

 University of Groningen

Non-Deterministic Functions as Non-Deterministic Processes
Paulus, Joseph W.N.; Nantes-Sobrinho, Daniele; Pérez, Jorge A.

Published in:
6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021)

DOI:
10.4230/LIPIcs.FSCD.2021.21

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2021

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Paulus, J. W. N., Nantes-Sobrinho, D., & Pérez, J. A. (2021). Non-Deterministic Functions as Non-
Deterministic Processes. In N. Kobayashi (Ed.), 6th International Conference on Formal Structures for
Computation and Deduction (FSCD 2021) [21] Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
Germany. https://doi.org/10.4230/LIPIcs.FSCD.2021.21

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 20-11-2022

https://doi.org/10.4230/LIPIcs.FSCD.2021.21
https://research.rug.nl/en/publications/7ae0e46f-ddbd-4e77-bd94-c2053687230e
https://doi.org/10.4230/LIPIcs.FSCD.2021.21

Non-Deterministic Functions as Non-Deterministic
Processes
Joseph W. N. Paulus
University of Groningen, The Netherlands

Daniele Nantes-Sobrinho
University of Brasília, Brazil

Jorge A. Pérez
University of Groningen, The Netherlands
CWI, Amsterdam, The Netherlands

Abstract
We study encodings of the λ-calculus into the π-calculus in the unexplored case of calculi with
non-determinism and failures. On the sequential side, we consider λ ⊕, a new non-deterministic
calculus in which intersection types control resources (terms); on the concurrent side, we consider sπ,
a π-calculus in which non-determinism and failure rest upon a Curry-Howard correspondence between
linear logic and session types. We present a typed encoding of λ ⊕ into sπ and establish its correctness.
Our encoding precisely explains the interplay of non-deterministic and fail-prone evaluation in λ ⊕ via
typed processes in sπ. In particular, it shows how failures in sequential evaluation (absence/excess
of resources) can be neatly codified as interaction protocols.

2012 ACM Subject Classification Theory of computation→ Type structures; Theory of computation
→ Process calculi

Keywords and phrases Resource calculi, π-calculus, intersection types, session types, linear logic

Digital Object Identifier 10.4230/LIPIcs.FSCD.2021.21

Related Version Online appendix with omitted proofs and further examples:
Full Version: https://arxiv.org/abs/2104.14759 [22]

Funding Paulus and Pérez have been partially supported by the Dutch Research Council (NWO)
under project No. 016.Vidi.189.046 (Unifying Correctness for Communicating Software).

Acknowledgements We are grateful to the anonymous reviewers for their careful reading and
constructive remarks.

1 Introduction

Milner’s seminal work on encodings of the λ-calculus into the π-calculus [18] explains how
interaction in π subsumes evaluation in λ. It opened a research strand on formal connections
between sequential and concurrent calculi, covering untyped and typed regimes (see, e.g., [23,
4, 1, 25, 16, 26]). This paper extends this line of work by tackling a hitherto unexplored
angle, namely encodability of calculi in which computation is non-deterministic and may be
subject to failures – two relevant features in sequential and concurrent programming models.

We focus on typed calculi and study how non-determinism and failures interact with
resource-aware computation. In sequential calculi, non-idempotent intersection types [2]
offer one fruitful perspective at resource-awareness. Because non-idempotency distinguishes
between types σ and σ∧σ, this class of intersection types can “count” different resources and
enforce quantitative guarantees. In concurrent calculi, resource-awareness has been much
studied using linear types. Linearity ensures that process actions occur exactly once, which is
key to enforce protocol correctness. To our knowledge, connections between calculi adopting
these two distinct views of resource-awareness via types are still to be established. We aim
to develop such connections by relating models of sequential and concurrent computation.

© Joseph W. N. Paulus, Daniele Nantes-Sobrinho, and Jorge A. Pérez;
licensed under Creative Commons License CC-BY 4.0

6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021).
Editor: Naoki Kobayashi; Article No. 21; pp. 21:1–21:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-1959-8730
https://orcid.org/0000-0002-1452-6180
https://doi.org/10.4230/LIPIcs.FSCD.2021.21
https://arxiv.org/abs/2104.14759
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 Non-Deterministic Functions as Non-Deterministic Processes

On the sequential side, we introduce λ ⊕: a λ-calculus with resources, non-determinism,
and failures, which distills key elements from λ-calculi studied in [3, 21] (§ 2). Evaluation
in λ ⊕ considers bags of resources, and determines alternative executions governed by non-
determinism. Failure results from a lack or excess of resources (terms), and is captured by
the term failx̃ (for some variables x̃). Non-determinism is non-collapsing: given M and
N with reductions M −→M ′ and N −→ N ′, the non-deterministic sum M + N reduces to
M ′ + N ′. (Under a collapsing view, as in, e.g., [8], M + N reduces to either M or N .)

On the concurrent side, we consider sπ: a session π-calculus with (non-collapsing) non-
determinism and failure proposed in [6] (§ 3). Processes in sπ are disciplined by session types
that specify the protocols that the channels of a process must respect. Exploiting linearity,
session types ensure absence of communication errors and stuck processes; sπ rests upon a
Curry-Howard correspondence between session types and (classical) linear logic extended
with two modalities that express non-deterministic protocols that may succeed or fail.

Contributions. This paper presents the following contributions:
1. The resource calculus λ ⊕, a new calculus that distills the distinguishing elements from

previous resource calculi [4, 21], while offering an explicit treatment of failures in a setting
with non-collapsing non-determinism. Using intersection types, we define well-typed
(fail-free) expressions and well-formed (fail-prone) expressions in λ ⊕ (see below).

2. An encoding of λ ⊕ into sπ, proven correct following established criteria [11, 17] (§ 4).
These criteria attest to an encoding’s quality; we consider type preservation, operational
correspondence, success sensitiveness, and compositionality. Thanks to these correctness
properties, our encoding precisely describes how typed interaction protocols can codify
sequential evaluation in which the absence and excess of resources may lead to failures.

These contributions entail different challenges. The first is bridging the different mechanisms
for resource-awareness involved (intersection types in λ ⊕, session types in sπ). A direct
encoding of λ ⊕ into sπ is far from obvious, as multiple occurrences of a variable in λ ⊕ must
be accommodated into the linear setting of sπ. To overcome this, we introduce λ̂ ⊕: a variant
of λ ⊕ with sharing [13, 10]. This way, we “atomize” occurrences of the same variable, thus
simplifying the task of encoding λ ⊕ expressions into sπ processes.

Another challenge is framing failures (undesirable computations) in λ ⊕ as well-typed sπ
processes. We define well-formed λ ⊕ expressions, which can lead to failure, in two stages.
First, we consider λ⊕, the sub-language of λ ⊕ without failx̃. We give an intersection type
system for λ⊕ to regulate fail-free evaluation. Well-formed expressions are defined on top of
well-typed λ⊕ expressions. We show that sπ can correctly encode the fail-free λ⊕ but, much
more interestingly, also well-formed λ ⊕ expressions, which are fail-prone by definition.

Discussion about our approach and results, and comparisons with related works is in § 5.

2 λ
⊕: A λ-calculus with Non-Determinism and Failure

The syntax of λ ⊕ combines elements from calculi studied by Boudol and Laneve [4] and by
Pagani and Ronchi della Rocca [21]. We use x, y, . . . to range over the set of variables. We
write x̃ to denote the sequence of pairwise distinct variables x1, . . . , xk, for some k ≥ 0. We
write |x̃| to denote the length of x̃.

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 21:3

▶ Definition 1 (Syntax of λ ⊕). The λ ⊕ calculus is defined by the following grammar:

(Terms) M, N, L ::= x | λx.M | (M B) | M⟨⟨B/x⟩⟩ | failx̃

(Bags) A, B ::= 1 | HMI | A ·B
(Expressions) M,N,L ::= M | M + N

We have three syntactic categories: terms (in functional position); bags (in argument
position), which denote multisets of resources; and expressions, which are finite formal sums
that represent possible results of a computation. Terms are unary expressions: they can be
variables, abstractions, and applications. Following [3, 4], the explicit substitution of a bag B

for a variable x, written ⟨⟨B/x⟩⟩, is also a term. The term failx̃ results from a reduction in
which there is a lack or excess of resources to be substituted, where x̃ denotes a multiset of
free variables that are encapsulated within failure.

The empty bag is denoted 1. The bag enclosing the term M is HMI. The concatenation
of bags B1 and B2 is B1 ·B2; this is a commutative and associative operation, where 1 is the
identity. We treat expressions as sums, and use notations such as

∑n
i Ni for them. Sums are

associative and commutative; reordering of the terms in a sum is performed silently.

▶ Notation 2 (Expressions). Notation N ∈M denotes that N is part of the sum denoted by
M. Similarly, we write Ni ∈ B to denote that Ni occurs in the bag B, and B \Ni to denote
the bag that is obtained by removing one occurrence of the term Ni from B.

Full details on the reduction semantics and typing system for λ ⊕ can be found in the
appendix and [22].

A Resource Calculus With Sharing
We define a variant of λ ⊕ with sharing variables, dubbed λ̂ ⊕, inspired by the work by
Gundersen et al. [13] and Ghilezan et al. [10]. In § 4 we shall use λ̂ ⊕ as intermediate language
in our encoding of λ ⊕ into sπ.

The syntax of λ̂ ⊕ only modifies the syntax of λ ⊕-terms, which is defined by the grammar
below; the syntax of bags B and expressions M is as in Def. 1.

(Terms) M, N, L ::= x | λx.(M [x̃← x]) | (M B) | M⟨|N/x|⟩ | failx̃

| M [x̃← x] | (M [x̃← x])⟨⟨B/x⟩⟩

We consider the sharing construct M [x̃← x] and the explicit linear substitution M⟨|N/x|⟩.
The term M [x̃ ← x] defines the sharing of variables x̃ occurring in M using x. We shall
refer to x as sharing variable and to x̃ as shared variables. A variable is only allowed to
appear once in a term. Notice that x̃ can be empty: M [← x] expresses that x does not
share any variables in M . As in λ ⊕, the term failx̃ explicitly accounts for failed attempts
at substituting the variables x̃, due to an excess or lack of resources. There is a difference
with respect to λ ⊕: in the term failx̃, x̃ denotes a set (rather than a multiset) of variables,
which may include shared variables.

