

Edinburgh Research Explorer

Weighted Model Counting with Conditional Weights for Bayesian
Networks
Citation for published version:
Dilkas, P & Belle, V 2021, Weighted Model Counting with Conditional Weights for Bayesian Networks. in C
de Campos & MH Maathuis (eds), Proceedings of the the 37th Conference on Uncertainty in Artificial
Intelligence (UAI 2021). vol. 161, Proceedings of Machine Learning Research, vol. 161, PMLR, New York,
United States, pp. 386-396, 37th Conference on Uncertainty in Artificial Intelligence, 27/07/21.
<https://proceedings.mlr.press/v161/dilkas21a.html>

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the the 37th Conference on Uncertainty in Artificial Intelligence (UAI 2021)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 25. Apr. 2022

https://proceedings.mlr.press/v161/dilkas21a.html
https://www.research.ed.ac.uk/en/publications/a966bf3b-0716-4e3f-aa41-017fd3a701fa

Weighted Model Counting with Conditional Weights for Bayesian Networks

Paulius Dilkas1 Vaishak Belle1

1University of Edinburgh, Edinburgh, UK

Abstract

Weighted model counting (WMC) has emerged as
the unifying inference mechanism across many
(probabilistic) domains. Encoding an inference
problem as an instance of WMC typically necessit-
ates adding extra literals and clauses. This is partly
so because the predominant definition of WMC
assigns weights to models based on weights on
literals, and this severely restricts what probabil-
ity distributions can be represented. We develop a
measure-theoretic perspective on WMC and pro-
pose a way to encode conditional weights on liter-
als analogously to conditional probabilities. This
representation can be as succinct as standard WMC
with weights on literals but can also expand as
needed to represent probability distributions with
less structure. To demonstrate the performance be-
nefits of conditional weights over the addition of
extra literals, we develop a new WMC encoding
for Bayesian networks and adapt a state-of-the-art
WMC algorithm ADDMC to the new format. Our
experiments show that the new encoding signific-
antly improves the performance of the algorithm
on most benchmark instances.

1 INTRODUCTION

Weighted model counting (WMC), i.e., an extension of
model counting (#SAT) that assigns a weight to every
model [Sang et al., 2005], has emerged as one of the most
dominant and competitive approaches for handling inference
tasks in a wide range of formalisms including Bayesian net-
works [Sang et al., 2005, Darwiche, 2009], probabilistic
graphical models more generally [Choi et al., 2013], and
probabilistic programs [Fierens et al., 2015, Holtzen et al.,
2020]. Over the last fifteen years, WMC has been extended
and generalised in many ways, e.g., to handle continuous

probability distributions [Belle et al., 2015], first-order prob-
abilistic theories [Van den Broeck et al., 2011, Gogate and
Domingos, 2016], and infinite domains [Belle, 2017]. Fur-
thermore, by generalising the notion of weights to an arbit-
rary semiring, a range of other problems are also captured
[Kimmig et al., 2017]. Exact WMC solvers typically rely on
either knowledge compilation [Oztok and Darwiche, 2015,
Lagniez and Marquis, 2017] or exhaustive DPLL search
[Sang et al., 2005], whereas approximate solvers work by
sampling [Chakraborty et al., 2014] and performing local
search [Wei and Selman, 2005].

The most well-known version of WMC assigns weights to
models based on weights on literals, i.e., the weight of a
model is the product of the weights of all literals in it. This
simplification is motivated by the fact that the number of
models scales exponentially with the number of atoms, so
listing the weight of every model is intractable. However,
this also severely restricts what probability distributions can
be represented. A common way to overcome this limitation
is by adding more literals. While we show that this is always
possible, we demonstrate that it can be significantly more
efficient to encode weights in a more flexible format instead.

After briefly reviewing the background in Section 2, in Sec-
tion 3 we describe three equivalent perspectives on the sub-
ject based on logic, set theory, and Boolean algebras. Fur-
thermore, we describe the space of functions on Boolean
algebras and various operations on those functions. Sec-
tion 4 introduces WMC as the problem of computing the
value of a measure on a Boolean algebra. We show that not
all measures can be represented using literal-based WMC,
but all Boolean algebras can be extended to make any meas-
ure representable in such a manner.

This new perspective allows us to not only encode any dis-
crete probability distribution but also improve inference
speed. In Section 5 we demonstrate this by developing a new
WMC encoding for Bayesian networks that uses conditional
weights on literals (in the spirit of conditional probabilities)
that have literal-based WMC as a special case. We prove

Accepted for the 37th Conference on Uncertainty in Artificial Intelligence (UAI 2021).

mailto:p.dilkas@sms.ed.ac.uk
mailto:vaishak@ed.ac.uk

the correctness of the encoding and show how a state-of-
the-art WMC solver ADDMC [Dudek et al., 2020a] can be
adapted to the new format. ADDMC is a recently-proposed
algorithm for WMC based on manipulating functions on
Boolean algebras using an efficient representation for such
functions known as algebraic decision diagrams (ADDs)
[Bahar et al., 1997]. ADDMC was already shown to be cap-
able of solving instances other solvers fail at and being the
fastest solver on the largest number of instances [Dudek
et al., 2020a]. Our experiments in Section 6 focus on further
improving the performance of ADDMC on instances that
originate from Bayesian networks. We show how our new
encoding improves inference on the vast majority of bench-
mark instances, often by one or two orders of magnitude.
We explain the performance benefits by showing how our
encoding has asymptotically fewer variables and ADDs.

2 RELATED WORK

Performing inference on Bayesian networks by encoding
them into instances of WMC is a well-established idea with
a history of almost twenty years. Five encodings have been
proposed so far (we will identify them based on the initials
of authors as well as publications years): d02 [Darwiche,
2002], sbk05 [Sang et al., 2005], cd05 [Chavira and Dar-
wiche, 2005], cd06 [Chavira and Darwiche, 2006], and
bklm16 [Bart et al., 2016]1. Below we summarise the ob-
served performance differences among them.

