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Abstract

This work concerns continuous-time, continuous-space stochastic dynamical systems de-
scribed by stochastic differential equations (SDE). It presents a new approach to compute proba-
bilistic safety regions, namely sets of initial conditions of the SDE associated to trajectories that
are safe with a probability larger than a given threshold. The approach introduces a functional that
is minimised at the border of the probabilistic safety region, then solves an optimisation problem
using techniques from Malliavin Calculus, which computes such region. Unlike existing results
in the literature, the new approach allows one to compute probabilistic safety regions without
gridding the state space of the SDE.

1 Background
In Control Engineering and in Formal Verification, a fundamental and common problem is safety
analysis: this concerns identifying states of a dynamical model that are safe, namely that are
associated to trajectories that do not escape (whether over finite or infinite time) a given set that is
deemed to be safe [1, 2, 5]. Dually, one can express a reachability analysis problem by identifying
states that are associated with trajectories entering a given target set. In the context of probabilistic
models, such as stochastic differential equations (SDE), we are interested in characterising and
computing the likelihood with which trajectories of the stochastic process either stay within a given
set, or dually reach a target set - the former has been often studied in probability theory as the exit
time problem. Alternatively, for stochastic models we might be interested in computing the set of
initial conditions associated with dynamics that are safe with a probability at least equal to, say p -
this is also known as p-safe analysis or computation of the p-safe region [42].

In this work, we present a new application of Malliavin Calculus [33] to the computation of
the p-safe region borrowing ideas from Mathematical Finance: in particular, we leverage and tailor
techniques for the computation of the (so called) Greeks of a derivative [25] for our goal. This allows
one to compute probabilistic safety regions without gridding the state space of the SDE: grid-based
techniques are by-and-large the standard approach in existing literature, with known limits related to
precision and computational scalability.

2 Related literature on Probabilistic Safety
Safety analysis, a standard specification in Formal Verification, has been studied on dynamical
models within the Hybrid Systems community [5]. Corresponding safety notions for stochastic
models (and in particular for stochastic and hybrid ones - the latter feature is not under study in this
work) have been explicitly introduced only over the past two decades [2], as further surveyed next.

This work, unlike [2], focuses on continuous-time models: particularly relevant for this setup,
[22] has presented a new modeling framework named stochastic hybrid system (SHS), which extends
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with randomness the deterministic framework of hybrid models by allowing the continuous flow
inside each invariant set of the discrete state variables to be governed by stochastic differential
equations (SDE), rather than deterministic ODEs. [22] proposes the notion of embedded Markov
chain (EMC) and studies the exit probability problem, which is related to reachability analysis: it is
shown that this probability over the EMC converges to its counterpart for the original SHS, as the
discretisation step goes to zero. [8] blends the models from [22] with Markov models with jumps in
[9], setting up Markov strings and thus obtaining a very general class of models for SHS. Closely
related to [8], [6] introduces a general model for SHS and proposes a method based on Dirichlet
forms, to study the reachability problem over SHS models. Similarly over SHS, [30] proposes
a method to compute probabilistic reachability: underpinned by seminal work in [39], [30] first
shows that reachability can be characterised as a viscosity solution of a system of coupled Hamilton-
Jacobi-Bellman equations; second, it presents a numerical method for computing the solution based
on discrete approximations, showing that this solution converges to the one for the original SHS
model as the discretisation becomes ever finer. [37] builds on [30] by employing Monte Carlo
(MC) techniques for estimating probabilities of events, and [37] uses multilevel splitting (MLS),
a variance-reduction technique that can improve both efficiency and accuracy. Again over SHS,
[34] establishes a connection between stochastic reach-avoid problems - problems encompassing
both reachability and safety, also known as constrained reachability problems - and optimal control
problems involving discontinuous payoff functions. Focusing on a particular stochastic optimal
control problem, namely the exit-time problem mentioned above, [34] provides its characterisation
as a solution of a partial differential equation in the sense of viscosity solutions, along with Dirichlet
boundary conditions. [42] establishes an optimisation scheme for computing probabilistic safety of
SHS, combining the use of barrier certificates and of potential theory.

[41] presents a method to compute protection certificates, which are closely related to the concept
of p-safe region, elaborated later. As discussed in Remark 1, [43, 44] compute the p-safe region
based on the extended generator of stochastic dynamical systems; these contributions characterize
the safety problem as an optimization problem on the space of positive measures and then solve it via
a moment-based method. [7] characterizes the p-safe regions using concepts from Potential Theory.

Alternative techniques leveraging randomised approaches have been presented: [23] introduces
a method for estimating the probability of conflict for two-aircraft encounters at a fixed altitude
- a probabilistic safety problem. The procedure is based on the introduction of a Markov chain
approximation of the stochastic process describing the relative position of the aircraft. Along similar
lines, [35] discusses the maximum instantaneous probability of conflict: randomised algorithms are
introduced to efficiently estimate this measure of criticality and to provide quantitative bounds on the
level of the approximation introduced. Also, approximate closed-form analytical expressions for the
probability of conflict are obtained. These randomised approaches can be related to statistical model
checking (SMC) techniques, which have also been developed for models related to SHS in [38].