In M [x̃ ← x] we require that (i) every xi ∈ x̃ must occur exactly once in M and that
(ii) xi is not a sharing variable. The occurrence of xi can appear within the fail term failỹ,
if xi ∈ ỹ. In the explicit linear substitution M⟨|N/x|⟩, we require: (i) the variable x has to
occur in M ; (ii) x cannot be a sharing variable; and (iii) x cannot be in an explicit linear
substitution occurring in M . For instance, M ′⟨|L/x|⟩⟨|N/x|⟩ is not a valid term in λ̂ ⊕.

To define the reduction semantics of λ̂ ⊕, we require some auxiliary notions: the free
variables of an expression/term, the head of a term, and linear head substitution.

FSCD 2021

21:4 Non-Deterministic Functions as Non-Deterministic Processes

fv(x) = {x} fv(failx̃) = {x̃} fv(HMI) = fv(M)
fv(B1 ·B2) = fv(B1) ∪ fv(B2) fv(M B) = fv(M) ∪ fv(B) fv(1) = ∅

fv(M⟨|N/x|⟩) = (fv(M) \ {x}) ∪ fv(N) fv(M [x̃← x]) = (fv(M) \ {x̃}) ∪ {x}
fv(λx.(M [x̃← x])) = fv(M [x̃← x]) \ {x} fv(M + N) = fv(M) ∪ fv(N)

fv((M [x̃← x])⟨⟨B/x⟩⟩) = (fv(M [x̃← x]) \ {x}) ∪ fv(B)

Figure 1 Free variables for λ̂ ⊕.

▶ Definition 3 (Free Variables). The set of free variables of a term, bag and expressions in
λ̂ ⊕, is defined in Fig. 1. As usual, a term M is closed if fv(M) = ∅.

▶ Notation 4. We write PER(B) to denote the set of all permutations of bag B. Also, Bi(n)
denotes the n-th term in the (permuted) Bi. We define size(B) to denote the number of terms
in bag B. That is, size(1) = 0 and size(HMI ·B) = 1 + size(B).

▶ Definition 5 (Head). The head of a term M , denoted head(M), is defined inductively:

head(x) = x head(λx.(M [x̃← x])) = λx.(M [x̃← x])
head(M B) = head(M) head(M⟨|N/x|⟩) = head(M)
head(failx̃) = failx̃

head(M [x̃← x]) =
{

x If head(M) = y and y ∈ x̃

head(M) Otherwise

head((M [x̃← x])⟨⟨B/x⟩⟩) =
{

fail∅ If |x̃| ≠ size(B)
head(M [x̃← x]) Otherwise

▶ Definition 6 (Linear Head Substitution). Given a term M with head(M) = x, the linear
substitution of a term N for x in M , written M{|N/x|} is inductively defined as:

x{|N/x|} = N

(M B){|N/x|} = (M{|N/x|}) B

(M⟨|L/y|⟩){|N/x|} = (M{|N/x|}) ⟨|L/y|⟩ x ̸= y

((M [ỹ ← y])⟨⟨B/y⟩⟩){|N/x|} = (M [ỹ ← y]{|N/x|}) ⟨⟨B/y⟩⟩ x ̸= y

(M [ỹ ← y]){|N/x|} = (M{|N/x|})[ỹ ← y] x ̸= y

We now define contexts for terms and expressions in λ̂ ⊕. Term contexts involve an
explicit linear substitution, rather than an explicit substitution: this is due to the reduction
strategy we have chosen to adopt, as we always wish to evaluate explicit substitutions first.
Expression contexts can be seen as sums with holes. We assume that the terms that fill in
the holes respect the conditions on explicit linear substitutions (i.e., variables appear in a
term only once, shared variables must occur in the context).

▶ Definition 7 (Term and Expression Contexts in λ̂ ⊕). Let [·] denote a hole. Contexts for
terms and expressions are defined by the following grammar:

C[·], C ′[·] ::= ([·])B | ([·])⟨|N/x|⟩ | ([·])[x̃← x] | ([·])[← x]⟨⟨1/x⟩⟩
D[·], D′[·] ::= M + [·] | [·] + M

The substitution of a hole with term M in a context C[·], denoted C[M], must be a λ̂ ⊕-term.

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 21:5

[RS:Beta]
(λx.M [x̃← x])B −→M [x̃← x]⟨⟨B/x⟩⟩

B = HM1I · · · HMkI k ≥ 1 M ̸= failỹ

[RS:Ex-Sub]
M [x1, . . . , xk ← x]⟨⟨B/x⟩⟩ −→

∑
Bi∈PER(B) M⟨|Bi(1)/x1|⟩ · · · ⟨|Bi(k)/xk|⟩

head(M) = x
[RS:Lin-Fetch]

M⟨|N/x|⟩ −→M{|N/x|}

k ̸= size(B) ỹ = (fv(M) \ {x1, . . . , xk}) ∪ fv(B)
[RS:Fail]

M [x1, . . . , xk ← x]⟨⟨B/x⟩⟩ −→
∑

PER(B) failỹ

ỹ = fv(B)
[RS:Cons1]

failx̃ B −→
∑

PER(B)

failx̃∪ỹ

size(B) = k k + |x̃| ̸= 0 z̃ = fv(B)
[RS:Cons2]

(failx̃∪ỹ[x̃← x])⟨⟨B/x⟩⟩ −→
∑

PER(B)

failỹ∪z̃

z̃ = fv(N)
[RS:Cons3]

failỹ∪x⟨|N/x|⟩ −→ failỹ∪z̃

M −→M ′
1 + · · ·+ M ′

k[RS:TCont]
C[M] −→ C[M ′

1] + · · ·+ C[M ′
k]

M −→ M′
[RS:ECont]

D[M] −→ D[M′]

Figure 2 Reduction rules for λ̂ ⊕.

This way, e.g., the hole in context C[·] = ([·])⟨|N/x|⟩ cannot be filled with y, since
C[y] = (y)⟨|N/x|⟩ is not a well-defined term. Indeed, M⟨|N/x|⟩ requires that x occurs
exactly once within M . Similarly, we cannot fill the hole with failz with z ̸= x, since
C[failz] = (failz)⟨|N/x|⟩ is also not a well-defined term, for the same reason.

Reduction Semantics

The reduction relation −→ operates lazily on expressions; it is defined by the rules in Fig. 2.
A β-reduction in λ̂ ⊕ results into an explicit substitution ⟨⟨B/x⟩⟩, which then evolves into a
linear head substitution {|N/x|} (with N ∈ B). Reduction in λ̂ ⊕ introduces an intermediate
step whereby the explicit substitution expands into a sum of terms involving explicit linear
substitutions ⟨|N/x|⟩, which are the ones to reduce into a linear head substitution. In the
case there is a mismatch between the size of B and the number of shared variables to be
substituted, the term reduces to failure.

More specifically, Rule [RS:Beta] is standard and results into an explicit substitution.
Rule [RS:Ex-Sub] applies when the size k of the bag coincides with the length of x̃ = x1, . . . , xk.
Intuitively, this rule “distributes” an explicit substitution into a sum of terms involving
explicit linear substitutions; it considers all possible permutations of the elements in the bag
among all shared variables. Rule [RS:Lin-Fetch] specifies the evaluation of a term with an
explicit linear substitution into a linear head substitution.

There are three rules reduce to the failure term: their objective is to accumulate all
(free) variables involved in failed reductions. Accordingly, Rule [RS:Fail] formalizes failure
in the evaluation of an explicit substitution M [x̃ ← x]⟨⟨B/x⟩⟩, which occurs if there is a
mismatch between the resources (terms) present in B and the number of occurrences of

FSCD 2021

21:6 Non-Deterministic Functions as Non-Deterministic Processes

M [← x]⟨⟨1/x⟩⟩ ⪰λ M

MB⟨|N/x|⟩ ≡λ (M⟨|N/x|⟩)B with x ̸∈ fv(B)
M⟨|N2/y|⟩⟨|N1/x|⟩ ≡λ M⟨|N1/x|⟩⟨|N2/y|⟩ with x ̸∈ fv(N2)

MA[x̃← x]⟨⟨B/x⟩⟩ ≡λ (M [x̃← x]⟨⟨B/x⟩⟩)A with xi ∈ x̃⇒ xi ̸∈ fv(A)
M [ỹ ← y]⟨⟨A/y⟩⟩[x̃← x]⟨⟨B/x⟩⟩ ⪰λ

(M [x̃← x]⟨⟨B/x⟩⟩)[ỹ ← y]⟨⟨A/y⟩⟩ with xi ∈ x̃⇒ xi ̸∈ fv(A)
C[M] ⪰λ C[M ′] with M ⪰λ M ′

D[M] ⪰λ D[M′] with M ⪰λ M′

Figure 3 Precongruence in λ̂ ⊕.

x to be substituted. The resulting failure term preserves all free variables in M and B

within its attached set ỹ. Rules [RS:Cons1] and [RS:Cons2] describe reductions that lazily
consume the failure term, when a term has failx̃ at its head position. The former rule
consumes bags attached to it whilst preserving all its free variables. Finally, Rule [RS:Cons3]
accumulates into the failure term the free variables involved in an explicit linear substitution.
The contextual rules [RS:TCont] and [RS:Econt] are standard.

▶ Notation 8. As standard, −→ denotes one step reduction; −→+ and −→∗ denote the
transitive and the reflexive-transitive closure of −→, respectively. We write N −→[R] M to
denote that [R] is the last (non-contextual) rule used in inferring the step from N to M.

▶ Example 9. We show how a term can reduce using Rule [RS:Cons2].