Sang et al. [2005] claim that sbk05 is a smaller encoding
than d02 with respect to both the number of clauses and
the number of variables but provide no experimental com-
parison. Chavira and Darwiche [2005] compare cd05 with
d02 by measuring the time it takes to compile either encod-
ing into an arithmetic circuit. They show that cd05 always
compiles faster and results in a smaller arithmetic circuit
(as measured by the number of edges). In their subsequent
paper, the same authors perform two sets of experiments
(that are relevant to this summary) [Chavira and Darwiche,
2006]. First, they compile cd05 and cd06 encodings into
d-DNNF (i.e., deterministic decomposable negation normal
form [Darwiche, 2001]), measuring both compilation time
and numbers of edges in the d-DNNF diagram. The results
are mostly in favour of cd06. Second, they compare the in-
ference time of sbk05 run with Cachet [Sang et al., 2004]
with the compile times of cd05 and cd06, but only on
five (types of) instances. In these experiments, cd06 is al-
ways faster than cd05, while the comparison with sbk05
is mixed. The performance difference between sbk05 and
cd05 is even harder to judge: sbk05 is better on three out
of five instances and worse on the remaining two. Finally,
Bart et al. [2016] introduce bklm16 and show that it has

1Vomlel and Tichavský [2013] also propose an encoding, but
only for networks of a particular bipartite structure and without
any evaluation.

both fewer variables and fewer clauses than cd06. Their
experiments show bklm16 to be superior to cd06 with
respect to both compilation time and encoding size when
both are compiled using c2d2 [Darwiche, 2004] but inferior
to cd06 when cd06 is compiled using Ace3 (which still
uses c2d but considers the structure of the Bayesian network
along with its encoding). Our experiments in Section 6 con-
firm some of the findings outlined in this section while also
showing that the performance of each encoding depends on
the WMC algorithm in use, and smaller encodings are not
necessarily faster.

While in this paper we focus on measure-theoretic founda-
tions and propose a new encoding for Bayesian networks,
a related line of work [Dilkas and Belle, 2021]—motivated
by the same issue of WMC encodings having both more
variables and more clauses as a consequence of having to
conform to an unnecessarily restrictive format—shows how
these variables and clauses can be removed from (most)
already-existing Bayesian network encodings.

3 BOOLEAN ALGEBRAS, POWER SETS,
AND PROPOSITIONAL LOGIC

In this section, we give a brief introduction to two alternat-
ive ways to think about logical constructs such as models
and formulas. Let us consider a simple example of a pro-
positional logic L with only two atoms a and b, and let
U = {a, b}. Then 2U , the power set of U , is the set of all
models of L, and 22U

is the set of all formulas. These sets
can also be represented as Boolean algebras (e.g., using
the syntax (22U

,∧,∨,¬,⊥,>)) with a partial order ≤ that
corresponds to set inclusion⊆—see Table 1 for examples of
how various elements can be represented in both notations.
Most importantly, note that the word atom has completely
different meanings in logic and Boolean algebras. An atom
in L is an atomic formula, i.e., an element of U , whereas
an atom in a Boolean algebra is (in set-theoretic terms) a
singleton set. For instance, an atom in 22U

corresponds to
a model of L, i.e., an element of 2U . Unless referring spe-
cifically to a logic, we will use the algebraic definition of an
atom and refer to logical atoms as variables. In the rest of
the paper, for any set U , we will use set-theoretic notation
for 2U and Boolean-algebraic notation for 22U

, except for
(Boolean) atoms in 22U

that are denoted as {x} for some
model x ∈ 2U .

3.1 FUNCTIONS ON BOOLEAN ALGEBRAS

We also consider the space of all functions from any Boolean
algebra to R≥0 together with some operations on those
functions. They will be instrumental in defining WMC as a

2http://reasoning.cs.ucla.edu/c2d/
3http://reasoning.cs.ucla.edu/ace/

http://reasoning.cs.ucla.edu/c2d/
http://reasoning.cs.ucla.edu/ace/

Table 1: Notation for a logic with two atoms. The elements in both columns are listed in the same order.

Name in logic Boolean-algebraic notation Set-theoretic notation

Atoms (elements of U) a, b a, b
Models (elements of 2U) ¬a ∧ ¬b, a ∧ ¬b,¬a ∧ b, a ∧ b ∅, {a}, {b}, {a, b}

> {∅, {a}, {b}, {a, b}}
¬a ∨ ¬b, a→ b {∅, {a}, {b}}, {∅, {b}, {a, b}}
b→ a, a ∨ b {∅, {a}, {a, b}}, {{a}, {b}, {a, b}}
¬b,¬a, a↔ b {∅, {a}}, {∅, {b}}, {∅, {a, b}}

(a ∧ ¬b) ∨ (b ∧ ¬a), a, b {{a}, {b}}, {{a}, {a, b}}, {{b}, {a, b}}
¬a ∧ ¬b, a ∧ ¬b,¬a ∧ b, a ∧ b {∅}, {{a}}, {{b}}, {{a, b}}

Formulas (elements of 22U

)

⊥ ∅

measure in Section 4 and can be efficiently represented using
ADDs. Furthermore, all of the operations are supported by
CUDD [Somenzi, 2015]—a package used by ADDMC for
ADD manipulation [Dudek et al., 2020a]. The definitions of
multiplication and projection are as defined by Dudek et al.
[2020a], while others are new.

Definition 1 (Operations on functions). Let α : 2X → R≥0

and β : 2Y → R≥0 be functions, p ∈ R≥0, and x ∈ X . We
define the following operations:

Addition: α+β : 2X∪Y → R≥0 is such that (α+β)(T) =
α(T ∩X) + β(T ∩ Y) for all T ∈ 2X∪Y .

Multiplication: α · β : 2X∪Y → R≥0 is such that (α ·
β)(T) = α(T ∩X) · β(T ∩ Y) for all T ∈ 2X∪Y .

Scalar multiplication: pα : 2X → R≥0 is such that
(pα)(T) = p · α(T) for all T ∈ 2X .

Complement: α : 2X → R≥0 is such that α(T) = 1 −
α(T) for all T ∈ 2X .

Projection: ∃xα : 2X\{x} → R≥0 is such that
(∃xα)(T) = α(T) + α(T ∪ {x}) for all T ∈ 2X\{x}.
For any Z = {z1, . . . , zn} ⊆ X , we write ∃Z to mean
∃z1 . . . ∃zn .

In summary, addition, multiplication, and scalar multiplica-
tion are defined pointwise, while complement and projection
interact with the algebraic structure of the domains 2X and
2Y . Specifically, note that both addition and multiplication
are both associative and commutative. We end the discus-
sion on function spaces by defining several special functions:
unit 1: 2∅ → R≥0 defined as 1(∅) = 1, zero 0: 2∅ → R≥0

defined as 0(∅) = 0, and function [a] : 2{a} → R≥0 defined
as [a](∅) = 0, [a]({a}) = 1 for any a. Henceforth, for any
function α : 2X → R≥0 and any set T , we will write α(T)
to mean α(T ∩X).

4 WMC AS A MEASURE ON A
BOOLEAN ALGEBRA

In this section, we introduce an alternative definition of
WMC and demonstrate how it relates to the standard one.
Let U be a set. A measure is a function µ : 22U → R≥0

such that µ(⊥) = 0, and µ(a ∨ b) = µ(a) + µ(b) for all
a, b ∈ 22U

whenever a ∧ b = ⊥ [Gaifman, 1964, Jech,
1997]. A weight function is a function ν : 2U → R≥0. A
weight function is factored if ν =

∏
x∈U νx for some func-

tions νx : 2{x} → R≥0, x ∈ U . We say that a weight func-
tion ν : 2U → R≥0 induces a measure µν : 22U → R≥0 if
µν(x) =

∑
{u}≤x ν(u).