Finally, the work in [46] enables sound verification and correct-by-construction controller
synthesis for stochastic models and their hybrid extensions [45]: a stochastic control model satisfying
a probabilistic variant of incremental input-to-state stability is shown to be abstracted into a finite-
state transition system, which is epsilon-approximately bisimilar to the original model.

3 Problem Statement
Let us consider a d-dimensional Brownian motion Wt ∈ Rd defined on a filtered probability space
(Ω,F ,(Ft),P), and the following SDE

dXt =µ(Xt)dt +
d

∑
k=1

σk(Xt)dW k
t , X0 = x. (1)

The setup above is adopted by related literature, as surveyed above.
We introduce the following requirements, which are used in [33] and in particular are sufficient

for all the results and algorithms proposed in this work. Obtaining weaker requirements, and thus
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generalising our setup, would require modifying the technical results from Malliavin calculus, which
is not core to our contributions.

Assumption 1. We suppose that the vector fields µ,σk ∈C∞
l,b(Rd ;Rd),k= 1,2, . . . ,d, where C∞

l,b(Rd ;Rd)
indicates the space of infinitely differentiable functions with bounded derivatives and bounded linear
growth from Rd to Rd . Moreover, if we call σ ∈C∞

l,b(Rd ;Rd×d) the matrix whose columns are the
vectors σk,k ≥ 1, we assume that σ satisfies the uniform ellipticity condition, i.e. σσ> is uniformly
positive definite.

If Assumption 1 holds, then it is well-known that the SDE (1) has a unique strong solution
Xx

t [27], and whenever clear from the context we shall omit the index x.
Let us consider a bounded and smooth region A and let ∂A denote the border of A. We call τx

A
the exit time of Xx

t from the region A, i.e.

τ
x
A = inf{t ≥ 0 : Xx

t 6∈ A}, x ∈ A.

Whenever clear from the context we shall omit the indexes x,A.
We define Ap

T to be the p-safe portion of a region A, or equivalently p-safe region of A, as the
initial points x in A such that if Xt starts from x, then it stays in A longer than T with probability
greater than p, i.e.

Ap
T = {x ∈ A : P(τx ≥ T )≥ p}.

Again, whenever clear from the context we shall omit the indexes p,T .

Remark 1. In [43] the authors study a more general problem, namely the probabilistic reach-avoid
problem, defined next. Given a safe set S and an unsafe set U, they compute the probability to leave
S before entering in U, before a pre-specified time T , i.e. {x ∈ S : P(τx

UC ≤ τx
S ,τ

x
UC < T )≤ q}1. If

we consider a set U s.t. UC = S, then the wanted quantity becomes {x ∈ S : P(τx
S < T )≤ q}, which

is exactly the dual of Ap
T for p = 1− q. An analysis of the approximation error is not presented

and, since the approach is radically different from the one presented in this paper (cf. discussion in
Related Literature and in the next section), a quantitative comparison between the two approaches is
questionable.

The standard way to compute Ap
T is to discretise the region A and to compute the value P(τx ≥ T )

at any point in the introduced grid (cf. Related Literature). In the following instead, using ideas from
Mathematical Finance and results from the Malliavin Calculus, we show how to compute Ap

T with a
grid-free technique. The approach hinges on the observation that the border of Ap

T can be expressed
as2

∂Ap
T = argminx

1
2
(P(τx ≥ T )− p)2 . (2)

The main idea of this approach is thus to solve such optimisation problem: indeed, assuming
differentiability and excluding convexity issues, we know that, setting up the recursion

x j+1 =x j−λ (P(τx ≥ T )− p)DxP(τx ≥ T ) , (3)

then x j→ x?, where x? ∈ ∂Ap
T , for λ > 0 small enough. Equation (3) represents a standard Gradient

Descent (GD) step. We remark that in principle other optimization algorithms can be used to solve
the problem in (2); in this work we focus on first-order gradient-based optimization procedures, of
which GD is an exemplar. As an alternative instance to standard GD, in the case study we employ
ADAM [28], a state-of-the-art optimization procedure.

Using the GD in Equation (3) not only allows identifying the set Ap
T : in Section 7 we also

provide a procedure to explore its border. Furthermore, in Theorem 2 we prove that the “interior” of
1In [43] the authors compute P(τx

UC < τx
S ,τ

x
UC < T )≤ q, whereas here we use≤, as it does not change the outcome, whilst

greatly simplifying the comparison between [43] and this work.
2We employ here for simplicity a quadratic function f (x) = 0.5(x− p)2, however any other differentiable function f

minimised in x = p is also appropriate for the task.
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the obtained region delimited by ∂Ap
T is in Ap

T , which implies that there is no need to check these
internal points. Moreover, in Proposition 1 and Corollary 1 we show how to check if a point x is
“inside” Ap

T without computing P(τx ≥ T ), but only using the gradient at a specific point on ∂Ap
T ,

which is generated by the optimization procedure.

