on a computing cluster with Intel Xeon E5-2630,
Intel Xeon E7-4820, and Intel Xeon Gold 6138 processors with a 1000 s timeout
separately on both encoding and inference, and a 32 GiB memory limit.14

11 https://cs.rochester.edu/u/kautz/Cachet/
12 http://reasoning.cs.ucla.edu/c2d/
13 http://www.cril.univ-artois.fr/kc/d-DNNF-reasoner.html
14 Each instance was run on the same processor across all algorithms and encodings.



Weighted Model Counting Without Parameter Variables 13

5.2 Results

0.1

1

10

100

1000

0 500 1000 1500

Instances solved

T
im

e
(s
)

Algorithm

DPMC other

Encoding

bklm16

bklm16++

cd05

cd05++

cd06

cd06++

d02

d02++

sbk05

Fig. 1. Cactus plot of all algorithm-encoding pairs. The dotted line denotes the total
number of instances used.

Figure 1 shows DPMC + bklm16++ to be the best-performing combination
across all time limits up to 1000 s with Ace + cd06 and DPMC + bklm16 not far
behind. Overall, DPMC+bklm16++ is 3.35 times faster than DPMC+bklm16 and
2.96 times faster than Ace+cd06. Table 1 further shows that DPMC+bklm16++

solves almost a hundred more instances than any other combination, and is the
fastest in 69.1 % of them.

The scatter plots in Fig. 2 show that how DPMC + bklm16++ (and perhaps
DPMC more generally) compares to Ace + cd06 depends significantly on the
data set: the former is a clear winner on DQMR and Grid instances, while the
latter performs well on Mastermind and Random Blocks. Perhaps because the
underlying WMC algorithm remains the same, the difference between DPMC +
bklm16 with and without applying Algorithm 1 is quite noisy, i.e, with most
instances scattered around the line of equality. However, our transformation does
enable DPMC to solve many instances that were previously beyond its reach.

We also record numbers of variables in each encoding before and after ap-
plying Algorithm 1. Figure 3 shows a significant reduction in the number of
variables. For instance, the median number of variables in instances encoded
with bklm16 was reduced four times: from 1499 to 376. While bklm16++ results
in the overall lowest number of variables, the difference between bklm16++ and
d02++ seems small. Indeed, the numbers of variables in these two encodings
are equal for binary Bayesian networks (i.e., most of our data). Nonetheless,
bklm16++ is still much faster than d02++ when run with DPMC.

It is also worth noting that there was no observable difference in the width
of the project-join tree used by DPMC (which is equivalent to the treewidth of



14 P. Dilkas and V. Belle

0.1

10

1000

0.1 10 1000

Ace + cd06 time (s)

D
P
M
C
+

b
k
l
m
1
6
+
+
ti
m
e
(s
)

0.1

10

1000

0.1 10 1000

DPMC + bklm16 time (s)

D
P
M
C
+

b
k
l
m
1
6
+
+
ti
m
e
(s
)

DQMR

Grid

Mastermind

Non-binary

Other binary

Random Blocks

Fig. 2. An instance-by-instance comparison between DPMC+bklm16++ (the best com-
bination according to Fig. 1) and the second and third best-performing combinations:
Ace + cd06 and DPMC + bklm16.

0

2000

4000

bklm16cd05 cd06 d02 sbk05

V
a
ri
a
b
le
s

before after

Fig. 3. Box plots of the numbers of vari-
ables in each encoding across all bench-
mark instances before and after applying
Algorithm 1. Outliers and the top parts of
some whiskers are omitted.

Table 1. The numbers of instances (out
of 1466) that each algorithm and encoding
combination solved faster than any other
combination and in total.