Theorem 1. The function µν is a measure.

Finally, a measure µ : 22U → R≥0 is factorable if there
exists a factored weight function ν : 2U → R≥0 that induces
µ. In this formulation, WMC corresponds to the process of
calculating the value of µν(x) for some x ∈ 22U

with a
given definition of ν.

Relation to the classical (logic-based) view of WMC.
Let L be a propositional logic with two atoms a and b as
in Section 3 and w : {a, b,¬a,¬b} → R≥0 a weight func-
tion defined as w(a) = 0.3, w(¬a) = 0.7, w(b) = 0.2,
w(¬b) = 0.8. Furthermore, let ∆ be a theory in L with a
sole axiom a. Then ∆ has two models: {a, b} and {a,¬b}
and its WMC [Chavira and Darwiche, 2008] is

WMC(∆) =
∑
ω|=∆

∏
ω|=l

w(l)

= w(a)w(b) + w(a)w(¬b) = 0.3.

(1)

Alternatively, we can define νa : 2{a} → R≥0 as νa({a}) =
0.3, νa(∅) = 0.7 and νb : 2{b} → R≥0 as νb({b}) = 0.2,
νb(∅) = 0.8. Let µ be the measure on 22U

induced by
ν = νa · νb. Then, equivalently to Eq. (1), we can write

µ(a) = ν({a, b}) + ν({a})
= νa({a})νb({b}) + νa({a})νb(∅) = 0.3.

Thus, one can equivalently think of WMC as summing over
models of a theory or over atoms below an element of a
Boolean algebra.

4.1 NOT ALL MEASURES ARE FACTORABLE

Using this new definition of WMC, we can show that WMC
with weights defined on literals is only able to capture a
subset of all possible measures on a Boolean algebra. This
can be demonstrated with a simple example.

Example 1. Let U = {a, b} be a set of atoms and
µ : 22U → R≥0 a measure defined as µ(a ∧ b) = 0.72,
µ(a∧¬b) = 0.18, µ(¬a∧b) = 0.07, µ(¬a∧¬b) = 0.03.4 If
µ could be represented using literal-weight (factored) WMC,
we would have to find two weight functions νa : 2{a} →
R≥0 and νb : 2{b} → R≥0 such that ν = νa · νb induces µ,
i.e., νa and νb would have to satisfy this system of equations:

νa({a}) · νb({b}) = 0.72

νa({a}) · νb(∅) = 0.18

νa(∅) · νb({b}) = 0.07

νa(∅) · νb(∅) = 0.03,

which has no solutions.

Alternatively, we can let b depend on a and consider weight
functions νa : 2{a} → R≥0 and νb : 2{a,b} → R≥0 defined
as νa({a}) = 0.9, νa(∅) = 0.1, and νb({a, b}) = 0.8,
νb({a}) = 0.2, νb({b}) = 0.7, νb(∅) = 0.3. One can easily
check that with these definitions ν indeed induces µ.

Note that in this case, we chose to interpret νb as Pr(b | a)
while—with a different definition of νb that represents the
joint probability distribution Pr(a, b)—νb by itself could in-
duce µ. In general, however, factorising the full weight func-
tion into several smaller functions often results in weight
functions with smaller domains which leads to increased ef-
ficiency and decreased memory usage [Dudek et al., 2020a].
We can easily generalise this example further.

Theorem 2. For any set U such that |U | ≥ 2, there exists a
non-factorable measure 22U → R≥0.

Since many measures of interest may not be factorable, a
well-known way to encode them into instances of WMC is
by adding more literals [Chavira and Darwiche, 2008]. We
can use the measure-theoretic perspective on WMC to show
that this is always possible, however, as ensuing sections
will demonstrate, it can make the inference task much harder
in practice.5

4The value of µ on any other element of 22
U

can be deduced
from the definition of a measure.

5The proofs of this and other theoretical results can be found
in the supplementary material.

Theorem 3. For any set U and measure µ : 22U → R≥0,
there exists a set V ⊇ U , a factorable measure µ′ : 22V →
R≥0, and a formula f ∈ 22V

such that µ(x) = µ′(x ∧ f)

for all formulas x ∈ 22U

.

5 ENCODING BAYESIAN NETWORKS
USING CONDITIONAL WEIGHTS

In this section, we describe a way to encode Bayesian net-
works into WMC without restricting oneself to factorable
measures and thus having to add extra variables. We will
refer to it as cw. A Bayesian network is a directed acyc-
lic graph with random variables as vertices that defines a
probability distribution over them. Let V denote this set of
random variables. For any random variableX ∈ V , let imX
denote its set of values and pa(X) its set of parents. The
full probability distribution is then equal to

∏
X∈V Pr(X |

pa(X)). For discrete Bayesian networks (and we only con-
sider discrete networks in this paper), each factor of this
product can be represented by a CPT. See Fig. 1 for an ex-
ample Bayesian network that we will refer to throughout
this section. For this network, V = {W,F, T}, pa(W) = ∅,
pa(F) = pa(T) = {W}, imW = imF = {0, 1}, and
imT = {l,m, h}.

Definition 2 (Indicator variables). Let X ∈ V be a random
variable. If X is binary (i.e., | imX| = 2), we can arbitrary
identify one of the values as 1 and the other one as 0 (i.e,
imX ∼= {0, 1}). Then X can be represented by a single
indicator variable λX=1. For notational simplicity, for any
set S, we write λX=0 ∈ S or S = {λX=0, . . . } to mean
λX=1 6∈ S.

On the other hand, if X is not binary, we represent X with
| imX| indicator variables, one for each value. We let

E(X) =

{
{λX=1} if | imX| = 2

{λX=x | x ∈ imX} otherwise.

denote the set of indicator variables for X and E∗(X) =
E(X) ∪

⋃
Y ∈pa(X) E(Y) denote the set of indicator vari-

ables for X and its parents in the Bayesian network. Fi-
nally, let U =

⋃
X∈V E(X) denote the set of all indic-

ator variables for all random variables in the Bayesian net-
work. For example, in the Bayesian network from Fig. 1,
E∗(T) = {λT=l, λT=m, λT=h, λW=1}.

Algorithm 1 shows how a Bayesian network with vertices
V can be represented as a weight function φ : 2U → R≥0.
The algorithm begins with the unit function and multiplies
it by CPTX : 2E

∗(X) → R≥0 for each random variable
X ∈ V . We call each such function a conditional weight
function as it represents a conditional probability distribu-
tion. However, the distinction is primarily a semantic one: a
function 2{a,b} → R≥0 can represent Pr(a | b), Pr(b | a),
or something else entirely, e.g., Pr(a ∧ b), Pr(a ∨ b), etc.