4 Grid-based vs -free approaches
Evidently, the GD step in Equation (3) depends on the two quantities P(τx ≥ T ) and DxP(τx ≥ T ):
it should be clear that if we can compute them (or approximations thereof) with a grid-free method,
then the overall procedure will result in a grid-free computation of the p-safe portion of the region.
An important advantage of such grid-free approach is that if the p-safe region Ap

T is not empty
- however small, even if it was a zero-measure set - then it will be found. Instead, grid-based
approaches (broadly all those presented in the previous section on related work) will find the set Ap

T
only if it intersects with the introduced grid. As an extreme instance, if the p-safe region consists
of only one point, the procedure introduced here shall find it, up to a numerical precision related
to the approximation of P(τx ≥ T ) and DxP(τx ≥ T ); on the contrary, this might not be possible
for grid-based approaches, unless the grid is selected to intersect such point (which is usually
not known beforehand) - and this is a limit holding regardless of their numerical implementation.
Another extreme case can be identified when the p-safe region of interest is not bounded: in such
case the approach underpinning grid-based methods can be quite inefficient, whilst the grid-free
based approach presented here shall converge to its border ∂Ap

T , and explore as much of it as
computationally feasible.

In general, a formal comparison between the two approaches can be problematic: whilst grid-free
strategies search for solutions within an uncountable infinite set, grid-based procedures search for
solutions within a pre-defined, possibly finite set.

Still, we can comment on the computational complexity related to the two different approaches:
suppose that we are working with a model of dimension 2, that set Ap

T consists of only one bounded
connected region, and consider a grid over γZ2, where γ is a scaling parameter. In the following,
we will show that the procedure presented in this work requires a step-exploration parameter (again
called γ) that can be related to the γ parameter of the grid: they both indicate how precise we want
the approximation to be, see Figure 1 and Algorithm 1. The points explored by the two methods can
be quantified as O(Area(A)γ−2) for the grid discretisation - this is the number of points of γZ2 in the
overall (larger) region A - and O(Len(∂Ap

T )γ
−1)+C for the method here presented - the first term

represents the number of points we will explore on ∂Ap
T , whilst C depends on how many points we

explore to arrive at the border ∂Ap
T from the starting point x? we choose for the GD procedure. For a

model in dimension d, we would have instead O(Area(A)γ−d) and O(Area(∂Ap
T )γ
−d+1)+C.3 As

an estimate, we can see that, as γ → 0, the order of points explored is much less with the method
presented here.

5 Malliavin Calculus for stopping times
In Pricing Theory, a branch of Mathematical Finance, a classical problem is to evaluate the variation
of the price of a derivative, in response to a change of the underlying asset price or volatility [25].
These quantities are known as Greeks and play a core role in hedging theory. More precisely, given
an underlying asset, whose price Pt is the solution of an SDE starting in p0, the price D of a derivative
is given as the expectation of a functional of Pt , i.e.

Dp0 = E[ f (Pp0
T )], T > 0.

3This is a slight abuse of notation, indeed Area(∂Ap
T ) now represents the Lebesgue measure in Rd−1, whist Area(A)

represents the Lebesgue measure in Rd .
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If we call p0 the initial price of the underlying asset, the Greek representing the sensitivity with
respect to the initial price is called ∆, and is formally defined as

∆ =
∂Dp0

∂ p0
=

∂E[ f (Pp0
T )]

∂ p0
.

Through Malliavin Calculus it is possible to provide explicit formulae for the Greeks [11, 10, 33, 36,
4, 18]. We refer to [15] for a computational perspective on these methods.

In our problem setup, we are interested to compute the quantity DxP(τx ≥ T ) used in (3), where
τx is a specific exit time related to the probabilistic safety property: this is challenging because it
involves the derivative of a non-smooth indicator functional of the exit time. We should otherwise
estimate this quantity numerically, with associated unavoidable imprecision. Under Assumption 1, it
is possible to show that Xx

t is a.s. differentiable with respect to the starting point x [32]. Following
the notations in [33], let us introduce Jt = DxXt and µ = Dx[µ(x)], σ k = Dx[σk(x)] ∈C∞

b (Rd ;Rd×d);
then Jt solves

dJt =µ(Xt)Jtdt +
d

∑
k=1

σ k(Xt)JtdW k
t , J0 = Id .

The main results we leverage is the following.

