114,829 research outputs found

    The Human Oral Microbiome Database: a web accessible resource for investigating oral microbe taxonomic and genomic information

    Get PDF
    The human oral microbiome is the most studied human microflora, but 53% of the species have not yet been validly named and 35% remain uncultivated. The uncultivated taxa are known primarily from 16S rRNA sequence information. Sequence information tied solely to obscure isolate or clone numbers, and usually lacking accurate phylogenetic placement, is a major impediment to working with human oral microbiome data. The goal of creating the Human Oral Microbiome Database (HOMD) is to provide the scientific community with a body site-specific comprehensive database for the more than 600 prokaryote species that are present in the human oral cavity based on a curated 16S rRNA gene-based provisional naming scheme. Currently, two primary types of information are provided in HOMD—taxonomic and genomic. Named oral species and taxa identified from 16S rRNA gene sequence analysis of oral isolates and cloning studies were placed into defined 16S rRNA phylotypes and each given unique Human Oral Taxon (HOT) number. The HOT interlinks phenotypic, phylogenetic, genomic, clinical and bibliographic information for each taxon. A BLAST search tool is provided to match user 16S rRNA gene sequences to a curated, full length, 16S rRNA gene reference data set. For genomic analysis, HOMD provides comprehensive set of analysis tools and maintains frequently updated annotations for all the human oral microbial genomes that have been sequenced and publicly released. Oral bacterial genome sequences, determined as part of the Human Microbiome Project, are being added to the HOMD as they become available. We provide HOMD as a conceptual model for the presentation of microbiome data for other human body sites

    Species Identification and Profiling of Complex Microbial Communities Using Shotgun Illumina Sequencing of 16S rRNA Amplicon Sequences

    Get PDF
    The high throughput and cost-effectiveness afforded by short-read sequencing technologies, in principle, enable researchers to perform 16S rRNA profiling of complex microbial communities at unprecedented depth and resolution. Existing Illumina sequencing protocols are, however, limited by the fraction of the 16S rRNA gene that is interrogated and therefore limit the resolution and quality of the profiling. To address this, we present the design of a novel protocol for shotgun Illumina sequencing of the bacterial 16S rRNA gene, optimized to capture more than 90% of sequences in the Greengenes database and with nearly twice the resolution of existing protocols. Using several in silico and experimental datasets, we demonstrate that despite the presence of multiple variable and conserved regions, the resulting shotgun sequences can be used to accurately quantify the diversity of complex microbial communities. The reconstruction of a significant fraction of the 16S rRNA gene also enabled high precision (>90%) in species-level identification thereby opening up potential application of this approach for clinical microbial characterization.Comment: 17 pages, 2 tables, 2 figures, supplementary materia

    Taxonomy of anaerobic digestion microbiome reveals biases associated with the applied high throughput sequencing strategies

    Get PDF
    In the past few years, many studies investigated the anaerobic digestion microbiome by means of 16S rRNA amplicon sequencing. Results obtained from these studies were compared to each other without taking into consideration the followed procedure for amplicons preparation and data analysis. This negligence was mainly due to the lack of knowledge regarding the biases influencing specific steps of the microbiome investigation process. In the present study, the main technical aspects of the 16S rRNA analysis were checked giving special attention to the approach used for high throughput sequencing. More specifically, the microbial compositions of three laboratory scale biogas reactors were analyzed before and after addition of sodium oleate by sequencing the microbiome with three different approaches: 16S rRNA amplicon sequencing, shotgun DNA and shotgun RNA. This comparative analysis revealed that, in amplicon sequencing, abundance of some taxa (Euryarchaeota and Spirochaetes) was biased by the inefficiency of universal primers to hybridize all the templates. Reliability of the results obtained was also influenced by the number of hypervariable regions under investigation. Finally, amplicon sequencing and shotgun DNA underestimated the Methanoculleus genus, probably due to the low 16S rRNA gene copy number encoded in this taxon

    PCR-Independent Detection of Bacterial Species-Specific 16S rRNA at 10 fM by a Pore-Blockage Sensor.

    Get PDF
    A PCR-free, optics-free device is used for the detection of Escherichia coli (E. coli) 16S rRNA at 10 fM, which corresponds to ~100-1000 colony forming units/mL (CFU/mL) depending on cellular rRNA levels. The development of a rapid, sensitive, and cost-effective nucleic acid detection platform is sought for the detection of pathogenic microbes in food, water and body fluids. Since 16S rRNA sequences are species specific and are present at high copy number in viable cells, these nucleic acids offer an attractive target for microbial pathogen detection schemes. Here, target 16S rRNA of E. coli at 10 fM concentration was detected against a total RNA background using a conceptually simple approach based on electromechanical signal transduction, whereby a step change reduction in ionic current through a pore indicates blockage by an electrophoretically mobilized bead-peptide nucleic acid probe conjugate hybridized to target nucleic acid. We investigated the concentration detection limit for bacterial species-specific 16S rRNA at 1 pM to 1 fM and found a limit of detection of 10 fM for our device, which is consistent with our previous finding with single-stranded DNA of similar length. In addition, no false positive responses were obtained with control RNA and no false negatives with target 16S rRNA present down to the limit of detection (LOD) of 10 fM. Thus, this detection scheme shows promise for integration into portable, low-cost systems for rapid detection of pathogenic microbes in food, water and body fluids