W

F T

w Pr(W = w)

1 0.5
0 0.5

w f Pr(F = f |W = w)

1 1 0.6
1 0 0.4
0 1 0.1
0 0 0.9

w t Pr(T = t |W = w)

1 l 0.2
1 m 0.4
1 h 0.4
0 l 0.6
0 m 0.3
0 h 0.1

Figure 1: An example Bayesian network with its CPTs.

Algorithm 1: Encoding a Bayesian network.
Data: vertices V , probability distribution Pr
Result: φ : 2U → R≥0

φ← 1;
for X ∈ V do

let pa(X) = {Y1, . . . , Yn};
CPTX ← 0;
if | imX| = 2 then

for (yi)
n
i=1 ∈

∏n
i=1 imYi do

p1 ← Pr(X = 1 | y1, . . . , yn);
p0 ← Pr(X 6= 1 | y1, . . . , yn);
CPTX ← CPTX

+p1[λX=1] ·
∏n
i=1[λYi=yi]

+p0[λX=1] ·
∏n
i=1[λYi=yi];

else
let imX = {x1, . . . , xm};
for x ∈ imX and (yi)

n
i=1 ∈

∏n
i=1 imYi do

px ← Pr(X = x | y1, . . . , yn);
CPTX ← CPTX

+px[λX=x] ·
∏n
i=1[λYi=yi]

+[λX=x] ·
∏n
i=1[λYi=yi];

CPTX ← CPTX · (
∑m
i=1[λX=xi

])

·
∏m
i=1

∏m
j=i+1([λX=xi] + [λX=xj]);

φ← φ · CPTX ;

return φ;

For a binary random variable X , CPTX is simply a sum of
smaller functions, one for each row of the CPT. If X has
more than two values, we also multiply CPTX by ‘clause’
functions that restrict the value of φ(T) to zero whenever
|E(X) ∩ T | 6= 1, i.e., we add mutual exclusivity constraints
that ensure that each random variable is associated with ex-
actly one value. Note that Chavira and Darwiche [2007] use
the same ADD representation of CPTs for their compilation
algorithm based on variable elimination. For the example

Bayesian network in Fig. 1, we get:

CPTF = 0.6[λF=1] · [λW=1] + 0.4[λF=0] · [λW=1]

+ 0.1[λF=1] · [λW=0] + 0.9[λF=0] · [λW=0],

CPTT = ([λT=l] + [λT=m] + [λT=h])

· ([λT=l] + [λT=m]) · ([λT=l] + [λT=h])

· ([λT=m] + [λT=h]) ·

5.1 CORRECTNESS

Algorithm 1 produces a function with a Boolean algebra as
its domain. This function can be represented by an ADD
[Bahar et al., 1997]. ADDMC takes an ADD ψ : 2U →
R≥0 (expressed as a product of smaller ADDs) and returns
(∃Uψ)(∅) [Dudek et al., 2020a]. In this section, we prove
that the function φ produced by Algorithm 1 can be used by
ADDMC to correctly compute any marginal probability of
the Bayesian network that was encoded as φ.6 We begin with
Lemma 1 which shows that any conditional weight function
produces the right answer when given a valid encoding of
variable-value assignments relevant to the CPT.

Lemma 1. Let X ∈ V be a random variable with par-
ents pa(X) = {Y1, . . . , Yn}. Then CPTX : 2E

∗(X) →
R≥0 is such that for any x ∈ imX and (y1, . . . , yn) ∈∏n
i=1 imYi,

CPTX(T) = Pr(X = x | Y1 = y1, . . . , Yn = yn),

where T = {λX=x} ∪ {λYi=yi | i = 1, . . . , n}.

Now, Lemma 2 shows that φ represents the full probability
distribution of the Bayesian network, i.e., it gives the right
probabilities for the right inputs and zero otherwise.

Lemma 2. Let V = {X1, . . . , Xn}. Then

φ(T) =

Pr(x1, . . . , xn)
if T = {λXi=xi

}ni=1 for

some (xi)
n
i=1 ∈

∏n
i=1 imXi

0 otherwise,

for all T ∈ 2U .
6Note that it can just as well compute any probability expressed

using the random variables in V .

We end with Theorem 4 that shows how φ can be combined
with an encoding of a single variable-value assignment so
that ADDMC [Dudek et al., 2020a] would compute its mar-
ginal probability.

Theorem 4. For any X ∈ V and x ∈ imX ,

(∃U (φ · [λX=x]))(∅) = Pr(X = x).

5.2 TEXTUAL REPRESENTATION

Algorithm 1 encodes a Bayesian network into a function on
a Boolean algebra, but how does it relate to the standard in-
terpretation of a WMC encoding as a formula in conjunctive
normal form (CNF) together with a collection of weights?
The factors of φ that restrict the values of indicator variables
for non-binary random variables are already expressed as a
product of sums of 0/1-valued functions, i.e., a kind of CNF.
Disregarding these functions, each conditional weight func-
tion CPTX is represented by a sum with a term for every
subset of E∗(X). To encode these terms, we introduce ex-
tended weight clauses to the WMC format used by Cachet
[Sang et al., 2004]. For instance, here is a representation of
the Bayesian network from Fig. 1:

λT=l λT=m λT=h 0
−λT=l −λT=m 0
−λT=l −λT=h 0
−λT=m −λT=h 0

w λW=1 0.5 0.5
w λF=1 λW=1 0.6 0.4
w λF=1 −λW=1 0.1 0.9
w λT=l λW=1 0.2 1
w λT=m λW=1 0.4 1
w λT=h λW=1 0.4 1
w λT=l −λW=1 0.6 1
w λT=m −λW=1 0.3 1
w λT=h −λW=1 0.1 1

where each indicator variable is eventually replaced with a
unique positive integer. Each line prefixed with a w can be
split into four parts: the ‘main’ variable (always not negated),
conditions (possibly none), and two weights. For example,
the line

w λT=m −λW=1 0.3 1

encodes the function 0.3[λT=m] · [λW=1] + 1[λT=m] ·
[λW=1] and can be interpreted as defining two conditional
weights: ν(T = m | W = 0) = 0.3, and ν(T 6= m |
W = 0) = 1, the former of which corresponds to a row in
the CPT of T while the latter is artificially added as part
of the encoding. In our encoding of Bayesian networks, it
is always the case that, in each weight clause, either both
weights sum to one, or the second weight is equal to one.
Finally, note that the measure induced by these weights is
not probabilistic (i.e., µ(>) 6= 1) by itself, but it becomes
probabilistic when combined with the additional clauses
that restrict what combinations of indicator variables can
co-occur.

5.3 CHANGES TO ADDMC

Here we describe two changes to ADDMC7 [Dudek et al.,
2020a] needed to adapt it to the new format.