Theorem 1. [33, Theorem 2.18] If Assumption 1 holds true, calling τ1 the time when
∫

τ1

0 dist(Xt ,∂A)−2dt =
1, then

∂

∂ε
P
[
τ

x+ες ≥ T
]∣∣∣

ε=0
= E

[
1{τx≥T}Hς ,T

]
,

Hς ,T =
d

∑
k=1

∫ T

0
β

k
t

1{t<τ1}
dist(Xt ,∂A)2 dW k

t ,

where β k
t ∈ Rd is the stochastic process satisfying ∑

d
k=1 β k

t σk(Xt) = Jt · ς .

Selecting the directions ς = ei, i = 1, . . . ,d, we can obtain the gradient DxP(τx ≥ T ), which lies
at the core of our procedure in Equation (3): without this result, this derivative should be estimated
alternatively, for instance numerically. Therefore, we have that DxP(τx ≥ T ) = E

[
1{τx≥T}HT

]
,

where

HT =
∫ T

0

1{t<τ1}
dist(Xt ,∂A)2 βt ·dWt , (4)

βt = σ
−1(Xt) · Jt ,

and σ is the matrix whose columns are the vectors σk. Please note that the dimension of βt ,Ht in
Equation (4) and Theorem 1 are different.

6 Properties of the region Ap
T

Whilst Theorem 1 can be useful for the problem at hand, from an algorithmic point of view there are
still a few subtle points to be handled.

Firstly, we do not know whether the quantity P(τx ≥ T ) is convex or not. Nevertheless, we know
that x is in ∂Ap

T if P(τx ≥ T )= p, which implies that the quantity in (3) (P(τx ≥ T )− p)DxP(τx ≥ T )=
0, regardless of the value of the gradient DxP(τx ≥ T ). Therefore, if we end at a point x where

P(τx ≥ T ) 6= p and (P(τx ≥ T )− p)DxP(τx ≥ T ) = 0,

then we know that x 6∈ ∂Ap
T , thus we are in a local saddle or local maximum point.
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Secondly, we observe that the GD scheme in (3) converges to a point, however in general it does
not “discover” the entire border ∂Ap

T . Besides, if Ap
T is the union of two (or more) disconnected

regions, then the GD scheme will converge solely to one of them. The former issue can be mitigated
algorithmically, by finding a way to “explore” the border defined by the condition {P(τx ≥ T ) = p}:
this is discussed in the next Section. However, we cannot in general solve the latter problem, which
is related to the issue of convergence to local-vs-global optima, which is intrinsic to GD schemes.

Still, we shall shed some further light on the shape of Ap
T . Let us start noticing that if x ∈ A, then

P(τx ≥ T )≥ 0, therefore for any p > 0,T > 0 s.t. Ap
T 6= /0,

Ap
T ⊆ A = A0

T .

However, we cannot be sure that the p-safe region Ap
T is a connected set, as we can in general argue

that Ap
T = ∪iAi, namely Ap

T consists possibly of a countably infinite union of sets, wherein any Ai is
a bounded connected set. Each component Ai is endowed with interesting properties.

Definition 1. We say that a surface (see [29] for a formal definition) is closed if it partitions the
space, e.g. Rd , into one bounded connected region and one unbounded region. We denote this
bounded region as the interior of the surface.

Theorem 2 (No holes). Let the ∂Ai be a closed surface such that ∂Ai ⊆ ∂Ap
T . Then, the interior of

∂Ai is in Ap
T .

Proof. Let us indicate with Ai the interior of ∂Ai. We prove the thesis if for any x ∈ Ai, P(τx
A ≥

T )≥ p – we omit the index A in the next steps. If we define θ to be the exit time from Ai, then

P(τx ≥ T ) =P
(

τ
Xx

θ ≥ T −θ
x
∣∣∣θ x ≤ T

)
P(θ x ≤ T )+P

(
τ

x ≥ T
∣∣∣θ x ≥ T

)
P(θ x ≥ T )

=P
(

τ
Xx

θ ≥ T −θ
x
∣∣∣θ x ≤ T

)
P(θ x ≤ T )+P(θ x ≥ T ) ,

where thanks to the definition of θ x,τx we have that P(τx ≥ T |θ x ≥ T ) = 1, indeed θ x ≤ τx a.s.
since Ai ⊆ A and by definition of exit time.
Since θ x ≥ 0 a.s., P(τXx

θ ≥ T −θ x |θ x ≤ T ) ≥ P(τXx
θ ≥ T |θ x ≤ T ) then

P(τx ≥ T )≥P
(

τ
Xx

θ ≥ T
∣∣∣θ x ≤ T

)
P(θ x ≤ T )+P(θ x ≥ T )

≥pP(θ x ≤ T )+ pP(θ x ≥ T )

=p,

because Xx
θ
∈ ∂Ap

T .

From an algorithmic point of view, Theorem 2 is remarkable: once the algorithm has obtained a
closed surface for {x : P(τx ≥ t) = p} we know that all the points inside are in Ap

t without the need
to check any further. Nevertheless, let us recall that we cannot know if this is the only part of Ap

T as
there could be other bounded sets in A, not connected with the one just found.