(λx.x1[x1 ← x])Hfail∅[← y]⟨⟨HNI/y⟩⟩I −→[RS:Beta] x1[x1 ← x]⟨⟨Hfail∅[← y]⟨⟨HNI/y⟩⟩I/x⟩⟩

−→[RS:Ex-Sub] x1⟨|fail∅[← y]⟨⟨HNI/y⟩⟩/x1|⟩ −→[RS:Lin-Fetch] fail∅[← y]⟨⟨HNI/y⟩⟩ −→[RS:Cons2] failfv(N)

⌟

Notice that the left-hand sides of the reduction rules in λ̂ ⊕ do not interfere with each
other. Reduction in λ̂ ⊕ satisfies a diamond property; see [22].

A Precongruence

Fig. 3 defines a precongruence for λ̂ ⊕ on terms and expressions, denoted ⪰λ. We write
M ≡λ M ′ whenever both M ⪰λ M ′ and M ′ ⪰λ M hold.

▶ Example 10. We illustrate the precongruence in case of failure:

(λx.x1[x1 ← x])Hfail∅[← y]⟨⟨1/y⟩⟩I −→[RS:Beta] x1[x1 ← x]⟨⟨Hfail∅[← y]⟨⟨1/y⟩⟩I/x⟩⟩

−→[RS:Ex-Sub] x1⟨|fail∅[← y]⟨⟨1/y⟩⟩/x1|⟩ −→[RS:Lin-Fetch] fail∅[← y]⟨⟨1/y⟩⟩ ⪰λ fail∅

In the last step, Rule [RS:Cons2] cannot be applied: y is sharing with no shared variables
and the explicit substitution involves the bag 1. ⌟

▶ Example 11. We illustrate how Rule [RS:Fail] can introduce failx̃ into a term. It also
shows how Rule [RS:Cons3] consumes an explicit linear substitution:

x1[← y]⟨⟨HNI/y⟩⟩[x1 ← x]⟨⟨HMI/x⟩⟩ −→[RS:Ex-Sub] x1[← y]⟨⟨HNI/y⟩⟩⟨|M/x1|⟩

−→[RS:Fail] fail{x1}∪fv(N)⟨|M/x1|⟩ −→[RS:Cons3] failfv(M)∪fv(N)

⌟

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 21:7

Intersection Types
We define a type system for λ̂ ⊕ based on non-idempotent intersection types, similar to the
one defined by Bucciarelli et al. in [5]. Intersection types allow us to reason about types of
resources in bags but also about every occurrence of a variable. That is, non-idempotent
intersection types enable us to distinguish expressions not only by measuring the size of a
bag but also by counting the number of times a variable occurs within a term.

▶ Definition 12 (Types for λ̂ ⊕). We define strict and multiset types by the grammar:

(Strict) σ, τ, δ ::= unit | π → σ (Multiset) π, ζ ::=
∧

i∈I σi | ω

A strict type can be the unit type unit or a functional type π → σ, where π is a multiset
type and σ is a strict type. Multiset types can be either the empty type ω or an intersection
of strict types

∧
i∈I σi, with I non-empty. The operator ∧ is commutative, associative, and

non-idempotent, that is, σ ∧ σ ̸= σ. The empty type is the type of the empty bag and acts
as the identity element to ∧.

Type assignments range over Γ, ∆, . . . and have the form Γ, x : σ, assigning the empty
type to all but a finite number of variables. Multiple occurrences of a variable can occur
within an assignment; they are assigned only strict types. For instance, x : τ → τ, x : τ is a
valid type assignment: it means that x can be of both type τ → τ and τ . The multiset of
variables in Γ is denoted as dom(Γ). Type judgements are of the form Γ ⊢ M : σ, where Γ
consists of variable type assignments, and M : σ means that M has type σ. We write ⊢M : σ

to denote ∅ ⊢M : σ.

▶ Notation 13. Given k ≥ 0, we shall write σk to stand for σ ∧ · · · ∧ σ (k times, if k > 0)
or for ω (if k = 0). Similarly, we write x̂ : σk to stand for x : σ, · · · , x : σ (k times, if k > 0)
or for x : ω (if k = 0).

We define well-formed λ̂ ⊕ expressions, in two stages. We first consider the type system given
in Fig. 4 for λ̂⊕, the sub-calculus of λ̂ ⊕ without the failure term failx̃. Then, we define
well-formed expressions for the full language λ̂ ⊕ via Def. 14 (see below).

We first discuss selected rules of the type system for λ̂⊕, which takes into account the
sharing construct M [x̃← x]. Rule [TS:var] is standard. Rule [TS:1] assigns the empty bag 1
the empty type ω. The weakening rule [TS:weak] deals with k = 0, typing the term M [← x],
when there are no occurrences of x in M , as long as M is typable. Rule [TS:abs-sh] is as
expected: it requires that the sharing variable is assigned the k-fold intersection type σk

(Not. 13). Rule [TS:app] is standard, requiring a match on the multiset type π. Rule [TS:bag]
types the concatenation of bags. Rule [TS:ex-lin-sub] supports explicit linear substitutions.
Rule [TS:ex-sub] types explicit substitutions where a bag must consist of both the same
type and length of the shared variable it is being substituted for. Rule [TS:sum] types the
sum of two expressions of the same type. Rule [TS:share] requires that the shared variables
x1, . . . , xk have the same type as the sharing variable x, for k ̸= 0.

On top of this type system for λ̂⊕, we define well-formed expressions: λ ⊕-terms whose
computation may lead to failure.

▶ Definition 14 (Well-formedness in λ̂ ⊕). An expression M is well formed if there exist Γ
and τ such that Γ |= M : τ is entailed via the rules in Fig. 5.

Rules [FS:wf-expr] and [FS:wf-bag] guarantee that every well-typed expression and bag,
respectively, is well-formed. Since our language is expressive enough to account for failing
computations, we include rules for checking the structure of these ill-behaved terms – terms

FSCD 2021

21:8 Non-Deterministic Functions as Non-Deterministic Processes

[TS:var]
x : σ ⊢ x : σ

[TS:1] ⊢ 1 : ω
∆ ⊢M : τ[TS:weak]

∆, x : ω ⊢M [← x] : τ

∆, x : σk ⊢M [x̃← x] : τ
[TS:abs-sh]

∆ ⊢ λx.(M [x̃← x]) : σk → τ

Γ ⊢M : π → τ ∆ ⊢ B : π[TS:app] Γ, ∆ ⊢M B : τ

Γ ⊢M : σ ∆ ⊢ B : σk
[TS:bag]

Γ, ∆ ⊢ HMI ·B : σk+1
∆ ⊢ N : σ Γ, x : σ ⊢M : τ[TS :ex-lin-sub]

Γ, ∆ ⊢M⟨|N/x|⟩ : τ

∆ ⊢ B : π Γ, x : π ⊢M [x̃← x] : τ
[TS : ex-sub]

Γ, ∆ ⊢M [x̃← x]⟨⟨B/x⟩⟩ : τ

Γ ⊢M : σ Γ ⊢ N : σ[TS:sum] Γ ⊢M + N : σ

∆, x1 : σ, · · · , xk : σ ⊢M : τ x /∈ dom(∆) k ̸= 0
[TS:share]

∆, x : σk ⊢M [x1, · · · , xk ← x] : τ

Figure 4 Typing rules for λ̂⊕.

Γ ⊢M : τ[FS :wf-expr]
Γ |= M : τ

Γ ⊢ B : π[FS :wf-bag]
Γ |= B : π

Γ |= M : τ
[FS :weak]

Γ, x : ω |= M [← x] : τ

Γ, x : σk |= M [x̃← x] : τ x /∈ dom(Γ)
[FS:abs-sh]

Γ |= λx.(M [x̃← x]) : σk → τ

dom(Γ) = x̃
[FS:fail]

Γ |= failx̃ : τ

Γ |= M : σj → τ ∆ |= B : σk

[FS:app]
Γ, ∆ |= M B : τ

Γ |= M : σ ∆ |= B : σk

[FS:bag]
Γ, ∆ |= HMI ·B : σk+1

Γ, x : σ |= M : τ ∆ |= N : σ
[FS:ex-lin-sub]

Γ, ∆ |= M⟨|N/x|⟩ : τ

Γ |= M : σ Γ |= N : σ
[FS:sum]

Γ |= M + N : σ

Γ, x : σk |= M [x̃← x] : τ ∆ |= B : σj

[FS:ex-sub]
Γ, ∆ |= M [x̃← x]⟨⟨B/x⟩⟩ : τ

Γ, x1 : σ, · · · , xk : σ |= M : τ x /∈ dom(Γ) k ̸= 0
[FS:share]

Γ, x : σk |= M [x1, · · · , xk ← x] : τ

Figure 5 Well-formedness rules for λ̂ ⊕.

that can be well-formed, but not typable. For instance, Rules [FS:ex-sub] and [FS:app] differ
from similar typing rules in Fig. 4: the size of the bags (as declared in their types) is no
longer required to match. Also, Rule [FS:fail] has no analogue in the type system: we allow
the failure term failx̃ to be well-formed with any type, provided that the context contains
the types of the variables in x̃. The other rules are self-explanatory.

Well-formed expressions satisfy subject reduction (SR); the proof is standard (cf. [22]).

▶ Theorem 15 (SR in λ̂ ⊕). If Γ |= M : τ and M −→M′ then Γ |= M′ : τ .

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 21:9

3 sπ: A Session-Typed π-Calculus

The π-calculus [19] is a model of concurrency in which processes interact via names (or
channels) to exchange values, which can be themselves names. Here we overview sπ, in-
troduced by Caires and Pérez in [6], in which session types [14, 15] ensure that the two
endpoints of a channel perform matching actions: when one endpoint sends, the other receives;
when an endpoint closes, the other closes too. Following [7, 27], sπ defines a Curry-Howard
correspondence between session types and a linear logic with two dual modalities (NA and
⊕A), which define non-deterministic sessions. In sπ, cut elimination corresponds to process
communication, proofs correspond to processes, and propositions correspond to session types.