    Comparison of 16S rRNA gene sequences of genus Methanobrevibacter

    Get PDF
    BACKGROUND: The phylogeny of the genus Methanobrevibacter was established almost 25 years ago on the basis of the similarities of the 16S rRNA oligonucleotide catalogs. Since then, many 16S rRNA gene sequences of newly isolated strains or clones representing the genus Methanobrevibacter have been deposited. We tried to reorganize the 16S rRNA gene sequences of this genus and revise the taxonomic affiliation of the isolates and clones representing the genus Methanobrevibacter. RESULTS: The phylogenetic analysis of the genus based on 786 bp aligned region from fifty-four representative sequences of the 120 available sequences for the genus revealed seven multi-member groups namely, Ruminantium, Smithii, Woesei, Curvatus, Arboriphilicus, Filiformis, and the Termite gut symbionts along with three separate lineages represented by Mbr. wolinii, Mbr. acididurans, and termite gut flagellate symbiont LHD12. The cophenetic correlation coefficient, a test for the ultrametric properties of the 16S rRNA gene sequences used for the tree was found to be 0.913 indicating the high degree of goodness of fit of the tree topology. A significant relationship was found between the 16S rRNA sequence similarity (S) and the extent of DNA hybridization (D) for the genus with the correlation coefficient (r) for logD and logS, and for [ln(-lnD) and ln(-lnS)] being 0.73 and 0.796 respectively. Our analysis revealed that for this genus, when S = 0.984, D would be <70% at least 99% of the times, and with 70% D as the species "cutoff", any 16S rRNA gene sequence showing <98% sequence similarity can be considered as a separate species. In addition, we deduced group specific signature positions that have remained conserved in evolution of the genus. CONCLUSIONS: A very significant relationship between D and S was found to exist for the genus Methanobrevibacter, implying that it is possible to predict D from S with a known precision for the genus. We propose to include the termite gut flagellate symbiont LHD12, the methanogenic endosymbionts of the ciliate Nyctotherus ovalis, and rat feces isolate RT reported earlier, as separate species of the genus Methanobrevibacter

    The human salivary microbiome exhibits temporal stability in bacterial diversity

    Get PDF
    The temporal variability of the human microbiome may be an important factor in determining its relationship with health and disease. In this study, the saliva of 40 participants was collected every 2 months over a one-year period to determine the temporal variability of the human salivary microbiome. Salivary pH and 16S rRNA gene copy number were measured for all participants, with the microbiome of 10 participants assessed through 16S rRNA amplicon sequencing. In February 2013, 16S rRNA gene copy number was significantly (P < 0.001) higher, with individual changes between time points significant (P = 0.003). Salivary pH levels were significantly (P < 0.001) higher in December 2012 than in October 2012 and February 2013, with significant (P < 0.001) individual variations seen throughout. Bacterial α-diversity showed significant differences between participants (P < 0.001), but not sampling periods (P = 0.801), and a significant positive correlation with salivary pH (R(2) = 7.8%; P = 0.019). At the phylum level, significant differences were evident between participants in the Actinobacteria (P < 0.001), Bacteroidetes (P < 0.001), Firmicutes (P = 0.008), Fusobacteria (P < 0.001), Proteobacteria (P < 0.001), Synergistetes (P < 0.001) and Spirochaetes (P = 0.003) phyla. This study charted the temporal variability of the salivary microbiome, suggesting that bacterial diversity is stable, but that 16S rRNA gene copy number may be subject to seasonal flux

    16S rRNA based identification of _Aeromonas sp. kumar_ by constructing phylogenetic tree and identification of regulatory elements from the harmful Red Tide bloom, Gulf of Mannar