Combination Fastest Solved

Ace + cd05 27 1247
Ace + cd06 135 1340
Ace + d02 56 1060
DPMC + bklm16 241 1327
DPMC + bklm16++ 992 1435
DPMC + cd05++ 0 867
DPMC + cd06++ 0 932
DPMC + d02 1 1267
DPMC + d02++ 7 1272
DPMC + sbk05 31 1308
c2d + bklm16 0 997
Cachet + sbk05 49 983



Weighted Model Counting Without Parameter Variables 15

the primal/Gaifman graph of the input formula [20]) before and after applying
Algorithm 1—the observed performance improvement is more likely related to
the variable ordering heuristic used by ADDs.15

Overall, transforming WMC instances to the PBP format allows us to sig-
nificantly simplify each instance. This transformation is particularly effective
on bklm16, allowing it to surpass cd06 and become the new state of the art.
While there is a similarly significant reduction in the number of variables for
d02, the performance of DPMC + d02 is virtually unaffected. Finally, while our
transformation makes it possible to use cd05 and cd06 with DPMC, the two
combinations remain inefficient.

6 Conclusion

In this paper, we showed how the number of variables in a WMC instance can
be significantly reduced by transforming it into a representation based on two-
valued pseudo-Boolean functions. In some cases, this led to significant improve-
ments in inference speed, allowing DPMC+ bklm16++ to overtake Ace+ cd06 as
the new state of the art WMC technique for Bayesian network inference. More-
over, we identified key properties of Bayesian network encodings that allow for
parameter variable removal. However, these properties were rather different for
each encoding, and so an interesting question for future work is whether they
can be unified into a more abstract and coherent list of conditions.

Bayesian network inference was chosen as the example application of WMC
because it is the first and the most studied one [3, 8, 9, 15, 32]. While the distinc-
tion between indicator and parameter variables is often not explicitly described
in other WMC encodings [21, 26, 37], perhaps in some cases variables could still
be partitioned in this way, allowing for not just faster inference with DPMC or
ADDMC but also for well-established WMC encoding and inference techniques
(such as in the cd05 and cd06 papers [8, 9]) to be transferred to other application
domains.

Acknowledgments. We thank the anonymous reviewers for their helpful com-
ments. The first author was supported by the EPSRC Centre for Doctoral Train-
ing in Robotics and Autonomous Systems, funded by the UK Engineering and
Physical Sciences Research Council (grant EP/L016834/1). The second author
was supported by a Royal Society University Research Fellowship. This work
has made use of the resources provided by the Edinburgh Compute and Data
Facility (ECDF) (http://www.ecdf.ed.ac.uk/).

References

1. Abseher, M., Musliu, N., Woltran, S.: htd - A free, open-source framework for
(customized) tree decompositions and beyond. In: Salvagnin, D., Lombardi, M.

15 The data on this (along with the implementation of Algorithm 1) is available at
https://github.com/dilkas/wmc-without-parameters.



16 P. Dilkas and V. Belle

(eds.) Integration of AI and OR Techniques in Constraint Programming - 14th
International Conference, CPAIOR 2017, Padua, Italy, June 5-8, 2017, Proceed-
ings. Lecture Notes in Computer Science, vol. 10335, pp. 376–386. Springer (2017).
https://doi.org/10.1007/978-3-319-59776-8 30

2. Bahar, R.I., Frohm, E.A., Gaona, C.M., Hachtel, G.D., Macii, E., Pardo, A.,
Somenzi, F.: Algebraic decision diagrams and their applications. Formal Methods
Syst. Des. 10(2/3), 171–206 (1997). https://doi.org/10.1023/A:1008699807402

3. Bart, A., Koriche, F., Lagniez, J., Marquis, P.: An improved CNF encoding scheme
for probabilistic inference. In: Kaminka, G.A., Fox, M., Bouquet, P., Hüllermeier,
E., Dignum, V., Dignum, F., van Harmelen, F. (eds.) ECAI 2016 - 22nd European
Conference on Artificial Intelligence, 29 August-2 September 2016, The Hague, The
Netherlands - Including Prestigious Applications of Artificial Intelligence (PAIS
2016). Frontiers in Artificial Intelligence and Applications, vol. 285, pp. 613–621.
IOS Press (2016). https://doi.org/10.3233/978-1-61499-672-9-613

4. Belle, V.: Open-universe weighted model counting. In: Singh, S.P., Markovitch, S.
(eds.) Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence,
February 4-9, 2017, San Francisco, California, USA. pp. 3701–3708. AAAI Press
(2017), http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/15008