Syntax and Semantics

We use x, y, z, w . . . to denote names implementing the (session) endpoints of protocols
specified by session types. We consider the sub-language of [6] without labeled choices and
replication, which is actually sufficient to encode λ̂ ⊕.

▶ Definition 16 (Processes). The syntax of sπ processes is given by the grammar:

P, Q ::= x(y).P | x(y).P | x.close | x.close; P | [x↔ y] | (P | Q) | (νx)P | 0
| x.some; P | x.none | x.some(w1,··· ,wn); P | P ⊕Q

In the first line, an output process x(y).P sends a fresh name y along session x and then
continues as P . An input process x(y).P receives a name z along x and then continues as
P{z/y}, which denotes the capture-avoiding substitution of z for y in P . Processes x.close
and x.close; P denote complementary actions for closing session x. The forwarder process
[x↔ y] denotes a bi-directional link between sessions x and y. Process P | Q denotes the
parallel execution of P and Q. Process (νx)P denotes the process P in which name x has
been restricted, i.e., x is kept private to P . 0 is the inactive process.

The constructs in the second line introduce non-deterministic sessions which, intuitively,
may provide a session protocol or fail.

Process x.some; P confirms that the session on x will execute and continues as P . Process
x.none signals the failure of implementing the session on x.
Process x.some(w1,··· ,wn); P specifies a dependency on a non-deterministic session x. This
process can either (i) synchronize with an action x.some and continue as P , or (ii) syn-
chronize with an action x.none, discard P , and propagate the failure on x to (w1, · · · , wn),
which are sessions implemented in P . When x is the only session implemented in P , the
tuple of dependencies is empty and so we write simply x.some; P .
P ⊕Q denotes a non-deterministic choice between P and Q. We shall often write

⊕
i∈I Pi

to stand for P1 ⊕ · · · ⊕ Pn.
In (νy)P and x(y).P the distinguished occurrence of name y is binding, with scope P . The
set of free names of P is denoted by fn(P).

The reduction semantics of sπ specifies the computations that a process performs on its
own (Fig. 6). It relies on structural congruence, denoted ≡, which expresses basic identities
on the structure of processes and the non-collapsing nature of non-determinism (cf. [22]).

In Fig. 6, the first reduction rule formalizes communication, which concerns bound names
only (internal mobility): name y is bound in both x(y).Q and x(y).P . The reduction rule
for the forwarder process leads to a name substitution. The reduction rule for closing a
session is self-explanatory, as is the rule in which prefix x.some confirms the availability of a
non-deterministic session. When the non-deterministic session is not available, prefix x.none

FSCD 2021

21:10 Non-Deterministic Functions as Non-Deterministic Processes

x(y).Q | x(y).P −→ (νy)(Q | P)
(νx)([x↔ y] | P) −→ P{y/x} (x ̸= y)

x.close | x.close; P −→ P

x.some; P | x.some(w1,··· ,wn); Q −→ P | Q
x.none | x.some(w1,··· ,wn); Q −→ w1.none | · · · | wn.none

P ≡ P ′ ∧ P ′ −→ Q′ ∧Q′ ≡ Q⇒ P −→ Q Q −→ Q′ ⇒ P | Q −→ P | Q′

P −→ Q⇒ (νy)P −→ (νy)Q Q −→ Q′ ⇒ P ⊕Q −→ P ⊕Q′

Figure 6 Reduction for sπ.

triggers this failure to all dependent sessions w1, . . . , wn; this may in turn trigger further
failures (i.e., on sessions that depend on w1, . . . , wn). Reduction is closed under structural
congruence. The remaining rules define contextual reduction with respect to restriction,
parallel composition, and non-deterministic choice.

Type System

We introduce the session types that govern process behavior:

▶ Definition 17 (Session Types). Session types are given by

A, B ::= ⊥ | 1 | A⊗B | A O B | NA | ⊕A

Types are assigned to names: an assignment x : A enforces the use of name x according
to the protocol specified by A. The multiplicative units ⊥ and 1 are used to type terminated
(closed) endpoints. We use A⊗B to type a name that first outputs a name of type A before
proceeding as specified by B. Similarly, A O B types a name that first inputs a name of type
A before proceeding as specified by B. Then we have the two modalities introduced in [6].
We use NA as the type of a (non-deterministic) session that may produce a behavior of type
A. Dually, ⊕A denotes the type of a session that may consume a behavior of type A.

The two endpoints of a session should be dual to ensure absence of communication errors.
The dual of a type A is denoted A. Duality corresponds to negation (·)⊥ in linear logic [6]:

▶ Definition 18 (Duality). The duality relation on types is given by:

1 = ⊥ ⊥ = 1 A⊗B = A O B A O B = A⊗B ⊕A = NA NA = ⊕A

Typing judgments are of the form P ⊢ ∆, where P is a process and ∆ is a linear context
of assignments of types to names. The empty context is denoted “·”. We write N∆ to denote
that all assignments in ∆ have a non-deterministic type, i.e., ∆ = w1:NA1, . . . , wn:NAn, for
some A1, . . . , An. The typing judgment P ⊢ ∆ corresponds to the logical sequent ⊢ ∆ for
classical linear logic, which can be recovered by erasing processes and name assignments.

Typing rules for processes correspond to proof rules in the logic; Fig. 7 gives a selection
(see [6] and [22] for a full account). Rule [Tid] interprets the identity axiom using the forwarder
process. Rules [T1] and [T⊥] type the constructs for session termination. Rules [T⊗] and
[TO] type output and input of a name along a session, respectively. The last four rules are
used to type constructs for non-determinism and failure. Rules [TNx

d] and [TNx] introduce a
session of type NA, which may produce a behavior of type A: while the former rule covers
the case in which x : A is available, the latter rule formalizes the case in which x : A is not
available (i.e., a failure). Given a sequence of names w̃ = w1, . . . , wn, Rule [T⊕x

w̃
] accounts

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 21:11

[Tid]
[x↔ y] ⊢ x:A, y:A

[T1]
x.close ⊢ x : 1

P ⊢ ∆[T⊥]
x.close; P ⊢ x:⊥, ∆

P ⊢ ∆, y : A Q ⊢ ∆′, x : B[T⊗]
x(y).(P | Q) ⊢ ∆, ∆′, x : A⊗B

P ⊢ ∆, y : C, x : D[TO]
x(y).P ⊢ ∆, x : C O D

[TNx]
x.none ⊢ x : NA

P ⊢ w̃ : N∆, x : A[T⊕x
w̃
]

x.some
w̃

; P ⊢ w̃:N∆, x:⊕A

P ⊢ ∆, x : A[TNx
d]

x.some; P ⊢ ∆, x : NA

P ⊢ N∆ Q⊢N∆[TN]
P ⊕Q ⊢ N∆

Figure 7 Selected typing rules for sπ.

for the possibility of not being able to consume the session x : A by considering sessions
different from x as potentially not available. Finally, Rule [TN] expresses non-deterministic
choice of processes P and Q that implement non-deterministic behaviors only.

The type system enjoys type preservation, a result that follows directly from the cut
elimination property in the underlying logic; it ensures that the observable interface of a
system is invariant under reduction. The type system also ensures other properties for
well-typed processes (e.g. global progress and confluence); see [6] for details.

▶ Theorem 19 (Type Preservation [6]). If P ⊢ ∆ and P −→ Q then Q ⊢ ∆.

4 The Encoding

To encode λ ⊕ into sπ, we first define the encoding L·M◦ from well-formed expressions in λ ⊕ to
well-formed expressions in λ̂ ⊕. Then, the encoding J·K u (for a name u) translates well-formed
expressions in λ̂ ⊕ to well-typed processes in sπ. We first discuss the encodability criteria.

4.1 Encodability Criteria
We follow most of the criteria in [11], a widely studied abstract framework for establishing the
quality of encodings. A language L is a pair: a set of terms and a reduction semantics −→ on
terms (with reflexive, transitive closure denoted ∗−→). A correct encoding translates terms of
a source language L1 into terms of a target language L2 by respecting certain criteria. The
criteria in [11] concern untyped languages; because we treat typed languages, we follow [17]
in requiring that encodings preserve typability.

▶ Definition 20 (Correct Encoding). Let L1 = (M,−→1) and L2 = (P,−→2) be two
languages. We use M, M ′, . . . and P, P ′, . . . to range over elements in M and P. Also, let
≈2 be a behavioral equivalence on terms in P. We say that a translation J·K :M→ P is a
correct encoding if it satisfies the following criteria:
1. Type preservation: For every well-typed M , it holds that JMK is well-typed.
2. Operational Completeness: For every M, M ′ such that M

∗−→1 M ′, it holds that
JMK ∗−→2≈2 JM ′K.

3. Operational Soundness: For every M and P such that JMK ∗−→2 P , there exists an M ′

such that M −→∗
1 M ′ and P

∗−→2≈2 JM ′K.
4. Success Sensitiveness: For every M , it holds that M✓1 if and only if JMK✓2, where ✓1

and ✓2 denote a success predicate in M and P, respectively.

Besides these semantic criteria, we also consider compositionality, a syntactic criterion
that requires that a composite source term is encoded as the combination of the encodings
of its sub-terms. Operational completeness formalizes how reduction steps of a source
term are mimicked by its corresponding encoding in the target language; ≈2 conveniently

FSCD 2021

21:12 Non-Deterministic Functions as Non-Deterministic Processes

abstracts away from target terms useful in the translation but which are not meaningful
in comparisons. Operational soundness concerns the opposite direction: it formalizes the
correspondence between (i) the reductions of a target term obtained via the translation
and (ii) the reductions of the corresponding source term. The role of ≈2 can be explained
as in completeness. Success sensitiveness complements completeness and soundness, which
concern reductions and therefore do not contain information about observable behaviors. The
so-called success predicates ✓1 and ✓2 serve as a minimal notion of observables; the criterion
then says that observability of success of a source term implies observability of success in the
corresponding target term, and viceversa. Finally, type preservation is self-explanatory.