    Get PDF
    A bacterial strain, designated _Aeromonas sp. kumar_, was isolated from a water sample collected from Red tide Bloom occurred in the region of Gulf of Mannar region, Puthumadam Coast, India and the strain was identified using 16S rRNA based identification. During the sample collection, microbiology analysis was done to study the morphology of the bacteria. Pure culture of strain was maintained through out the study. DNA was isolated and sequenced using 16S rRNA primers. A length of 1452 nucleotide was sequenced and was put in public data base for obtaining accession number. The sequence was studied using MEGA 4, to estimate the evolutionary distances and to construct the Phylogenetic tree. Along with that Regulatory elements and Transcription factors were studied using BPROM tool. In genetics, a promoter is a region of DNA that facilitates the transcription of a particular gene. Promoters are typically located near the genes they regulate, on the same strand and upstream (towards the 5&#x27; region of the sense strand). The objective of the study is to predict the regulatory elements which are -10 box, -35box and three Transcription Factors (rpoD19, rpoD17 and araC) with their binding sites in the 16S rRNA gene of _Aeromonas sp. kumar_. The gene bank accession number for 16S rRNA gene of _Aeromonas sp. kumar_ is FJ896014

    Evaluation of PacBio sequencing for full-length bacterial 16S rRNA gene classification.

    Get PDF
    BACKGROUND: Currently, bacterial 16S rRNA gene analyses are based on sequencing of individual variable regions of the 16S rRNA gene (Kozich, et al Appl Environ Microbiol 79:5112-5120, 2013).This short read approach can introduce biases. Thus, full-length bacterial 16S rRNA gene sequencing is needed to reduced biases. A new alternative for full-length bacterial 16S rRNA gene sequencing is offered by PacBio single molecule, real-time (SMRT) technology. The aim of our study was to validate PacBio P6 sequencing chemistry using three approaches: 1) sequencing the full-length bacterial 16S rRNA gene from a single bacterial species Staphylococcus aureus to analyze error modes and to optimize the bioinformatics pipeline; 2) sequencing the full-length bacterial 16S rRNA gene from a pool of 50 different bacterial colonies from human stool samples to compare with full-length bacterial 16S rRNA capillary sequence; and 3) sequencing the full-length bacterial 16S rRNA genes from 11 vaginal microbiome samples and compare with in silico selected bacterial 16S rRNA V1V2 gene region and with bacterial 16S rRNA V1V2 gene regions sequenced using the Illumina MiSeq. RESULTS: Our optimized bioinformatics pipeline for PacBio sequence analysis was able to achieve an error rate of 0.007% on the Staphylococcus aureus full-length 16S rRNA gene. Capillary sequencing of the full-length bacterial 16S rRNA gene from the pool of 50 colonies from stool identified 40 bacterial species of which up to 80% could be identified by PacBio full-length bacterial 16S rRNA gene sequencing. Analysis of the human vaginal microbiome using the bacterial 16S rRNA V1V2 gene region on MiSeq generated 129 operational taxonomic units (OTUs) from which 70 species could be identified. For the PacBio, 36,000 sequences from over 58,000 raw reads could be assigned to a barcode, and the in silico selected bacterial 16S rRNA V1V2 gene region generated 154 OTUs grouped into 63 species, of which 62% were shared with the MiSeq dataset. The PacBio full-length bacterial 16S rRNA gene datasets generated 261 OTUs, which were grouped into 52 species, of which 54% were shared with the MiSeq dataset. Alpha diversity index reported a higher diversity in the MiSeq dataset. CONCLUSION: The PacBio sequencing error rate is now in the same range of the previously widely used Roche 454 sequencing platform and current MiSeq platform. Species-level microbiome analysis revealed some inconsistencies between the full-length bacterial 16S rRNA gene capillary sequencing and PacBio sequencing

    Effect of Pyrolysis on the Removal of Antibiotic Resistance Genes and Class I Integrons from Municipal Wastewater Biosolids

    Get PDF
    Wastewater biosolids represent a significant reservoir of antibiotic resistance genes (ARGs). While current biosolids treatment technologies can reduce ARG levels in residual wastewater biosolids, observed removal rates vary substantially. Pyrolysis is an anoxic thermal degradation process that can be used to convert biosolids into energy rich products including py-gas and py-oil, and a beneficial soil amendment, biochar. Batch pyrolysis experiments conducted on municipal biosolids revealed that the 16S rRNA gene, the ARGs erm(B), sul1, tet(L), tet(O), and the integrase gene of class 1 integrons (intI1) were significantly reduced at pyrolysis temperatures ranging from 300–700 °C, as determined by quantitative polymerase chain reaction (qPCR). Pyrolysis of biosolids at 500 °C and higher resulted in approximately 6-log removal of the bacterial 16S rRNA gene. ARGs with the highest observed removals were sul1 and tet(O), which had observed reductions of 4.62 and 4.04-log, respectively. Pyrolysis reaction time had a significant impact on 16S rRNA, ARG and intI1 levels. A pyrolysis residence time of 5 minutes at 500 °C reduced all genes to below detection limits. These results demonstrate that pyrolysis could be implemented as a biosolids polishing treatment technology to substantially decrease the abundance of total bacteria (i.e., 16S rRNA), ARGs and intI1 prior to land application of municipal biosolids
    • …
    corecore