Once we have identified (part of) Ap
T , an important question is how to check if a point lies inside

Ap
T . There are different ways to check if a point is inside a region, such as the winding number, or the

Point-in-Polygon algorithm [19, 21, 31, 24], but computationally these methods are quite expensive
and generalizations to dimensions greater than 3 do not seem to be treated in the literature, at least
from an algorithmic point of view.

Remember that to compute ∂Ap
T , we use a gradient-based optimization algorithm, requiring the

computation of the quantity DxP(τx ≥ T ) for any point in the sequence (3). Hence, it would be useful
to understand if one point is inside the safety region using the information given by DxP(τx ≥ T ):
this is handled by the next result.
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Proposition 1. Let us suppose that a region A ∈ Rd is defined by a differentiable function α , i.e.
A := {x : α(x)≤ 0} and ∂A := {x : α(x) = 0}. Moreover, let us suppose that A is connected. Then,
a point x is inside A if

x = x?−‖x− x?‖
Dxα(x)

∣∣
x=x?∥∥Dxα(x)
∣∣
x=x?

∥∥ ,
where x? := argminy∈∂A ‖x− y‖. If instead

x = x?+‖x− x?‖
Dxα(x)

∣∣
x=x?∥∥Dxα(x)
∣∣
x=x?

∥∥ ,
then x is outside.

Proof. Let us consider S = S(x,‖x− x?‖) the open sphere with center x and radius ‖x− x?‖; we
know that if x is in A then S⊂ A, vice versa S⊂ AC if x is outside A.
Note that x− x? is perpendicular to the tangential plane to α in x?, as it is also the gradient
Dxα(x)

∣∣
x=x? , therefore

x = x?±‖x− x?‖
Dxα(x)

∣∣
x=x?∥∥Dxα(x)
∣∣
x=x?

∥∥ .
Since A is connected, sign {α(x)} is the same for any x ∈ S and given that α(x?) = 0 the sign can
be deduced by the direction of the gradient, which means that if the Dxα(x)

∣∣
x=x? points to x than

α(x)≥ 0 and x 6∈ A, if the −Dxα(x)
∣∣
x=x? points to x than α(x)≥ 0 and x ∈ A.

Since we know from Theorem 2 that any portion Ai of Ap
T is connected, once we have found a

closed surface bordering Ai, then thanks to Proposition 1 we know how to check if a point x is inside
Ai by estimating the gradient in ∂Ai, which we compute during the optimization procedure. This
means that we do not have to compute P(τx ≥ T ). Unfortunately we cannot know a-priori if it is
outside because we do not know beforehand whether Ap

T is connected or not.

Corollary 1. Let the ∂Ai be a closed surface such that ∂Ai ⊆ ∂Ap
T and Ai its interior. Denoting by

x? := argminy∈∂Ai
‖x− y‖, then a point x is inside Ai if

x = x?−‖x− x?‖
DxP(τx ≥ T )

∣∣
x=x?∥∥DxP(τx ≥ T )
∣∣
x=x?

∥∥ .
Proof. The proof follows closely Proposition 1 considering Ai in place of A. The difference is that
the sign of the points in S is the same for the points inside, whilst we cannot say the same if x is
outside the region Ai. It could be that, if x is outside Ai, but S∩A j 6= /0 for some j 6= i.

7 Exploration of the border ∂Ap
T

In this section we provide an algorithmic solution to the problem discussed above, namely how to
explore points on the border characterised by

argminx
1
2
(P(τx ≥ t)− p)2 .

In the following we treat in detail the case of models with dimension d = 2,3; if the model dimension
is greater than 3, we show that the procedure can be iterated.
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Algorithm 1 Exploration of the border ∂Ap
T

1: Initialize x0
2: Run the GD from x0 up to a point x? such that P(τx? ≥ T )≈ p
3: x← x?
4: step← 1
5: while not (x≈ x? and step>step_min) do
6: Append x to ∂Ap

T
7: Move in a direction dir perpendicular to DxP(τx ≥ t)
8: x← x+ γ× dir

‖dir‖
9: step← step +1

10: end while

Dimension 2
Algorithm 1 explains how to proceed if d = 2. Let us discuss the main steps of Algorithm 1:

(i) Line 5. If we move along the border of the region Ai just found, in a, say, clockwise manner,
thanks to Theorem 2 we know that we can stop when we have found a closed point (x≈ x?)
and all the points inside are in Ai. Given that the set could be the union of different disjoint
sets, we should still explore the rest of the region A, i.e. A\Ai.

(ii) Line 8. Defining x0 = x+ γ×dir we know that

P(τx0 ≥ t)≈P(τx ≥ t)+DxP(τx ≥ t)(γ×dir)+‖γ×dir‖2ERR

≈ p+‖γ×dir‖2ERR,

which means that for small γ we do not go far from the border ∂Ap
t . This seems the best

we can do without computing further derivatives (other than the gradient). ERR represents
the error term of a Taylor expansion. It is important to remark that γ and λ are two different
parameters, which can be chosen independently, however for more insights see Section 8.