We choose not to use full abstraction as a correctness criterion. As argued in [12], full
abstraction is not an informative criterion when it comes to an encoding’s quality.

4.2 First Step: From λ
⊕ into λ̂

⊕

We define an encoding L−M◦ from λ ⊕ into λ̂ ⊕ and prove it is correct. The encoding, defined
for well-formed terms in λ ⊕ (cf. Def. 42 in App. A.1), relies on an intermediate encoding L·M•

on closed λ ⊕-terms.
We introduce some notation. Given a term M such that #(x, M) = k and a sequence of

pairwise distinct fresh variables x̃ = x1, . . . , xk we write M⟨x̃/x⟩ or M⟨x1, · · · , xn/x⟩ to stand
for M⟨x1/x⟩ · · · ⟨xk/x⟩. That is, M⟨x̃/x⟩ denotes a simultaneous linear substitution whereby
each distinct occurrence of x in M is replaced by a distinct xi ∈ x̃. Notice that each xi has
the same type as x. We use (simultaneous) linear substitutions to force all bound variables
in λ ⊕ to become shared variables in λ̂ ⊕.

▶ Definition 21 (From λ ⊕ to λ̂ ⊕). Let M ∈ λ ⊕. Suppose Γ |= M : τ , with dom(Γ) = fv(M) =
{x1, · · · , xk} and #(xi, M) = ji. We define LMM◦ as

LMM◦ = LM⟨x̃1/x1⟩ · · · ⟨x̃k/xk⟩M•[x̃1 ← x1] · · · [x̃k ← xk]

where x̃i = xi1 , · · · , xiji
and the encoding L·M• : λ ⊕ → λ̂ ⊕ is defined in Fig. 8 on closed

λ ⊕-terms. The encoding L·M◦ extends homomorphically to expressions.

The encoding L−M◦ “atomizes” occurrences of variables: it converts n occurrences of a
variable x in a term into n distinct variables x1, . . . , xn. The sharing construct coordinates
the occurrences of these variables by constraining each to occur exactly once within a term.
We proceed in two stages. First, we share all free variables using L−M◦: this ensures that
free variables are replaced by bound shared variables. Second, we apply the encoding L−M•

on the corresponding closed term. Two cases of Fig. 8 are noteworthy. In Lλx.MM•, the
occurrences of x are replaced with fresh shared variables that only occur once within in
M . The definition of LM⟨⟨B/x⟩⟩M• considers two possibilities. If the bag being encoded is
non-empty and the explicit substitution would not lead to failure (the number of occurrences
of x and the size of the bag coincide) then we encode the explicit substitution as a sum of
explicit linear substitutions. Otherwise, the explicit substitution will lead to a failure, and
the encoding proceeds inductively. As we will see, doing this will enable a tight operational
correspondence result with sπ.

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 21:13

LxM• = x LHMI ·BM• = HLMM•I · LBM• Lfailx̃M• = failx̃ LM BM• = LMM• LBM•

L1M• = 1Lλx.MM• = λx.(LM⟨x̃/x⟩M•[x̃← x]) #(x, M) = n, each xi is fresh

LM⟨⟨B/x⟩⟩M• =
∑

Bi∈PER(LBM•)

LM⟨x̃/x⟩M•⟨|Bi(1)/x1|⟩ · · · ⟨|Bi(k)/xk|⟩ #(x, M) = size(B) = k ≥ 1

LM⟨x1. · · · , xk/x⟩M•[x̃← x]⟨⟨LBM•
/x⟩⟩ otherwise, #(x, M) = k ≥ 0

Figure 8 Auxiliary Encoding: λ ⊕ into λ̂ ⊕.

▶ Example 22. Consider the λ ⊕ term y⟨⟨B/x⟩⟩, with fv(B) = ∅ and y ≠ x. Its encoding
into λ̂ ⊕ is Ly⟨⟨B/x⟩⟩M◦ = Ly0⟨⟨B/x⟩⟩M•[y0 ← y] = y0[← x]⟨⟨LBM•

/x⟩⟩[y0 ← y]. Notice that the
encoding induces (empty) sharing on x, even if x does not occur in the term y. ⌟

We consider correctness (Def. 20) for L·M◦. Our encoding is in “two-levels”, because L·M◦ it
is defined in terms of L·M•. As such, it satisfies a weak form of compositionality [11]. In [22]
we have established the following:

▶ Theorem 23 (Correctness for L·M◦). The encoding L·M◦ is type preserving, operationally
complete, operationally sound, and success sensitive.

4.3 Second Step: From λ̂
⊕ to sπ

We now define our encoding of λ̂ ⊕ into sπ, and establish its correctness.

▶ Definition 24 (From λ̂ ⊕ into sπ: Expressions). Let u be a name. The encoding J·K u : λ̂ ⊕ → sπ
is defined in Fig. 9.

As usual in encodings of λ into π, we use a name u to provide the behaviour of the
encoded expression. Here u is a non-deterministic session: the encoded expression can be
available or not; this is signaled by prefixes u.some and u.none, respectively. Notice that
every (free) variable x in a λ̂ ⊕ expression becomes a name x in its corresponding sπ process.

We discuss the most interesting aspects of the translation in Fig. 9. The term M B is
encoded into a non-deterministic sum: this models the fact that application involves a choice
in the order in which the elements of the bag are substituted. The encoding of M⟨|N/x|⟩ is
the parallel composition of the translations of M and N . We need to wait for confirmation of
a behaviour along the variable that is being substituted. The encoding of M [x1, · · · , xn ← x]
first confirms the availability of the behavior along x. Then it sends a dummy variable yi,
which is used to collapse the process in the case of a failed reduction. Subsequently, for
each shared variable, the encoding receives a name, which will act as an occurrence of the
shared variable. At the end, we use x.none to signal that there is no further information to
send over. The encoding of HMI ·B synchronises with the encoding of M [x1, · · · , xn ← x],
just discussed. The name yi is used to trigger a failure in the computation if there is a
lack of elements in the encoding of bag. The encoding of failx1,··· ,xk simply triggers failure
on u and on each of x1, · · · , xk. The encoding of JM + NK u homomorphically preserves
non-determinism.

FSCD 2021

21:14 Non-Deterministic Functions as Non-Deterministic Processes

JxK u = x.some; [x↔ u]

Jλx.M [x̃← x]K u = u.some; u(x).JM [x̃← x]K u

JMBK u =
⊕

Bi∈PER(B)(νv)(JMK v | v.someu,fv(B); v(x).([v ↔ u] | JBiK x))

JM [x̃← x]⟨⟨B/x⟩⟩K u =
⊕

Bi∈PER(B)(νx)(JM [x̃← x]K u | JBiK x)

JM⟨|N/x|⟩K u = (νx)(JMK u | x.somefv(N); JNK x)

JM [← x]K u = x.some.x(yi).(yi.someu,fv(M); yi.close; JMK u | x.none)

JM [x1, · · · , xn ← x]K u =
x.some.x(y1).(y1.some∅; y1.close; 0
| x.some; x.someu,(fv(M)\x1,··· ,xn); x(x1). · · ·
.x.some.x(yn).(yn.some∅; yn.close; 0 | x.some; x.someu,(fv(M)\xn); x(xn)

.x.some; x(yn+1).(yn+1.someu,fv(M); yn+1.close; JMK u | x.none)) · · ·)

Jfailx1,··· ,xkK u = u.none | x1.none | · · · | xk.none

J1K x = x.some∅; x(yn).(yn.some; yn.close | x.some∅; x.none)

JHMI ·BK x = x.somefv(HMI·B); x(yi).x.someyi,fv(HMI·B); x.some; x(xi)
.(xi.somefv(M); JMK xi

| JBK x | yi.none)

JM + NK u = JMK u ⊕ JNK u

Figure 9 Encoding λ̂ ⊕ expressions into sπ processes.

▶ Example 25. We illustrate J·K u in Fig. 9 by encoding the λ̂ ⊕-terms N [← x]⟨⟨HMI/x⟩⟩ and
failfv(N)∪fv(M), where M, N are closed well-formed λ̂ ⊕-terms (i.e. fv(N) = fv(M) = ∅):

JN [← x]⟨⟨HMI/x⟩⟩K u = (νx)(JN [← x]K u | JHMIK x)
= (νx)(x.some.x(yi).(yi.someu; yi.close; JNK u | x.none) |

x.some∅; x(yi).x.someyi ; x.some; x(xi)
.(xi.some∅; JMK xi

| J1K x | yi.none))
Jfailfv(N)∪fv(M)K u = u.none

⌟

We now encode intersection types (for λ ⊕ and λ̂ ⊕) into session types (for sπ):

▶ Definition 26 (From λ̂ ⊕ into sπ: Types). The translation J·K on types is defined in Fig. 10.
Let Γ be an assignment defined as Γ = x1 : σ1, · · · , xm : σk, v1 : π1, · · · , vn : πn. We define
JΓK as x1 : NJσ1K , · · · , xk : NJσkK , v1 : NJπ1K (σ,i1), · · · , vn : NJπnK (σ,in).

The encoding of types captures our use of non-deterministic session protocols (typed with
“N”) to represent non-deterministic and fail-prone evaluation in λ̂⊕. Notice that the encoding
of the multiset type π depends on two arguments (a strict type σ and a number i ≥ 0) which
are left unspecified above. This is crucial to represent mismatches in λ̂ ⊕ (i.e., sources of
failures) as typable processes in sπ. For instance, in Fig. 5, Rule [FS:app] admits a mismatch
between σj → τ and σk, for it allows j ̸= k. In our proof of type preservation, these two
arguments are instantiated appropriately, enabling typability as session-typed processes.

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 21:15

JunitK = N1

Jπ → τK = N((JπK (σ,i)) O JτK) (for some strict type σ, with i ≥ 0)

Jσ ∧ πK (σ,i) = N((⊕⊥)⊗ (N⊕ ((NJσK) O (JπK (σ,i)))))
= ⊕((N1) O (⊕N((⊕JσK)⊗ (JπK (σ,i)))))

JωK (σ,i) =

N((⊕⊥)⊗ (N⊕⊥))) if i = 0

N((⊕⊥)⊗ (N⊕ ((NJσK) O (JωK (σ,i−1))))) if i > 0

Figure 10 Encoding types for λ̂ ⊕ as session types.

