186 research outputs found

    Robust Model Predictive Control for Signal Temporal Logic Synthesis

    Get PDF
    Most automated systems operate in uncertain or adversarial conditions, and have to be capable of reliably reacting to changes in the environment. The focus of this paper is on automatically synthesizing reactive controllers for cyber-physical systems subject to signal temporal logic (STL) specifications. We build on recent work that encodes STL specifications as mixed integer linear constraints on the variables of a discrete-time model of the system and environment dynamics. To obtain a reactive controller, we present solutions to the worst-case model predictive control (MPC) problem using a suite of mixed integer linear programming techniques. We demonstrate the comparative effectiveness of several existing worst-case MPC techniques, when applied to the problem of control subject to temporal logic specifications; our empirical results emphasize the need to develop specialized solutions for this domain

    Verifying safety and persistence in hybrid systems using flowpipes and continuous invariants

    Get PDF
    We describe a method for verifying the temporal property of persistence in non-linear hybrid systems. Given some system and an initial set of states, the method establishes that system trajectories always eventually evolve into some specified target subset of the states of one of the discrete modes of the system, and always remain within this target region. The method also computes a time-bound within which the target region is always reached. The approach combines flowpipe computation with deductive reasoning about invariants and is more general than each technique alone. We illustrate the method with a case study showing that potentially destructive stick-slip oscillations of an oil-well drill eventually die away for a certain choice of drill control parameters. The case study demonstrates how just using flowpipes or just reasoning about invariants alone can be insufficient and shows the richness of systems that one can handle with the proposed method, since the systems features modes with non-polynomial ODEs. We also propose an alternative method for proving persistence that relies solely on flowpipe computation

    Model Predictive Control for Signal Temporal Logic Specification

    Get PDF
    We present a mathematical programming-based method for model predictive control of cyber-physical systems subject to signal temporal logic (STL) specifications. We describe the use of STL to specify a wide range of properties of these systems, including safety, response and bounded liveness. For synthesis, we encode STL specifications as mixed integer-linear constraints on the system variables in the optimization problem at each step of a receding horizon control framework. We prove correctness of our algorithms, and present experimental results for controller synthesis for building energy and climate control

    Robust Model Predictive Control for Signal Temporal Logic Synthesis

    Get PDF
    Most automated systems operate in uncertain or adversarial conditions, and have to be capable of reliably reacting to changes in the environment. The focus of this paper is on automatically synthesizing reactive controllers for cyber-physical systems subject to signal temporal logic (STL) specifications. We build on recent work that encodes STL specifications as mixed integer linear constraints on the variables of a discrete-time model of the system and environment dynamics. To obtain a reactive controller, we present solutions to the worst-case model predictive control (MPC) problem using a suite of mixed integer linear programming techniques. We demonstrate the comparative effectiveness of several existing worst-case MPC techniques, when applied to the problem of control subject to temporal logic specifications; our empirical results emphasize the need to develop specialized solutions for this domain

    Grid-free computation of probabilistic safety with Malliavin Calculus

    Get PDF
    This work concerns continuous-time, continuous-space stochastic dynamical systems described by stochastic differential equations (SDE). It presents a new approach to compute probabilistic safety regions, namely sets of initial conditions of the SDE associated to trajectories that are safe with a probability larger than a given threshold. The approach introduces a functional that is minimised at the border of the probabilistic safety region, then solves an optimisation problem using techniques from Malliavin Calculus, which computes such region. Unlike existing results in the literature, the new approach allows one to compute probabilistic safety regions without gridding the state space of the SDE

    Efficient Method for Computing Lower Bounds on the pp-radius of Switched Linear Systems

    Full text link
    This paper proposes lower bounds on a quantity called LpL^p-norm joint spectral radius, or in short, pp-radius, of a finite set of matrices. Despite its wide range of applications to, for example, stability analysis of switched linear systems and the equilibrium analysis of switched linear economical models, algorithms for computing the pp-radius are only available in a very limited number of particular cases. The proposed lower bounds are given as the spectral radius of an average of the given matrices weighted via Kronecker products and do not place any requirements on the set of matrices. We show that the proposed lower bounds theoretically extend and also can practically improve the existing lower bounds. A Markovian extension of the proposed lower bounds is also presented
    corecore