Dimension 3
In dimension 3 we can explore the desired border along its “sections”. Without loss of generality,
let us suppose that the region A is the sphere of center 0 and radius 1. Let us fix the discretisation
parameter δ > 0, which is related to the error we can tolerate. We can discretise the first directions
x1 to create the planes x1 = ±iδ , i ∈ N,0 ≤ i ≤ δ−1. The sections of the border are therefore the
curves resulting from the intersections between the border and the considered planes. We thus run
Algorithm 1 constrained on any given plane x1 =±iδ that we are considering, see Figure 2. Then,
the same must be done for the other directions x2 and x3. Note that, if we have already computed a
“section”, e.g. for the plane x1 = 0, then this information can be very useful for the computation of
the close sections, e.g. x1 =±δ .
There are two generalizations to this procedure. Firstly, we can consider alternative directions:
instead of selecting directions x1,x2,x3 corresponding to the vectors in the canonical basis (e1,e2,e3),
we can consider a general basis of R3 and derive directions therefrom. Secondly, in order to obtain a
grid-free approach to safety analysis if the dimension is beyond 2, instead of constraining the GD
on planes, we can constrain the GD on more general regions, e.g. on the regions x j ∈ [iδ ,(i+1)δ ],
i ∈ N,0≤ i≤ δ−1, j ∈ {1,2,3}.
Note that once we select a plane (say φ , or a region) it could happen that minx∈φ P(τx ≥ T ) < p,
which means that there is no intersection between φ and Ap

t and we must pass on to examining
another plane (or region).
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Higher dimensions
We can apply the same reasoning on models with any dimension: namely, if we are in Rd , then we
can partition the considered region A in sets of dimension d−1. Continuing this procedure we can
go back recursively to the case d = 2.

Alternative approaches for higher dimensions
An alternative grid-free approach is to “explore the border” without constraints that are relative to
some sections, i.e. to generalize directly from the case d = 2. Let us suppose that x? is a point on
the border; then we can compute d− 1 orthonormal vectors {g?1, . . . ,g?d−1} to DxP(τx ≥ T )|x=x? ,
thus running the procedure recursively from any new point x? ± γg?j , j = 1, . . . ,d − 1, until we
obtain a closed surface. However, attention is needed with the selection of the orthonormal points
{g?1, . . . ,g?d−1}: indeed, when d > 2 there are infinitely many possibilities, but it would be convenient
to find a possible “orientation” such that the exploration of the border is done in an orderly - see the
discussion relative to Line 5 of Algorithm 1 above.

8 Experiments
In this section, we present a case study: the code can be found at https://github.com/FraCose/
Grid-free_prob_safety.
For the experiments, we use a simulation-based approach, i.e. we use Monte Carlo (MC) techniques,
and to reduce the variance we use antithetic Brownian paths [13, 26].

Remark 2. We remark that the way P(τx ≥ T ) and DxP(τx ≥ T ) are computed it is not relevant for
the idea presented in this work. Indeed, it is enough to be able to compute the quantities E[1{τ≥T}]
and E[1{τ≥T}HT ] and plug them into the GD procedure. We refer to [3, 12, 20] for the exposition
of unbiased simulation methods. Other methods to compute these quantities are PDE techniques,
which we expect to be computationally heavier.

Before presenting the model for the case study, it is important to draw some general considerations
on the discussed technique.

Complexity
Let us recall the definition of Ht and βt :

HT =
∫ T

0

1{t<τ1}
dist(Xt ,∂A)2 βt ·dWt ,

βt = σ
−1(t,Xt) · Jt .

Computing Ht can be expensive. To estimate the expectation via MC methods we use N simulations
and a time discretization step of n−1, i.e. we split the time interval [0,T ] in n steps. The stochastic
processes to be simulated are Xt ,Jt ,βt ,Ht and dist(Xt ,∂A). The realization of the stochastic process
β has a total cost of Nnd3, where d3 is the cost related to the matrix inversion σ−1, plus matrix
multiplications. Moreover, an optimization problem to compute dist(Xt ,∂A) has to be solved Nn
times. Nevertheless, we have to simulate Ht ,Jt only if t < τ1. It is important to remark that we have
analysed the computational cost of computing only one step of the gradient descent procedure, but
many are necessary to converge and explore the space.

If we are interested in a relatively low-dimensional problem the matrix inversion can be solved
analytically, or leveraging special forms of σ , e.g. tri-diagonal, upper(lower)-triangular. This
increases the stability of the procedure and reduces in part its complexity, although the overall
complexity remains Nnd3, being dominated by matrix multiplications. A second improvement is
to consider particular forms for the region A that can be advantageous for computing dist(Xt ,∂A),
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e.g. a sphere, a parallelepiped or a simplex – although non-smooth regions are not covered by the
assumptions of this work. Furthermore, both the arguments just discussed allow the usage of GPU
acceleration more easily, which “artificially” reduces the complexity in N.