With our encodings of expressions and types in place, we can now encode judgments:

▶ Definition 27 (Encoding Judgments). If Γ |= M : τ then JMK u ⊢ JΓK , u : JτK .

We are now ready to consider correctness for J·K , as in Def. 20. First, the compositionality
property follows directly from Fig. 9. We now state the remaining properties in Def. 20, which
we have established in [22]. First, type preservation:

▶ Theorem 28 (Type Preservation for J·K u). Let B and M be a bag and an expression.
1. If Γ |= B : π then JBK u |= JΓK , u : JπK (σ,i), for some strict type σ and some i.
2. If Γ |= M : τ then JMK u |= JΓK , u : JτK .

We now consider operational completeness. Because λ̂ ⊕ satisfies the diamond property,
it suffices to consider completeness based on a single reduction step (N −→M):

▶ Theorem 29 (Operational Completeness). Let N and M be well-formed λ̂ ⊕ closed expressions.
If N −→M then there exists Q such that JNK u −→∗ Q = JMK u.

▶ Example 30 (Cont. Example 25). Since M and N are well-formed we can verify, by applying
rules in Fig. 5 that, N [← x]⟨⟨HMI/x⟩⟩ and failfv(N)∪fv(M) are well-formed. Notice that
N [← x]⟨⟨HMI/x⟩⟩ −→[RS:Fail] failfv(N)∪fv(M). The encoding of the lhs reduces to encoding of
the rhs via the reduction rules of sπ (Fig. 6) as JN [← x]⟨⟨HMI/x⟩⟩K u −→∗ Jfailfv(N)∪fv(M)K u.
The complete example with the reduction steps can be found in [22]. ⌟

In soundness we use the precongruence ⪰λ (Fig. 3). We write N −→⪰λ
N ′ iff N ⪰λ N1 −→

N2 ⪰λ N ′, for some N1, N2. The reflexive, transitive closure of −→⪰λ
is −→∗

⪰λ
.

▶ Theorem 31 (Operational Soundness). Let N be a well-formed, closed λ̂ ⊕ expression. If
JNK u −→∗ Q then Q −→∗ Q′, N −→∗

⪰λ
N′ and JN′K u = Q′, for some Q′,N′.

Finally, we consider success sensitiveness. This requires extending λ̂ ⊕ and sπ with success
predicates. In sπ, we say that P is unguarded if it does not occur behind a prefix.

▶ Definition 32 (Success in λ̂ ⊕). We extend the syntax of terms for λ̂ ⊕ with the ✓ construct.
We define M ⇓✓ iff there exist M1, · · · , Mk such that M −→∗ M1 + · · ·+Mk and head(M ′

j) =
✓, for some j ∈ {1, . . . , k} and term M ′

j such that Mj ⪰λ M ′
j.

▶ Definition 33 (Success in sπ). We extend the syntax of sπ processes with the ✓ construct,
which we assume well typed. We define P ⇓✓ to hold whenever there exists a P ′ such that
P −→∗ P ′ and P ′ contains an unguarded occurrence of ✓.

We now extend Def. 24 by decreeing J✓K u = ✓. We finally have:

▶ Theorem 34 (Success Sensitivity). Let M be a well-formed, closed λ̂ ⊕ expression. Then
M ⇓✓ iff JMK u ⇓✓.

FSCD 2021

21:16 Non-Deterministic Functions as Non-Deterministic Processes

5 Discussion

Summary. We developed a correct encoding of λ ⊕, a new resource λ-calculus in which
expressions feature non-determinism and explicit failure, into sπ, a session-typed π-calculus
in which behavior is non-deterministically available: a protocol may perform as stipulated but
also fail. Our encodability result is obtained by appealing to λ̂ ⊕, an intermediate language with
sharing constructs that simplifies the treatment of variables in expressions. To our knowledge,
we are the first to relate typed λ-calculi and typed π-calculi encompassing non-determinism
and explicit failures, while connecting intersection types and session types, two different
mechanisms for resource-awareness in sequential and concurrent settings, respectively.

Design of λ ⊕ (and λ̂ ⊕). The design of the sequential calculus λ ⊕ has been influenced
by the typed mechanisms for non-determinism and failure in the concurrent calculus sπ.
As sπ stands on rather solid logical foundations (via the Curry-Howard correspondence
between linear logic and session types [7, 27, 6]), λ ⊕ defines a logically motivated addition
to resource λ-calculi in the literature; see, e.g., [3, 4, 21]. Major similarities between λ ⊕ and
these existing languages include: as in [4], our semantics performs lazy evaluation and linear
substitution on the head variable; as in [21], our reductions lead to non-deterministic sums.
A distinctive feature of λ ⊕ is its lazy treatment of failures, via the dedicated term failx̃.
In contrast, in [3, 4, 21] there is no dedicated term to represent failure. The non-collapsing
semantics for non-determinism is another distinctive feature of λ ⊕.

Our design for λ̂ ⊕ has been informed by the λ-calculi with sharing introduced in [13] and
studied in [10]. Also, our translation from λ ⊕ into λ̂ ⊕ borrows insights from the translations
presented in [13]. Notice that the calculi in [13, 10] do not consider explicit failure nor
non-determinism. We distinguish between well-typed and well-formed expressions: this allows
us to make fail-prone evaluation in λ ⊕ explicit. It is interesting that explicit failures can be
elegantly encoded as protocols in sπ– this way, we make the most out of sπ’s expressivity.

Related Works. A source of inspiration for our work is the work by Boudol and Laneve [4].
As far as we know, this is the only prior study that connects λ and π from a resource-oriented
perspective, via an encoding of a λ-calculus with multiplicities into a π-calculus without sums.
The goal of [4] is different from ours, as they study the discriminating power of semantics
for λ as induced by encodings into π. In contrast, we study how typability delineates the
encodability of resource-awareness across sequential and concurrent realms. Notice that the
calculi in [4] are untyped, whereas we consider typed calculi and our encodings preserve
typability. As a result, the encoding in [4] is conceptually different from ours; remarkably,
our encoding of λ̂ ⊕ into sπ respects linearity and homomorphically translates sums.

There are some similarities between λ ⊕ and the differential λ-calculus, introduced in [9].
Both express non-deterministic choice via sums and use linear head reduction for evaluation.
In particular, our fetch rule, which consumes non-deterministically elements from a bag, is
related to the derivation (which has similarities with substitution) of a differential term.
However, the focus of [9] is not on typability nor encodings to process calculi; instead they
relate the Taylor series of analysis to the linear head reduction of λ-calculus.

Prior works have studied encodings of typed λ-calculi into typed π-calculi; see, e.g., [23,
4, 24, 1, 16, 20, 26]. None of these works consider non-determinism and failures; the one
exception is the encoding in [6], which involves a λ-calculus with exceptions and failures
(but without non-determinism due to bags, as in λ ⊕) for which no (reduction) semantics is
given. As a result, the encoding in [6] is different from ours, and only preserves typability:
important semantic properties such as operational completeness, operational soundness, and
success sensitivity are not considered in [6].

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 21:17

Ongoing and Future Work. In λ ⊕ bags have linear resources, which are used exactly once.
In ongoing work, we have established that our approach to encodability in sπ extends to the
case in which bags contain both linear and unrestricted resources, as in [21]. Handling such
an extension of λ ⊕ requires the full typed process framework in [6], with replicated processes
and labeled choices (which were not needed to encode λ ⊕).

The approach and results developed here enable us to tackle open questions that go
beyond the scope of this work. First, we wish to explore whether our correct encoding can be
defined in a setting with collapsing non-determinism. Second, we plan to investigate formal
results of relative expressiveness that connect λ ⊕ and the resource calculi in [4, 21].

References
1 Martin Berger, Kohei Honda, and Nobuko Yoshida. Genericity and the pi-calculus. In

Andrew D. Gordon, editor, Foundations of Software Science and Computational Structures,
6th International Conference, FOSSACS 2003 Held as Part of the Joint European Conference on
Theory and Practice of Software, ETAPS 2003, Warsaw, Poland, April 7-11, 2003, Proceedings,
volume 2620 of Lecture Notes in Computer Science, pages 103–119. Springer, 2003. doi:
10.1007/3-540-36576-1_7.

2 Viviana Bono and Mariangiola Dezani-Ciancaglini. A tale of intersection types. In Holger
Hermanns, Lijun Zhang, Naoki Kobayashi, and Dale Miller, editors, LICS ’20: 35th Annual
ACM/IEEE Symposium on Logic in Computer Science, Saarbrücken, Germany, July 8-11,
2020, pages 7–20. ACM, 2020. doi:10.1145/3373718.3394733.

3 Gérard Boudol. The lambda-calculus with multiplicities (abstract). In Eike Best, editor,
CONCUR ’93, Hildesheim, Germany, August 23-26, 1993, Proceedings, volume 715 of Lecture
Notes in Computer Science, pages 1–6. Springer, 1993. doi:10.1007/3-540-57208-2_1.

4 Gérard Boudol and Cosimo Laneve. lambda-calculus, multiplicities, and the pi-calculus. In
Proof, Language, and Interaction, Essays in Honour of Robin Milner, pages 659–690, 2000.

5 Antonio Bucciarelli, Delia Kesner, and Daniel Ventura. Non-idempotent intersection types for
the lambda-calculus. Logic Journal of the IGPL, 25(4):431–464, 2017.

6 Luís Caires and Jorge A. Pérez. Linearity, control effects, and behavioral types. In
Hongseok Yang, editor, Programming Languages and Systems – 26th European Symposium
on Programming, ESOP 2017, Held as Part of the European Joint Conferences on The-
ory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceed-
ings, volume 10201 of Lecture Notes in Computer Science, pages 229–259. Springer, 2017.
doi:10.1007/978-3-662-54434-1_9.