First, ADDMC constructs the primal (a.k.a. Gaifman) graph
of the input CNF formula as an aid for the algorithm’s
heuristics. This graph has as vertices the variables of the
formula, and there is an edge between two variables u and v
if there is a clause in the formula that contains both u and v.
We extend this definition to functions on Boolean algebras,
i.e., the factors of φ. For any pair of distinct variables u, v ∈
U , we draw an edge between them in the primal graph
if there is a function α : 2X → R≥0 that is a factor of φ
such that u, v ∈ X . For instance, a factor such as CPTX
will enable edges between all distinct pairs of variables
in E∗(X). Second, even though the function φ produced
by Algorithm 1 is constructed to have 2U as its domain,
sometimes the domain is effectively reduced to 2V for some
V ⊂ U by the ADD manipulation algorithms that optimise
the ADD representation of a function. For a simple example,
consider α : 2{a} → R≥0 defined as α({a}) = α(∅) =
0.5. Then α can be reduced to α′ : 2∅ → R≥0 defined as
α′(∅) = 0.5. To compensate for these reductions, for the
original WMC format with a weight function w : U ∪ {¬u |
u ∈ U} → R≥0, ADDMC would multiply its computed
answer by

∏
u∈U\V w(u) + w(¬u). With the new WMC

format, we instead multiply the answer by 2|U\V |. Each
‘excluded’ variable u ∈ U \ V satisfies two properties: all
weights associated with u are equal to 0.5 (otherwise the
corresponding CPT would depend on u, and u would not
be excluded), and all other CPTs are independent of u (or
they may have a trivial dependence, where the probability
stays the same if u is replaced with its complement). Thus,
the CPT that corresponds to u still multiplies the weight of
every atom in the Boolean algebra by 0.5, but the number
of atoms under consideration is halved. To correct for this,
we multiply the final answer by two for every u ∈ U \ V .

6 EXPERIMENTAL RESULTS

We compare the six WMC encodings for Bayesian networks
when run with both ADDMC [Dudek et al., 2020a] and the
WMC algorithms used in the original papers.8 We compare
the encodings with respect to the total time it takes to encode
a Bayesian network, compile it or run a WMC algorithm
on it, and extract the (numerical) answer. Note that while
all five papers that introduce other encodings include exper-
imental comparisons of encoding size, that is not feasible
with ADDMC as even instances that are fully solved in less

7https://github.com/vardigroup/ADDMC
8Both cd05 and cd06 cannot be run with most WMC al-

gorithms including ADDMC because these encodings allow for
additional models that the WMC algorithm is supposed to ignore
[Chavira and Darwiche, 2005, 2006].

https://github.com/vardigroup/ADDMC

0

500

1000

0.1 1 10 100 1000
Time (s)

In
st

an
ce

s
so

lv
ed

Algorithm & Encoding

Ace + cd05

Ace + cd06

Ace + d02

ADDMC + bklm16

ADDMC + cw

ADDMC + d02

ADDMC + sbk05

c2d + bklm16

Cachet + sbk05

Figure 2: Cumulative numbers of instances solved by combinations of algorithms and encodings over time.

0.1

10

1000

0.1 10 1000
Ace + cd06 time (s)

A
D

D
M

C
+
c
w

tim
e

(s
)

0.1

10

1000

0.1 10 1000
ADDMC + sbk05 time (s)

A
D

D
M

C
+
c
w

tim
e

(s
)

Data set

DQMR

Grid

Mastermind

Non-binary

Other binary

Random Blocks

Figure 3: An instance-by-instance comparison between ADDMC + cw and the best overall combination of algorithm and
encoding (Ace + cd06, on the left) as well as the second-best encoding for ADDMC (sbk05, on the right).

Table 2: The numbers of instances (out of 1466) solved
by each combination of algorithm and encoding (uniquely,
faster than others, and in total).

Algorithm & Encoding Unique Fastest Total

Ace + cd05 0 55 1169
Ace + cd06 34 218 1259
Ace + d02 0 46 993
ADDMC + bklm16 0 29 617
ADDMC + cw 14 770 919
ADDMC + d02 0 0 703
ADDMC + sbk05 0 0 729
c2d + bklm16 0 3 1017
Cachet + sbk05 13 229 928

than 0.1 s are too big to build the full ADD within reason-
able time and memory limits. The experiments were run on
a computing cluster with Intel Xeon Gold 6138 and Intel
Xeon E5-2630 processors9 running Scientific Linux 7 with a
32 GiB memory limit and a 1000 s timeout on both encoding
and inference. For inference, we use Ace for cd05 [Chavira
and Darwiche, 2005], cd06 [Chavira and Darwiche, 2006],
and d02 [Darwiche, 2002]; Cachet10 [Sang et al., 2004] for
sbk05 [Sang et al., 2005]; and c2d [Darwiche, 2004] for
compilation and query-dnnf 11 for answer computation for
bklm16 [Bart et al., 2016]. For encoding, we use bn2cnf
12 for bklm16, and Ace for all other encodings (except for
cw, which is implemented in Python).

9Each instance is run on the same processor for all encodings.
10https://cs.rochester.edu/u/kautz/Cachet/
11http://www.cril.univ-artois.fr/kc/

d-DNNF-reasoner.html
12http://www.cril.univ-artois.fr/KC/

bn2cnf.html

https://cs.rochester.edu/u/kautz/Cachet/
http://www.cril.univ-artois.fr/kc/d-DNNF-reasoner.html
http://www.cril.univ-artois.fr/kc/d-DNNF-reasoner.html
http://www.cril.univ-artois.fr/KC/bn2cnf.html
http://www.cril.univ-artois.fr/KC/bn2cnf.html

Ace was not used to encode evidence, as preliminary exper-
iments revealed that the evidence-encoding implementation
contains bugs that can lead to incorrect answers or a Java
exception being thrown on some instances of the data set
(and the source code is not publicly available). Instead, we
simply list all the evidence as additional clauses in the en-
coding. Furthermore, to ensure that bklm16 [Bart et al.,
2016] (whether run with ADDMC [Dudek et al., 2020a]
or c2d [Darwiche, 2004]) returns correct answers on most
instances, we had to disable one of the improvements that
bklm16 brings over cd06 [Chavira and Darwiche, 2006],
namely, the construction of a scaling factor that ‘absorbs’
one probability from each CDT [Bart et al., 2016]. For real-
istic benchmark instances, this scaling factor can easily be
below 10−30, and thus would require arbitrary-precision
floating-point arithmetic to be usable. Even a toy Bayesian
network with seven binary independent variables with prob-
abilities 0.1 and 0.9 is enough for bn2cnf to output precisely
zero as the scaling factor. We note that this issue likely re-
mained unnoticed because Bart et al. [2016] did not attempt
to compute numerical answers in their experiments.