Bias
It is important to remark that the steps done by the Gradient Descent algorithm are stochastic and
biased. Indeed, we do not compute the exact probability P(τx ≥ T ), but we discretize the time,
therefore computing P(τx

n ≥ T ); recall that in [14] it is shown that

|P(τx ≥ T )−P(τx
n ≥ T )| ≤ O(n−1/2),

where τn represents the discrete stopping time of the Euler Scheme associated with Equation (1).
Moreover, the algorithm is stochastic since we approximate P(τx

n ≥ T ) using MC techniques.
Therefore we have to consider that [14]∣∣∣P(τx ≥ T )− ̂P(τx

n ≥ T )
∣∣∣≤O(n−1/2)+O

(
1√
N

)
Z,

where the hat denotes an MC estimator of the quantity of interest, Z represents a standard normal
random variable, and N is the number of simulations. A similar error bound might be derived for the
other term

∣∣∣DxP(τx ≥ T )− ̂DxP(τx
n ≥ T )

∣∣∣ [14, 16, 17], though an adaptation is needed due to the
presence of τ1 in the definition of H in Theorem 1. Due to these biases, we have noticed that reducing
the variance helps the GD to converge better (cf. use of antithetic Brownian paths mentioned above):
for instance, when the (norm of the) gradient DxP(τx ≥ T ) becomes small, the error could dominate
and the gradient descent step could not work properly; this is especially the case when we simulate
paths starting from points close to the border of A.

Hyper-parameters
The hyper-parameters to be chosen for the procedure are the following:

(i) n, time discretisation step - in principle the higher the better, but n has a big impact on the
computational time, since it cannot be parallelised. Through experiments, we have learnt to
start with a relatively fine time discretisation step.

(ii) N, Monte Carlo simulations - increasing N reduces the variance of the MC methods. N has a
relatively low impact since the number of samples can be parallelised using a GPU.

(iii) λ , the “learning rate” of the GD procedure in Equation (3) - λ must be chosen carefully.
While we are doing the first minimization, i.e. while we are searching for a first point on ∂Ap

T
(exploration phase), λ can be quite high (more than 1×10−3, as suggested in [28]). Instead,
if we are considering the minimization procedure in Algorithm 1, since we should be already
close to the border we should select a small λ .

(iv) γ , the “border exploration” parameter in Algorithm 1 - γ indicates how fine-grained we wish
the approximation of ∂Ap

T to be. If it is selected to be excessively small, the exploration of the
border ∂Ap

T will be quite slow.

Acceleration of the exploration
Algorithm 1 is a good starting point to explore the border ∂Ap

T , however in practice care must be
taken. For the following discussions, we consider the problem to be in a 2-dimensional space as a
base case.

Firstly, we would like to explore with an orientation, e.g. clockwise, such that we do not go back
to a region already explored. This can be done in principle, but sometimes the gradient approximation
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can be (quite) wrong, especially close to the border of the considered region A or because the chosen
discretization time step n is too coarse. To solve this problem, we check if there are already points
computed in the direction we are going to explore. However, selecting an “optimal” number of
points is an open question that depends on the curvature of ∂Ap

T , which a-priori is unknown. Another
heuristic is to constrain the algorithm to search the new point on ∂Ap

T in a given region, see below
and Figure 1. A more sophisticated alternative is to split the region into subspaces and search the
border ∂Ap

T locally. This technique would also increase the level of parallelisation [40].
Secondly, going towards the direction perpendicular to the gradient, see Section 7, is only an

approximation and sometimes, depending on the local curvature, can be quite imprecise. To improve
this approximation we have considered the following procedure. Let us imagine that we have
computed a certain number of points on ∂Ap

T , in order {x1,x2, ...,xm}. We can compute the parabola
equation (since the plane is fixed) that approximates the points {x1,x2, ...,xm}, and use this equation
as a second possible approximation. This can be thought an approximation of the second-order
information of the curve P(τx

n ≥ T )− p= 0 in x. Later, we can choose the new direction as a weighted
average of the perpendicular to DxP(τx

n ≥ T ) and the value of the approximated parabola p(x) in
x = 2xm−xm−1. As there are several ways to compute the weights, we use the past distances between
the points found on ∂Ap

T and the forecasts relative to the gradient and the parabola approximation,
see Figure 1 and the code for more insight. In this way, when the curvature of ∂Ap

T “changes” the
algorithm starts following more closely the gradient (if the approximation error is low), otherwise
it follows an average which experimentally is closer to the parabola forecast. Experimentally, this
procedure accelerates the exploration, since it reduces the approximation error relative to the gradient.

Figure 1: Representation of how the algorithm explores the border: given the points {xm,xm−1, . . .}
already found by the algorithm, it proposes the red point xm + γ×dir/‖dir‖ as the new point of the
region, and from there it runs the GD to find the new point xm+1. It is possible that on the half-plane
where the algorithm looks for the new point does not exist a point of ∂Ap

T , therefore it is necessary
to update the constraint, see Algorithm 2.