5. Belle, V., De Raedt, L.: Semiring programming: A semantic framework for gen-
eralized sum product problems. Int. J. Approx. Reason. 126, 181–201 (2020).
https://doi.org/10.1016/j.ijar.2020.08.001

6. Belle, V., Passerini, A., Van den Broeck, G.: Probabilistic inference in hybrid do-
mains by weighted model integration. In: Yang, Q., Wooldridge, M.J. (eds.) Pro-
ceedings of the Twenty-Fourth International Joint Conference on Artificial Intel-
ligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015. pp. 2770–2776.
AAAI Press (2015), http://ijcai.org/Abstract/15/392

7. Boros, E., Hammer, P.L.: Pseudo-Boolean optimization. Discret. Appl. Math.
123(1-3), 155–225 (2002). https://doi.org/10.1016/S0166-218X(01)00341-9

8. Chavira, M., Darwiche, A.: Compiling Bayesian networks with local structure.
In: Kaelbling, L.P., Saffiotti, A. (eds.) IJCAI-05, Proceedings of the Nineteenth
International Joint Conference on Artificial Intelligence, Edinburgh, Scotland,
UK, July 30 - August 5, 2005. pp. 1306–1312. Professional Book Center (2005),
http://ijcai.org/Proceedings/05/Papers/0931.pdf

9. Chavira, M., Darwiche, A.: Encoding CNFs to empower component analysis. In:
Biere, A., Gomes, C.P. (eds.) Theory and Applications of Satisfiability Testing -
SAT 2006, 9th International Conference, Seattle, WA, USA, August 12-15, 2006,
Proceedings. Lecture Notes in Computer Science, vol. 4121, pp. 61–74. Springer
(2006). https://doi.org/10.1007/11814948 9

10. Chavira, M., Darwiche, A.: Compiling Bayesian networks using variable elimina-
tion. In: Veloso, M.M. (ed.) IJCAI 2007, Proceedings of the 20th International
Joint Conference on Artificial Intelligence, Hyderabad, India, January 6-12, 2007.
pp. 2443–2449 (2007), http://ijcai.org/Proceedings/07/Papers/393.pdf

11. Chavira, M., Darwiche, A.: On probabilistic inference by
weighted model counting. Artif. Intell. 172(6-7), 772–799 (2008).
https://doi.org/10.1016/j.artint.2007.11.002

12. Chavira, M., Darwiche, A., Jaeger, M.: Compiling relational Bayesian net-
works for exact inference. Int. J. Approx. Reason. 42(1-2), 4–20 (2006).
https://doi.org/10.1016/j.ijar.2005.10.001

13. Choi, A., Kisa, D., Darwiche, A.: Compiling probabilistic graphical models us-
ing sentential decision diagrams. In: van der Gaag, L.C. (ed.) Symbolic and



Weighted Model Counting Without Parameter Variables 17

Quantitative Approaches to Reasoning with Uncertainty - 12th European Con-
ference, ECSQARU 2013, Utrecht, The Netherlands, July 8-10, 2013. Proceed-
ings. Lecture Notes in Computer Science, vol. 7958, pp. 121–132. Springer (2013).
https://doi.org/10.1007/978-3-642-39091-3 11

14. Darwiche, A.: On the tractable counting of theory models and its application to
truth maintenance and belief revision. J. Appl. Non Class. Logics 11(1-2), 11–34
(2001). https://doi.org/10.3166/jancl.11.11-34

15. Darwiche, A.: A logical approach to factoring belief networks. In: Fensel, D.,
Giunchiglia, F., McGuinness, D.L., Williams, M. (eds.) Proceedings of the Eights
International Conference on Principles and Knowledge Representation and Reason-
ing (KR-02), Toulouse, France, April 22-25, 2002. pp. 409–420. Morgan Kaufmann
(2002)

16. Darwiche, A.: New advances in compiling CNF into decomposable negation normal
form. In: de Mántaras, R.L., Saitta, L. (eds.) Proceedings of the 16th Eureopean
Conference on Artificial Intelligence, ECAI’2004, including Prestigious Applicants
of Intelligent Systems, PAIS 2004, Valencia, Spain, August 22-27, 2004. pp. 328–
332. IOS Press (2004)