For each Bayesian network, we need to choose a probabil-
ity to compute. Whenever a Bayesian network comes with
an evidence file, we compute the probability of evidence.
Otherwise, let X denote the last-mentioned vertex in the
Bayesian network. If true ∈ imX , then we compute the
marginal probability of X = true. Otherwise, we pick the
value of X which is listed first and calculate its marginal
probability.

For experimental data, we use the Bayesian networks avail-
able with Ace and Cachet [Sang et al., 2004], most of which
happen to be binary. We classify them into the following
seven categories: • DQMR and • Grid networks as described
by Sang et al. [2005], • Mastermind, and • Random Blocks
from the work of Chavira et al. [2006], • remaining bin-
ary Bayesian networks that include Plan Recognition [Sang
et al., 2005], Friends and Smokers, Students and Professors
[Chavira et al., 2006], and tcc4f, and • non-binary classic
Bayesian networks (alarm, diabetes, hailfinder,
mildew, munin1–4, pathfinder, pigs, water).

Figure 2 shows that cd05 [Chavira and Darwiche, 2005]
and cd06 [Chavira and Darwiche, 2006] (when run with
Ace) are in the lead, while ADDMC [Dudek et al., 2020a]
significantly underperforms when combined with any of
the previous encodings. Our encoding cw significantly im-
proves the performance of ADDMC, making ADDMC + cw
comparable to Ace + d02, c2d + bklm16, and Cachet +
sbk05. Furthermore, Table 2 shows that, while Ace +
cd06 managed to solve the most instances, ADDMC + cw
was the best-performing algorithm-encoding combination
on the largest number of instances. The scatter plot on the
left-hand side of Fig. 3 add to this by showing that cw is
particularly promising on Grid networks and tackles all
DQMR instances in less than a second. The scatter plot on

Table 3: Asymptotic upper bounds on the numbers of vari-
ables and clauses/ADDs for each encoding.

Encoding(s) Variables Clauses/ADDs

bklm16, cd05, cd06,
sbk05

O(nvd+1) O(nvd+1)

cw O(nv) O(nv2)
d02 O(nvd+1) O(ndvd+1)

the right-hand side of Fig. 3 shows that cw is better than
sbk05 [Sang et al., 2005] (i.e., the second-best encoding
for ADDMC) on the majority of instances. Seeing how, e.g.,
DQMR instances are trivial for ADDMC + cw but hard
for Ace + cd06, and vice versa for Mastermind instances,
we conclude that the best-performing algorithm-encoding
combination depends significantly on (as-of-yet unknown)
properties of the Bayesian networks.

We can explain what makes ADDMC [Dudek et al., 2020a]
run significantly faster with cw than with any other encod-
ing by considering asymptotic upper bounds on the num-
bers of variables and ADDs based on the size and structure
of the Bayesian network. Let n = |V| be the number of
vertices in the Bayesian network, d = maxX∈V |pa(X)|
the maximum in-degree (i.e., the number of parents), and
v = maxX∈V | imX| the maximum number of values per
variable. Table 3 shows how cw has fewer variables and
fewer ADDs than any other encoding. We conjecture that it
is primarily the reduced number of variables that makes the
ADDMC variable ordering heuristics much more effective.
Note that these are upper bounds and most encodings (in-
cluding cw) can be smaller in certain situations (e.g., with
binary random variables or when a CPT has repeating prob-
abilities). We equate clauses and ADDs (more specifically,
factors of the function φ from Algorithm 1) here because
ADDMC interprets each clause of any WMC encoding as a
multiplicative factor of the ADD that represents the entire
WMC instance [Dudek et al., 2020a]. For literal-weight en-
codings, each weight is also a factor, but that does not affect
our asymptotic bounds.

7 CONCLUSIONS AND FUTURE WORK

WMC was originally motivated by an appeal to the success
of SAT solvers in efficiently tackling an NP-complete prob-
lem [Sang et al., 2005]. ADDMC does not rely on SAT-based
algorithmic techniques [Dudek et al., 2020a], and our pro-
posed format diverges even more from the DIMACS CNF
format for Boolean formulas. To what extent are SAT-based
methods still applicable? The answer depends significantly
on the problem domain. For Bayesian networks, the rules
describing that each random variable can only be associated
with exactly one value were still encoded as clauses. As
has been noted previously [Chavira and Darwiche, 2006],

rows in CPTs with probabilities equal to zero or one can
be represented as clauses as well. Therefore, our work can
be seen as proposing a middle ground between #SAT and
probabilistic inference.

While we chose ADDMC [Dudek et al., 2020a] as the WMC
algorithm and Bayesian networks as a canonical example of
a probabilistic inference task, these are only examples meant
to illustrate the broader idea that choosing a more expressive
representation of weights can outperform increasing the size
of the problem to keep the weights simple. Indeed, in this
work, we have provided a new theoretical perspective on
the expressive power of WMC and illustrated the empirical
benefits of that perspective. Perhaps the same idea could
be adapted to other inference problem domains such as
probabilistic programs [Fierens et al., 2015, Holtzen et al.,
2020] as well as to search-based solvers such as Cachet
[Sang et al., 2004] and DPMC —an extension to ADDMC
that adds support for computations based on tensors (rather
than ADDs) and planning based on tree decompositions
Dudek et al. [2020b].

Author Contributions

P. Dilkas conceived the idea, ran the experiments, and wrote
the paper. V. Belle supervised the work.

Acknowledgements

The first author was supported by the EPSRC Centre for
Doctoral Training in Robotics and Autonomous Systems,
funded by the UK Engineering and Physical Sciences Re-
search Council (grant EP/L016834/1). The second author
was supported by a Royal Society University Research Fel-
lowship. This work has made use of the resources provided
by the Edinburgh Compute and Data Facility (ECDF)
(http://www.ecdf.ed.ac.uk/).

References

R. Iris Bahar, Erica A. Frohm, Charles M. Gaona, Gary D.
Hachtel, Enrico Macii, Abelardo Pardo, and Fabio
Somenzi. Algebraic decision diagrams and their applica-
tions. Formal Methods Syst. Des., 10(2/3):171–206, 1997.
doi: 10.1023/A:1008699807402.

Anicet Bart, Frédéric Koriche, Jean-Marie Lagniez, and
Pierre Marquis. An improved CNF encoding scheme
for probabilistic inference. In Gal A. Kaminka, Maria
Fox, Paolo Bouquet, Eyke Hüllermeier, Virginia Dignum,
Frank Dignum, and Frank van Harmelen, editors, ECAI
2016 - 22nd European Conference on Artificial Intelli-
gence, 29 August-2 September 2016, The Hague, The
Netherlands - Including Prestigious Applications of Arti-
ficial Intelligence (PAIS 2016), volume 285 of Frontiers

in Artificial Intelligence and Applications, pages 613–
621. IOS Press, 2016. ISBN 978-1-61499-671-2. doi:
10.3233/978-1-61499-672-9-613.

