82 research outputs found

    Contents EATCS bulletin number 48, October 1992

    Get PDF

    Contents EATCS bulletin number 50, June 1993

    Get PDF

    Three notes on the complexity of model checking fixpoint logic with chop

    Get PDF
    This paper analyses the complexity of model checking fixpoint logic with Chop – an extension of the modal μ-calculus with a sequential composition operator. It uses two known game-based characterisations to derive the following results: the combined model checking complexity as well as the data complexity of FLC are EXPTIME-complete. This is already the case for its alternation-free fragment. The expression complexity of FLC is trivially P-hard and limited from above by the complexity of solving a parity game, i.e. in UP ∩ co-UP. For any fragment of fixed alternation depth, in particular alternation- free formulas it is P-complete

    Non-Deterministic Functions as Non-Deterministic Processes

    Get PDF
    We study encodings of the ?-calculus into the ?-calculus in the unexplored case of calculi with non-determinism and failures. On the sequential side, we consider ?^?_?, a new non-deterministic calculus in which intersection types control resources (terms); on the concurrent side, we consider ??, a ?-calculus in which non-determinism and failure rest upon a Curry-Howard correspondence between linear logic and session types. We present a typed encoding of ?^?_? into ?? and establish its correctness. Our encoding precisely explains the interplay of non-deterministic and fail-prone evaluation in ?^?_? via typed processes in ??. In particular, it shows how failures in sequential evaluation (absence/excess of resources) can be neatly codified as interaction protocols

    The Functional Machine Calculus II: Semantics

    Get PDF

    Call-By-Value, Again!

    Get PDF

    Non-Deterministic Functions as Non-Deterministic Processes

    Get PDF
    We study encodings of the λ-calculus into the Ï€-calculus in the unexplored case of calculi with non-determinism and failures. On the sequential side, we consider λ^↯_⊕, a new non-deterministic calculus in which intersection types control resources (terms); on the concurrent side, we consider sÏ€, a Ï€-calculus in which non-determinism and failure rest upon a Curry-Howard correspondence between linear logic and session types. We present a typed encoding of λ^↯_⊕ into sÏ€ and establish its correctness. Our encoding precisely explains the interplay of non-deterministic and fail-prone evaluation in λ^↯_⊕ via typed processes in sÏ€. In particular, it shows how failures in sequential evaluation (absence/excess of resources) can be neatly codified as interactio
    • …
    corecore