17. Darwiche, A.: SDD: A new canonical representation of propositional knowledge
bases. In: Walsh, T. (ed.) IJCAI 2011, Proceedings of the 22nd International
Joint Conference on Artificial Intelligence, Barcelona, Catalonia, Spain, July 16-22,
2011. pp. 819–826. IJCAI/AAAI (2011). https://doi.org/10.5591/978-1-57735-516-
8/IJCAI11-143

18. Dudek, J.M., Dueñas-Osorio, L., Vardi, M.Y.: Efficient contraction of large ten-
sor networks for weighted model counting through graph decompositions. CoRR
abs/1908.04381 (2019)

19. Dudek, J.M., Phan, V., Vardi, M.Y.: ADDMC: weighted model counting with
algebraic decision diagrams. In: The Thirty-Fourth AAAI Conference on Ar-
tificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications
of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Sympo-
sium on Educational Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020. pp. 1468–1476. AAAI Press (2020),
https://aaai.org/ojs/index.php/AAAI/article/view/5505

20. Dudek, J.M., Phan, V.H.N., Vardi, M.Y.: DPMC: weighted model counting
by dynamic programming on project-join trees. In: Simonis, H. (ed.) Princi-
ples and Practice of Constraint Programming - 26th International Conference,
CP 2020, Louvain-la-Neuve, Belgium, September 7-11, 2020, Proceedings. Lec-
ture Notes in Computer Science, vol. 12333, pp. 211–230. Springer (2020).
https://doi.org/10.1007/978-3-030-58475-7 13

21. Fierens, D., Van den Broeck, G., Renkens, J., Shterionov, D.S., Gutmann, B.,
Thon, I., Janssens, G., De Raedt, L.: Inference and learning in probabilistic logic
programs using weighted Boolean formulas. Theory Pract. Log. Program. 15(3),
358–401 (2015). https://doi.org/10.1017/S1471068414000076

22. Gogate, V., Domingos, P.M.: Formula-based probabilistic inference. In: Grünwald,
P., Spirtes, P. (eds.) UAI 2010, Proceedings of the Twenty-Sixth Conference on
Uncertainty in Artificial Intelligence, Catalina Island, CA, USA, July 8-11, 2010.
pp. 210–219. AUAI Press (2010)

23. Gogate, V., Domingos, P.M.: Approximation by quantization. In: Cozman, F.G.,
Pfeffer, A. (eds.) UAI 2011, Proceedings of the Twenty-Seventh Conference on
Uncertainty in Artificial Intelligence, Barcelona, Spain, July 14-17, 2011. pp. 247–
255. AUAI Press (2011)



18 P. Dilkas and V. Belle

24. Gogate, V., Domingos, P.M.: Probabilistic theorem proving. Commun. ACM 59(7),
107–115 (2016). https://doi.org/10.1145/2936726

25. Hoey, J., St-Aubin, R., Hu, A.J., Boutilier, C.: SPUDD: stochastic planning using
decision diagrams. In: Laskey, K.B., Prade, H. (eds.) UAI ’99: Proceedings of the
Fifteenth Conference on Uncertainty in Artificial Intelligence, Stockholm, Sweden,
July 30 - August 1, 1999. pp. 279–288. Morgan Kaufmann (1999)

26. Holtzen, S., Van den Broeck, G., Millstein, T.D.: Scaling exact inference for discrete
probabilistic programs. Proc. ACM Program. Lang. 4(OOPSLA), 140:1–140:31
(2020). https://doi.org/10.1145/3428208

27. Kimmig, A., Van den Broeck, G., De Raedt, L.: Algebraic model counting. J. Appl.
Log. 22, 46–62 (2017). https://doi.org/10.1016/j.jal.2016.11.031

28. Kolb, S., Mladenov, M., Sanner, S., Belle, V., Kersting, K.: Efficient sym-
bolic integration for probabilistic inference. In: Lang, J. (ed.) Proceedings of
the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJ-
CAI 2018, July 13-19, 2018, Stockholm, Sweden. pp. 5031–5037. ijcai.org (2018).
https://doi.org/10.24963/ijcai.2018/698