Vaishak Belle. Open-universe weighted model count-
ing. In Satinder P. Singh and Shaul Markovitch, edit-
ors, Proceedings of the Thirty-First AAAI Conference
on Artificial Intelligence, February 4-9, 2017, San Fran-
cisco, California, USA, pages 3701–3708. AAAI Press,
2017. URL http://aaai.org/ocs/index.php/
AAAI/AAAI17/paper/view/15008.

Vaishak Belle, Andrea Passerini, and Guy Van den Broeck.
Probabilistic inference in hybrid domains by weighted
model integration. In Yang and Wooldridge [2015], pages
2770–2776. ISBN 978-1-57735-738-4. URL http:
//ijcai.org/Abstract/15/392.

Supratik Chakraborty, Daniel J. Fremont, Kuldeep S. Meel,
Sanjit A. Seshia, and Moshe Y. Vardi. Distribution-aware
sampling and weighted model counting for SAT. In
Carla E. Brodley and Peter Stone, editors, Proceedings of
the Twenty-Eighth AAAI Conference on Artificial Intelli-
gence, July 27 -31, 2014, Québec City, Québec, Canada,
pages 1722–1730. AAAI Press, 2014. ISBN 978-1-
57735-661-5. URL http://www.aaai.org/ocs/
index.php/AAAI/AAAI14/paper/view/8364.

Mark Chavira and Adnan Darwiche. Compiling Bayesian
networks with local structure. In Leslie Pack Kaelbling
and Alessandro Saffiotti, editors, IJCAI-05, Proceedings
of the Nineteenth International Joint Conference on Arti-
ficial Intelligence, Edinburgh, Scotland, UK, July 30 - Au-
gust 5, 2005, pages 1306–1312. Professional Book Cen-
ter, 2005. ISBN 0938075934. URL http://ijcai.
org/Proceedings/05/Papers/0931.pdf.

Mark Chavira and Adnan Darwiche. Encoding CNFs
to empower component analysis. In Armin Biere and
Carla P. Gomes, editors, Theory and Applications of Sat-
isfiability Testing - SAT 2006, 9th International Confer-
ence, Seattle, WA, USA, August 12-15, 2006, Proceed-
ings, volume 4121 of Lecture Notes in Computer Science,
pages 61–74. Springer, 2006. ISBN 3-540-37206-7. doi:
10.1007/11814948_9.

Mark Chavira and Adnan Darwiche. Compiling Bayesian
networks using variable elimination. In Manuela M. Ve-
loso, editor, IJCAI 2007, Proceedings of the 20th Inter-
national Joint Conference on Artificial Intelligence, Hy-
derabad, India, January 6-12, 2007, pages 2443–2449,
2007. URL http://ijcai.org/Proceedings/
07/Papers/393.pdf.

Mark Chavira and Adnan Darwiche. On probabilistic infer-
ence by weighted model counting. Artif. Intell., 172(6-7):
772–799, 2008. doi: 10.1016/j.artint.2007.11.002.

http://www.ecdf.ed.ac.uk/
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/15008
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/15008
http://ijcai.org/Abstract/15/392
http://ijcai.org/Abstract/15/392
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8364
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8364
http://ijcai.org/Proceedings/05/Papers/0931.pdf
http://ijcai.org/Proceedings/05/Papers/0931.pdf
http://ijcai.org/Proceedings/07/Papers/393.pdf
http://ijcai.org/Proceedings/07/Papers/393.pdf

Mark Chavira, Adnan Darwiche, and Manfred Jaeger. Com-
piling relational Bayesian networks for exact inference.
Int. J. Approx. Reason., 42(1-2):4–20, 2006. doi: 10.1016/
j.ijar.2005.10.001.

Arthur Choi, Doga Kisa, and Adnan Darwiche. Compiling
probabilistic graphical models using sentential decision
diagrams. In Linda C. van der Gaag, editor, Symbolic and
Quantitative Approaches to Reasoning with Uncertainty
- 12th European Conference, ECSQARU 2013, Utrecht,
The Netherlands, July 8-10, 2013. Proceedings, volume
7958 of Lecture Notes in Computer Science, pages 121–
132. Springer, 2013. ISBN 978-3-642-39090-6. doi:
10.1007/978-3-642-39091-3_11.

Adnan Darwiche. On the tractable counting of theory mod-
els and its application to truth maintenance and belief re-
vision. J. Appl. Non Class. Logics, 11(1-2):11–34, 2001.
doi: 10.3166/jancl.11.11-34.

Adnan Darwiche. A logical approach to factoring belief net-
works. In Dieter Fensel, Fausto Giunchiglia, Deborah L.
McGuinness, and Mary-Anne Williams, editors, Proceed-
ings of the Eights International Conference on Principles
and Knowledge Representation and Reasoning (KR-02),
Toulouse, France, April 22-25, 2002, pages 409–420.
Morgan Kaufmann, 2002. ISBN 1-55860-554-1.

Adnan Darwiche. New advances in compiling CNF into
decomposable negation normal form. In Ramón López
de Mántaras and Lorenza Saitta, editors, Proceedings
of the 16th Eureopean Conference on Artificial Intelli-
gence, ECAI’2004, including Prestigious Applicants of
Intelligent Systems, PAIS 2004, Valencia, Spain, August
22-27, 2004, pages 328–332. IOS Press, 2004. ISBN
1-58603-452-9.

Adnan Darwiche. Modeling and Reasoning with
Bayesian Networks. Cambridge University Press,
2009. ISBN 978-0-521-88438-9. URL http:
//www.cambridge.org/uk/catalogue/
catalogue.asp?isbn=9780521884389.

Paulius Dilkas and Vaishak Belle. Weighted model counting
without parameter variables. In Chu Min Li and Felip
Manyà, editors, Theory and Applications of Satisfiabil-
ity Testing - SAT 2021 - 24th International Conference,
Barcelona, Spain, July 5-9, 2021, Proceedings, Lecture
Notes in Computer Science. Springer, 2021.

Jeffrey M. Dudek, Vu Phan, and Moshe Y. Vardi. ADDMC:
weighted model counting with algebraic decision dia-
grams. In The Thirty-Fourth AAAI Conference on Ar-
tificial Intelligence, AAAI 2020, The Thirty-Second In-
novative Applications of Artificial Intelligence Confer-
ence, IAAI 2020, The Tenth AAAI Symposium on Edu-
cational Advances in Artificial Intelligence, EAAI 2020,

New York, NY, USA, February 7-12, 2020, pages 1468–
1476. AAAI Press, 2020a. ISBN 978-1-57735-823-
7. URL https://aaai.org/ojs/index.php/
AAAI/article/view/5505.