7 Luís Caires and Frank Pfenning. Session types as intuitionistic linear propositions. In
CONCUR 2010 – Concurrency Theory, 21th International Conference, CONCUR 2010, Paris,
France, August 31–September 3, 2010. Proceedings, pages 222–236, 2010. doi:10.1007/
978-3-642-15375-4_16.

8 Mariangiola Dezani-Ciancaglini, Ugo de’Liguoro, and Adolfo Piperno. Filter models for a
parallel and non deterministic lambda-calculus. In Andrzej M. Borzyszkowski and Stefan
Sokolowski, editors, Mathematical Foundations of Computer Science 1993, 18th International
Symposium, MFCS’93, Gdansk, Poland, August 30–September 3, 1993, Proceedings, volume
711 of Lecture Notes in Computer Science, pages 403–412. Springer, 1993. doi:10.1007/
3-540-57182-5_32.

9 Thomas Ehrhard and Laurent Regnier. The differential lambda-calculus. Theor. Comput. Sci.,
309(1-3):1–41, 2003. doi:10.1016/S0304-3975(03)00392-X.

10 Silvia Ghilezan, Jelena Ivetic, Pierre Lescanne, and Silvia Likavec. Intersection types for
the resource control lambda calculi. In Theoretical Aspects of Computing – ICTAC 2011 –
8th International Colloquium, Johannesburg, South Africa, August 31–September 2, 2011.
Proceedings, pages 116–134, 2011. doi:10.1007/978-3-642-23283-1_10.

11 Daniele Gorla. Towards a unified approach to encodability and separation results for process
calculi. Inf. Comput., 208(9):1031–1053, 2010. doi:10.1016/j.ic.2010.05.002.

FSCD 2021

https://doi.org/10.1007/3-540-36576-1_7
https://doi.org/10.1007/3-540-36576-1_7
https://doi.org/10.1145/3373718.3394733
https://doi.org/10.1007/3-540-57208-2_1
https://doi.org/10.1007/978-3-662-54434-1_9
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1007/3-540-57182-5_32
https://doi.org/10.1007/3-540-57182-5_32
https://doi.org/10.1016/S0304-3975(03)00392-X
https://doi.org/10.1007/978-3-642-23283-1_10
https://doi.org/10.1016/j.ic.2010.05.002

21:18 Non-Deterministic Functions as Non-Deterministic Processes

12 Daniele Gorla and Uwe Nestmann. Full abstraction for expressiveness: history, myths and
facts. Math. Struct. Comput. Sci., 26(4):639–654, 2016. doi:10.1017/S0960129514000279.

13 Tom Gundersen, Willem Heijltjes, and Michel Parigot. Atomic lambda calculus: A typed
lambda-calculus with explicit sharing. In 28th Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2013, New Orleans, LA, USA, June 25-28, 2013, pages 311–320,
2013. doi:10.1109/LICS.2013.37.

14 Kohei Honda. Types for dyadic interaction. In Eike Best, editor, CONCUR ’93, Hildesheim,
Germany, August 23-26, 1993, Proceedings, volume 715 of Lecture Notes in Computer Science,
pages 509–523. Springer, 1993. doi:10.1007/3-540-57208-2_35.

15 Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. Language primitives and
type discipline for structured communication-based programming. In Chris Hankin, editor,
Programming Languages and Systems – ESOP’98, 7th European Symposium on Programming,
Held as Part of the European Joint Conferences on the Theory and Practice of Software,
ETAPS’98, Lisbon, Portugal, March 28–April 4, 1998, Proceedings, volume 1381 of Lecture
Notes in Computer Science, pages 122–138. Springer, 1998. doi:10.1007/BFb0053567.

16 Kohei Honda, Nobuko Yoshida, and Martin Berger. Process types as a descriptive tool for
interaction – control and the pi-calculus. In Gilles Dowek, editor, Rewriting and Typed Lambda
Calculi – Joint International Conference, RTA-TLCA 2014, Held as Part of the Vienna Summer
of Logic, VSL 2014, Vienna, Austria, July 14–17, 2014. Proceedings, volume 8560 of Lecture
Notes in Computer Science, pages 1–20. Springer, 2014. doi:10.1007/978-3-319-08918-8_1.

17 Dimitrios Kouzapas, Jorge A. Pérez, and Nobuko Yoshida. On the relative expressiveness of
higher-order session processes. Inf. Comput., 268, 2019. doi:10.1016/j.ic.2019.06.002.

18 Robin Milner. Functions as processes. Mathematical Structures in Computer Science, 2(2):119–
141, 1992. doi:10.1017/S0960129500001407.

19 Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, I. Inf.
Comput., 100(1):1–40, 1992. doi:10.1016/0890-5401(92)90008-4.

20 Dominic A. Orchard and Nobuko Yoshida. Effects as sessions, sessions as effects. In Proceedings
of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2016, St. Petersburg, FL, USA, January 20–22, 2016, pages 568–581. ACM,
2016. doi:10.1145/2837614.2837634.

21 Michele Pagani and Simona Ronchi Della Rocca. Solvability in resource lambda-calculus. In
C.-H. Luke Ong, editor, Foundations of Software Science and Computational Structures, 13th
International Conference, FOSSACS 2010, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010.
Proceedings, volume 6014 of Lecture Notes in Computer Science, pages 358–373. Springer,
2010. doi:10.1007/978-3-642-12032-9_25.

22 Joseph Paulus, Daniele Nantes-Sobrinho, and Jorge A. Pérez. Non-Deterministic Functions
as Non-Deterministic Processes (Extended Version). CoRR, abs/2104.14759, 2021. arXiv:
2104.14759.

23 Davide Sangiorgi. From lambda to pi; or, rediscovering continuations. Math. Struct. Comput.
Sci., 9(4):367–401, 1999. URL: http://journals.cambridge.org/action/displayAbstract?
aid=44843.

24 Davide Sangiorgi and David Walker. The Pi-Calculus – a theory of mobile processes. Cambridge
University Press, 2001.

25 Bernardo Toninho, Luís Caires, and Frank Pfenning. Functions as session-typed processes. In
Lars Birkedal, editor, Foundations of Software Science and Computational Structures – 15th
International Conference, FOSSACS 2012, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24–April 1, 2012.
Proceedings, volume 7213 of Lecture Notes in Computer Science, pages 346–360. Springer,
2012. doi:10.1007/978-3-642-28729-9_23.

https://doi.org/10.1017/S0960129514000279
https://doi.org/10.1109/LICS.2013.37
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/978-3-319-08918-8_1
https://doi.org/10.1016/j.ic.2019.06.002
https://doi.org/10.1017/S0960129500001407
https://doi.org/10.1016/0890-5401(92)90008-4
https://doi.org/10.1145/2837614.2837634
https://doi.org/10.1007/978-3-642-12032-9_25
http://arxiv.org/abs/2104.14759
http://arxiv.org/abs/2104.14759
http://journals.cambridge.org/action/displayAbstract?aid=44843
http://journals.cambridge.org/action/displayAbstract?aid=44843
https://doi.org/10.1007/978-3-642-28729-9_23

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 21:19

26 Bernardo Toninho and Nobuko Yoshida. On polymorphic sessions and functions – A tale
of two (fully abstract) encodings. In Amal Ahmed, editor, 27th European Symposium on
Programming, ESOP 2018, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14–20, 2018, Proceedings,
volume 10801 of Lecture Notes in Computer Science, pages 827–855. Springer, 2018. doi:
10.1007/978-3-319-89884-1_29.

27 Philip Wadler. Propositions as sessions. In Peter Thiemann and Robby Bruce Findler, editors,
ACM SIGPLAN International Conference on Functional Programming, ICFP’12, Copenhagen,
Denmark, September 9-15, 2012, pages 273–286. ACM, 2012. doi:10.1145/2364527.2364568.

A Appendix

A.1 Omitted Syntactic and Semantic Notations for λ
⊕

Auxiliary Notions. In λ ⊕, a β-reduction induces an explicit substitution of a bag B for a
variable x, denoted ⟨⟨B/x⟩⟩. This explicit substitution is then expanded into a sum of terms,
each of which features a linear head substitution {|Ni/x|}, where Ni is a term in B; the bag
B \Ni is kept in an explicit substitution. In case there is a mismatch between the number of
occurrences of the variable to be substituted and the number of resources available, then the
reduction leads to the failure term. The reduction rules in Fig. 12 rest upon some auxiliary
notions.

▶ Definition 35 (Set and Multiset of Free Variables). The set of free variables of a term, bag,
and expression, is defined in Fig. 11. We use mfv(M) or mfv(B) to denote a multiset of free
variables, defined similarly. We sometimes treat the sequence x̃ as a (multi)set. We write
x̃⊎ ỹ to denote the multiset union of x̃ and ỹ and x̃\y to express that every occurrence of y is
removed from x̃. As usual, a term M is closed if fv(M) = ∅ (and similarly for expressions).

fv(x) = {x} fv(HMI) = fv(M) fv(λx.M) = fv(M)\{x} fv(M B) = fv(M) ∪ fv(B)
fv(1) = ∅ fv(B1 ·B2) = fv(B1) ∪ fv(B2) fv(M + N) = fv(M) ∪ fv(N)
fv(M⟨⟨B/x⟩⟩) = (fv(M) \ {x}) ∪ fv(B) fv(failx1,··· ,xn) = {x1, · · · , xn}

Figure 11 Free variables for λ ⊕.

▶ Notation 36. #(x, M) denotes the number of (free) occurrences of x in M . Similarly, we
write #(x, ỹ) to denote the number of occurrences of x in the multiset ỹ.