29. Oztok, U., Darwiche, A.: A top-down compiler for sentential decision dia-
grams. In: Yang, Q., Wooldridge, M.J. (eds.) Proceedings of the Twenty-
Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015,
Buenos Aires, Argentina, July 25-31, 2015. pp. 3141–3148. AAAI Press (2015),
http://ijcai.org/Abstract/15/443

30. Poon, H., Domingos, P.M.: Sum-product networks: A new deep architecture. In:
Cozman, F.G., Pfeffer, A. (eds.) UAI 2011, Proceedings of the Twenty-Seventh
Conference on Uncertainty in Artificial Intelligence, Barcelona, Spain, July 14-17,
2011. pp. 337–346. AUAI Press (2011)

31. Sang, T., Bacchus, F., Beame, P., Kautz, H.A., Pitassi, T.: Combining compo-
nent caching and clause learning for effective model counting. In: SAT 2004 -
The Seventh International Conference on Theory and Applications of Satisfiabil-
ity Testing, 10-13 May 2004, Vancouver, BC, Canada, Online Proceedings (2004),
http://www.satisfiability.org/SAT04/programme/21.pdf

32. Sang, T., Beame, P., Kautz, H.A.: Performing Bayesian inference by weighted
model counting. In: Veloso, M.M., Kambhampati, S. (eds.) Proceedings, The Twen-
tieth National Conference on Artificial Intelligence and the Seventeenth Inno-
vative Applications of Artificial Intelligence Conference, July 9-13, 2005, Pitts-
burgh, Pennsylvania, USA. pp. 475–482. AAAI Press / The MIT Press (2005),
http://www.aaai.org/Library/AAAI/2005/aaai05-075.php

33. Sanner, S., Boutilier, C.: Practical solution techniques for first-order MDPs. Artif.
Intell. 173(5-6), 748–788 (2009). https://doi.org/10.1016/j.artint.2008.11.003

34. Sanner, S., Delgado, K.V., de Barros, L.N.: Symbolic dynamic programming for
discrete and continuous state MDPs. In: Cozman, F.G., Pfeffer, A. (eds.) UAI
2011, Proceedings of the Twenty-Seventh Conference on Uncertainty in Artificial
Intelligence, Barcelona, Spain, July 14-17, 2011. pp. 643–652. AUAI Press (2011)

35. Sanner, S., McAllester, D.A.: Affine algebraic decision diagrams (AADDs)
and their application to structured probabilistic inference. In: Kaelbling,
L.P., Saffiotti, A. (eds.) IJCAI-05, Proceedings of the Nineteenth Interna-
tional Joint Conference on Artificial Intelligence, Edinburgh, Scotland, UK,
July 30 - August 5, 2005. pp. 1384–1390. Professional Book Center (2005),
http://ijcai.org/Proceedings/05/Papers/1439.pdf

36. Van den Broeck, G., Taghipour, N., Meert, W., Davis, J., De Raedt, L.: Lifted prob-
abilistic inference by first-order knowledge compilation. In: Walsh, T. (ed.) IJCAI



Weighted Model Counting Without Parameter Variables 19

2011, Proceedings of the 22nd International Joint Conference on Artificial Intelli-
gence, Barcelona, Catalonia, Spain, July 16-22, 2011. pp. 2178–2185. IJCAI/AAAI
(2011). https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-363

37. Xu, J., Zhang, Z., Friedman, T., Liang, Y., Van den Broeck, G.: A semantic
loss function for deep learning with symbolic knowledge. In: Dy, J.G., Krause,
A. (eds.) Proceedings of the 35th International Conference on Machine Learn-
ing, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018. Pro-
ceedings of Machine Learning Research, vol. 80, pp. 5498–5507. PMLR (2018),
http://proceedings.mlr.press/v80/xu18h.html

38. Zhao, H., Melibari, M., Poupart, P.: On the relationship between sum-product
networks and Bayesian networks. In: Bach, F.R., Blei, D.M. (eds.) Proceedings of
the 32nd International Conference on Machine Learning, ICML 2015, Lille, France,
6-11 July 2015. JMLR Workshop and Conference Proceedings, vol. 37, pp. 116–124.
JMLR.org (2015), http://proceedings.mlr.press/v37/zhaoc15.html