Jeffrey M. Dudek, Vu H. N. Phan, and Moshe Y. Vardi.
DPMC: weighted model counting by dynamic program-
ming on project-join trees. In Helmut Simonis, editor,
Principles and Practice of Constraint Programming -
26th International Conference, CP 2020, Louvain-la-
Neuve, Belgium, September 7-11, 2020, Proceedings,
volume 12333 of Lecture Notes in Computer Science,
pages 211–230. Springer, 2020b. ISBN 978-3-030-58474-
0. doi: 10.1007/978-3-030-58475-7_13.

Daan Fierens, Guy Van den Broeck, Joris Renkens, Dim-
itar Sht. Shterionov, Bernd Gutmann, Ingo Thon, Gerda
Janssens, and Luc De Raedt. Inference and learning in
probabilistic logic programs using weighted Boolean for-
mulas. Theory Pract. Log. Program., 15(3):358–401,
2015. doi: 10.1017/S1471068414000076.

Haim Gaifman. Concerning measures on Boolean algebras.
Pacific Journal of Mathematics, 14(1):61–73, 1964.

Vibhav Gogate and Pedro M. Domingos. Probabilistic the-
orem proving. Commun. ACM, 59(7):107–115, 2016. doi:
10.1145/2936726.

Steven Holtzen, Guy Van den Broeck, and Todd D. Mill-
stein. Dice: Compiling discrete probabilistic programs
for scalable inference. CoRR, abs/2005.09089, 2020.

Thomas Jech. Set theory, Second Edition. Perspectives
in Mathematical Logic. Springer, 1997. ISBN 978-3-
540-63048-7. URL https://doi.org/10.1145/
2936726.

Angelika Kimmig, Guy Van den Broeck, and Luc De Raedt.
Algebraic model counting. J. Appl. Log., 22:46–62, 2017.
doi: 10.1016/j.jal.2016.11.031.

Jean-Marie Lagniez and Pierre Marquis. An improved
decision-dnnf compiler. In Carles Sierra, editor, Pro-
ceedings of the Twenty-Sixth International Joint Con-
ference on Artificial Intelligence, IJCAI 2017, Mel-
bourne, Australia, August 19-25, 2017, pages 667–
673. ijcai.org, 2017. ISBN 978-0-9992411-0-3. doi:
10.24963/ijcai.2017/93. URL http://www.ijcai.
org/Proceedings/2017/.

Umut Oztok and Adnan Darwiche. A top-down compiler
for sentential decision diagrams. In Yang and Wooldridge
[2015], pages 3141–3148. ISBN 978-1-57735-738-4.
URL http://ijcai.org/Abstract/15/443.

Tian Sang, Fahiem Bacchus, Paul Beame, Henry A. Kautz,
and Toniann Pitassi. Combining component caching
and clause learning for effective model counting. In

http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521884389
http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521884389
http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521884389
https://aaai.org/ojs/index.php/AAAI/article/view/5505
https://aaai.org/ojs/index.php/AAAI/article/view/5505
https://doi.org/10.1145/2936726
https://doi.org/10.1145/2936726
http://www.ijcai.org/Proceedings/2017/
http://www.ijcai.org/Proceedings/2017/
http://ijcai.org/Abstract/15/443

SAT 2004 - The Seventh International Conference on
Theory and Applications of Satisfiability Testing, 10-13
May 2004, Vancouver, BC, Canada, Online Proceedings,
2004. URL http://www.satisfiability.org/
SAT04/programme/21.pdf.

Tian Sang, Paul Beame, and Henry A. Kautz. Perform-
ing Bayesian inference by weighted model counting. In
Manuela M. Veloso and Subbarao Kambhampati, edit-
ors, Proceedings, The Twentieth National Conference on
Artificial Intelligence and the Seventeenth Innovative Ap-
plications of Artificial Intelligence Conference, July 9-13,
2005, Pittsburgh, Pennsylvania, USA, pages 475–482.
AAAI Press / The MIT Press, 2005. ISBN 1-57735-
236-X. URL http://www.aaai.org/Library/
AAAI/2005/aaai05-075.php.

Fabio Somenzi. CUDD: CU decision diagram package
release 3.0.0. University of Colorado at Boulder, 2015.

Guy Van den Broeck, Nima Taghipour, Wannes Meert, Jesse
Davis, and Luc De Raedt. Lifted probabilistic inference
by first-order knowledge compilation. In Toby Walsh,
editor, IJCAI 2011, Proceedings of the 22nd International
Joint Conference on Artificial Intelligence, Barcelona,
Catalonia, Spain, July 16-22, 2011, pages 2178–2185.
IJCAI/AAAI, 2011. ISBN 978-1-57735-516-8. doi: 10.
5591/978-1-57735-516-8/IJCAI11-363. URL http://
ijcai.org/proceedings/2011.

Jirí Vomlel and Petr Tichavský. Probabilistic inference in
BN2T models by weighted model counting. In Man-
fred Jaeger, Thomas Dyhre Nielsen, and Paolo Viappi-
ani, editors, Twelfth Scandinavian Conference on Artifi-
cial Intelligence, SCAI 2013, Aalborg, Denmark, Novem-
ber 20-22, 2013, volume 257 of Frontiers in Artifi-
cial Intelligence and Applications, pages 275–284. IOS
Press, 2013. ISBN 978-1-61499-329-2. doi: 10.3233/
978-1-61499-330-8-275.

Wei Wei and Bart Selman. A new approach to model count-
ing. In Fahiem Bacchus and Toby Walsh, editors, Theory
and Applications of Satisfiability Testing, 8th Interna-
tional Conference, SAT 2005, St. Andrews, UK, June 19-
23, 2005, Proceedings, volume 3569 of Lecture Notes in
Computer Science, pages 324–339. Springer, 2005. ISBN
3-540-26276-8. doi: 10.1007/11499107_24.

Qiang Yang and Michael J. Wooldridge, editors. Pro-
ceedings of the Twenty-Fourth International Joint Con-
ference on Artificial Intelligence, IJCAI 2015, Buenos
Aires, Argentina, July 25-31, 2015, 2015. AAAI Press.
ISBN 978-1-57735-738-4. URL http://ijcai.
org/proceedings/2015.

http://www.satisfiability.org/SAT04/programme/21.pdf
http://www.satisfiability.org/SAT04/programme/21.pdf
http://www.aaai.org/Library/AAAI/2005/aaai05-075.php
http://www.aaai.org/Library/AAAI/2005/aaai05-075.php
http://ijcai.org/proceedings/2011
http://ijcai.org/proceedings/2011
http://ijcai.org/proceedings/2015
http://ijcai.org/proceedings/2015

	Introduction
	Related Work
	Boolean Algebras, Power Sets, and Propositional Logic
	Functions on Boolean Algebras

	WMC as a Measure on a Boolean Algebra
	Not All Measures Are Factorable

	Encoding Bayesian Networks Using Conditional Weights
	Correctness
	Textual Representation
	Changes to ADDMC

	Experimental Results
	Conclusions and Future Work