▶ Definition 37 (Head). Given a term M , we define head(M) inductively as:

head(x) = x head(λx.M) = λx.M head(M B) = head(M)
head(failx̃) = failx̃

head(M⟨⟨B/x⟩⟩) =

{
head(M) if #(x, M) = size(B)
fail∅ otherwise

▶ Definition 38 (Linear Head Substitution). Let M be a term such that head(M) = x. The
linear head substitution of a term N for x, denoted {|N/x|}, is defined as:

x{|N/x|} = N (M B){|N/x|} = (M{|N/x|}) B

(M ⟨⟨B/y⟩⟩){|N/x|} = (M{|N/x|}) ⟨⟨B/y⟩⟩ where x ̸= y

FSCD 2021

https://doi.org/10.1007/978-3-319-89884-1_29
https://doi.org/10.1007/978-3-319-89884-1_29
https://doi.org/10.1145/2364527.2364568

21:20 Non-Deterministic Functions as Non-Deterministic Processes

[R : Beta]
(λx.M)B −→M ⟨⟨B/x⟩⟩

#(x, M) ̸= size(B)
ỹ = (mfv(M) \ x) ⊎mfv(B)

[R : Fail]
M ⟨⟨B/x⟩⟩ −→

∑
PER(B) failỹ

head(M) = x B = HN1I · · · · · HNkI , k ≥ 1 #(x, M) = k
[R : Fetch]

M ⟨⟨B/x⟩⟩ −→M{|N1/x|}⟨⟨(B \N1)/x⟩⟩+ · · ·+ M{|Nk/x|}⟨⟨(B \Nk)/x⟩⟩

ỹ = mfv(B)
[R : Cons1]

failx̃ B −→
∑

PER(B)

failx̃⊎ỹ

size(B) = k #(z, x̃) + k ̸= 0
ỹ = mfv(B)

[R : Cons2]
failx̃ ⟨⟨B/z⟩⟩ −→

∑
PER(B)

fail(̃x\z)⊎ỹ

M −→M ′
1 + · · ·+ M ′

k[R : TCont]
C[M] −→ C[M ′

1] + · · ·+ C[M ′
k]

M −→M′
[R : ECont]

D[M] −→ D[M′]

Figure 12 Reduction rules for λ ⊕.

Finally, we define contexts for terms and expressions and convenient notations:

▶ Definition 39 (Term and Expression Contexts). Contexts for terms (CTerm) and expressions
(CExpr) are defined by the following grammar:

(CTerm) C[·], C′[·] ::= ([·])B | ([·])⟨⟨B/x⟩⟩ (CExpr) D[·], D′[·] ::= M + [·] | [·] + M

Reduction for λ ⊕. The reduction relation −→ operates lazily on expressions; it is defined
by the rules in Fig. 12. Rule [R : Beta] is standard and admits a bag (possibly empty) as
parameter. Rule [R : Fetch] transforms a term into an expression: it opens up an explicit
substitution into a sum of terms with linear head substitutions, each denoting the partial
evaluation of an element from the bag. Hence, the size of the bag will determine the number
of summands in the resulting expression.

Three rules reduce to the failure term: their objective is to accumulate all (free) variables
involved in failed reductions. Accordingly, Rule [R : Fail] formalizes failure in the evaluation
of an explicit substitution M ⟨⟨B/x⟩⟩, which occurs if there is a mismatch between the
resources (terms) present in B and the number of occurrences of x to be substituted. The
resulting failure preserves all free variables in M and B within its attached multiset ỹ.
Rules [R : Cons1] and [R : Cons2] describe reductions that lazily consume the failure term,
when a term has failx̃ at its head position. The former rule consumes bags attached to it
whilst preserving all its free variables. The latter rule is similar but for the case of explicit
substitutions; its second premise ensures that either (i) the bag in the substitution is not
empty or (ii) the number of occurrences of x in the current multiset of accumulated variables
is not zero. When both (i) and (ii) hold, we apply a precongruence rule (cf. [22]), rather
than reduction.

Finally, Rule [R : TCont] describes the reduction of sub-terms within an expression; in
this rule, summations are expanded outside of term contexts. Rule [R : ECont] says that
reduction of expressions is closed by expression contexts.

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 21:21

▶ Example 40. Let M = (λx.xHxHyII) B, with B = Hz1I · Hz2I · Hz1I. We have:

M −→[R:Beta] xHxHyII⟨⟨Hz1I · Hz2I · Hz1I/x⟩⟩ −→[R:Fail]
∑

PER(B)

faily,z1,z2,z1

The number of occurrences of x in the term obtained after β-reduction (2) does not match
the size of the bag (3). Therefore, the reduction leads to failure.

Notice that the left-hand sides of the reduction rules in λ ⊕ do not interfere with each
other. Therefore, reduction in λ ⊕ satisfies a diamond property:

▶ Proposition 41 (Diamond Property for λ ⊕). For all N, N1, N2 in λ ⊕ s.t. N −→ N1,
N −→ N2 with N1 ̸= N2 then ∃M s.t. N1 −→M, N2 −→M.

Proof. We give a short argument to convince the reader of this. Notice that an expression
can only perform a choice of reduction steps when it is a nondeterministic sum of terms in
which multiple terms can perform independent reductions. For simplicity sake we will only
consider an expression N that consist of two terms where N = N + M . We also have that
N −→ N ′ and M −→M ′. Then we let N1 = N ′ + M and N2 = N + M ′ by the [R : ECont]
rules. Finally we prove that M exists by letting M = N ′ + M ′ ◀

Non-Idempotent Intersection Types. The type system for λ ⊕ is based on non-idempotent
intersection types. The grammar of strict and multiset types, the notions of typing assignments
and judgements are the same as in Section 2.

We define well-formed λ ⊕ expressions, in two stages. We first define a type system for
the sub-language λ⊕, given in Fig. 13, using the types of Def. 12. Then, we define well-formed
expressions for the full language λ ⊕, via Def. 42 (see below).

We first discuss selected rules of the type system for λ⊕ in Fig. 13. Rule [T:var] is
standard. Rule [T:1] assigns the empty bag 1 the empty type ω. Rule [T:weak] introduces a
useful weakening principle. Rule [T:app] is standard, requiring a match on the multiset type
π. Rule [T:ex-sub] types explicit substitutions where a bag must consist of both the same
type and size of the variable it is being substituted for. On top of this type system for λ⊕,
we define well-formed expressions:

▶ Definition 42 (Well-formed λ ⊕ expressions). An expression M is well-formed if there exist
Γ and τ such that Γ |= M : τ is entailed via the rules in Fig. 14.

In Fig. 14, Rules [F:wf-expr] and [F:wf-bag] allow well-typed terms and bags to be well-
formed. Rules [F:abs], [F:bag], and [F:sum] are as in the type system for λ⊕, but extended
to the system of well-formed expressions. Rules [F:ex-sub] and [F:app] differ from similar
typing rules as the size of the bags (as declared in their types) is no longer required to match.
Finally, Rule [F:fail] has no analogue in the type system: we allow the failure term failx̃ to
be well-formed with any type, provided that the context contains the types of the variables
in x̃.

Well-formed expressions satisfy subject reduction (SR); see [22] for a proof.

▶ Theorem 43 (SR in λ ⊕). If Γ |= M : τ and M −→M′ then Γ |= M′ : τ .

Clearly, the set of well-typed expressions is strictly included in the set of well-formed
expressions. Take M = x⟨⟨HN1I · HN2I/x⟩⟩ where both N1 and N2 are well-typed. It is easy to
see that M is well-formed. However, M is not well-typed.

FSCD 2021

21:22 Non-Deterministic Functions as Non-Deterministic Processes

▶ Example 44. The following example illustrates an expression which is not well-formed:

λx.xHλy.yI · Hλz.z1Hz1Hz2III

This is due to the bag being composed of two terms of different types.

[T : var]
x : σ ⊢ x : σ

[T : 1] ⊢ 1 : ω
Γ ⊢M : σ x ̸∈ dom(Γ)

[T : weak] Γ, x : ω ⊢M : σ

Γ, x̂ : σk ⊢M : τ x /∈ dom(Γ)
[T : abs]

Γ ⊢ λx.M : σk → τ

Γ ⊢M : π → τ ∆ ⊢ B : π[T : app] Γ, ∆ ⊢M B : τ

Γ ⊢M : σ ∆ ⊢ B : σk
[T : bag]

Γ, ∆ ⊢ HMI ·B : σk+1
Γ ⊢M : σ Γ ⊢ N : σ[T : sum] Γ ⊢M + N : σ

Γ, x̂ : σk ⊢M : τ ∆ ⊢ B : σk

[T : ex-sub]
Γ, ∆ ⊢M⟨⟨B/x⟩⟩ : τ

Figure 13 Typing rules for the sub-language λ⊕ (i.e., λ ⊕ without the failure term).

Γ ⊢M : τ[F : wf-expr]
Γ |= M : τ

Γ ⊢ B : π[F : wf-bag]
Γ |= B : π

∆ |= M : τ
[F : weak]

∆, x : ω |= M : τ

Γ, x̂ : σn |= M : τ x /∈ dom(Γ)
[F : abs]

Γ |= λx.M : σn → τ

Γ |= M : σ ∆ |= B : σk

[F : bag]
Γ, ∆ |= HMI ·B : σk+1

Γ |= M : σ Γ |= N : σ
[F : sum]

Γ |= M + N : σ

dom(Γ) = x̃
[F : fail]

Γ |= failx̃ : τ

Γ, x̂ : σk |= M : τ ∆ |= B : σj k, j ≥ 0
[F : ex-sub]

Γ, ∆ |= M⟨⟨B/x⟩⟩ : τ

Γ |= M : σj → τ ∆ |= B : σk k, j ≥ 0
[F : app]

Γ, ∆ |= M B : τ

Figure 14 Well-formedness rules for the full language λ ⊕.

	1 Introduction
	2 lambda^{lightning}_{oplus}: A lambda-calculus with Non-Determinism and Failure
	3 spi: A Session-Typed pi-Calculus
	4 The Encoding
	4.1 Encodability Criteria
	4.2 First Step
	4.3 Second Step

	5 Discussion
	A Appendix
	A.1 Omitted Syntactic and Semantic Notations for lambda^{lightning}_{oplus}