Finally, it is better to constraint the space where the algorithm searches for the next point of
the border. In Figure 1 it is shown how we proceed. Once one point xm on the border is found, i.e.
P(τxm

n ≥ T )≈ p, we compute the gradient (D) and the direction to follows4 (dir). Given dir and γ ,
it is possible to search the new point only in the part of plane where there are not “recent points”
considering the line perpendicular to the direction passing through the point guess xm+γ×dir/‖dir‖.
It is possible that the constraint does not allow the optimization procedure to find a point P(τx?

n ≥
T )≈ p, therefore if the solution of the GD returns, after a certain number of iterations, a point x?
s.t. P(τx?

n ≥ T ) 6≈ p, then it is important to update the direction dir and the corresponding constraint.
The candidate we have chosen for the updated direction is 2x?− xm, up to some re-scaling, but
other choices are available. For example, we have experimented that selecting 2x?− xm accelerates
the procedure over the choice x?− xm. Moreover, it is necessary to reduce the step exploration γ ,
such that we get closer to the point xm and by continuity of ∂Ap

T we will find the point sooner or
4Possibly as a weighted average of the gradient and some local approximation of the curvature as explained before.
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later. In Algorithm 2 we present a pseudo-code of the procedure. If the direction guides towards

Algorithm 2 Adaptive constraint for the GD procedure

1: Given xm
2: Run the constrained GD from xm + γ

dir
‖dir‖ up to a point x?

3: step← 1
4: while P(τx? ≥ T ) 6≈ p do
5: dir← 2x?− xm
6: x̄← xm + γ

2·step ·
dir
‖dir‖

7: Update the plane using the new dir and x̄
8: Run the constrained GD from x̄ up to a point x?
9: step← step+1

10: end while

Figure 2: The plots show the surface ∂A0.5
1 (in blue) found when the region A is a (black) sphere.

This has been computed sectioning the region A across 2D planes (we have discussed at the end of
Section 7 the use of alternative grid-free approaches for exploration in 3D (and higher-dimensional)
cases).

points already explored recently, because for instance the discretisation error is too high or due to the
constrained updates in Algorithm 2, given that on a plane the perpendicular vectors to a vector are
two, it is enough to invert the direction.

Case study
The model considered for the experiment is:

 dX (1)
t

dX (2)
t

dX (3)
t

=


X (1)

t
1
2

X (1)
t +

1
2

X (2)
t

1
3

X (1)
t +

1
3

X (2)
t +

1
3

X (3)
t

dt +
1
3

ω1, ω2, ω2
ω2, ω1, ω2
ω2, ω2, ω1

dWt , (5)

ω1 :=2
√

1−ρ +
√

1+2ρ,

ω2 :=−
√

1−ρ +
√

1+2ρ.

If we define dW̃t = σdWt , where σ is the diffusion matrix in Equation (5), then we have that
Corr(dW̃ (i)

t ,dW̃ ( j)
t ) = ρ , i 6= j and i, j ∈ {1,2,3}. In the experiment we have used ρ = 0.5. For the

region A, we have considered two cases: a sphere with center at the origin and radius equal to 100
and a cube with vertices between (−100,−100,−100) and (100,100,100). Note that in the second
experiment (A being a cube) the assumptions of the theoretical part of this work are not satisfied.
Nevertheless, the procedure is still able to explore the border.
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Figure 3: Left. The plots show the points found while and exploring the border of the 3D region
A0.5

1 , with respect to one plane (or section), when A is a sphere. Top: full-view of the problem.
Middle: same plot but zoomed, with colour scale showing the safety probabilities of the points
explored during exploration. It can be seen how starting from the red-cross point, with a probability
approximately 0.8, we arrive at the points with the desired probability 0.5. The presence of points
with different colours to the one corresponding to the desired probability 0.5 means that in those
regions the GD has explored adjacent points. Bottom: planar section of the space considered,
fixing direction x3. The black points represent those we consider being part of the border (up to an
approximation error), whilst the circle points are those explored via the GD method. It can be seen
that we explore points associated with probabilities between 0.2 and 0.8.
Right. The plots show the points found seeking and exploring the border of the 3D region A0.5

1 , with
respect to one plane (or section), when A is a 3D cube.
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We consider the problem of computing A0.5
1 = {x ∈ A : P(τx ≥ 1) ≥ 0.5}. We start at a point

x0 where P(τx0 ≥ 1) 6= 0.5, then we minimize 1
2 (P(τ

x ≥ 1)− 0.5)2 until we obtain a point x? s.t.
|P(τx? ≥ 1)−0.5|< err – in this case err represents the approximation errors due to the computation
of P(τx? ≥ 1). From x? we fix x(3)? and start Algorithm 1, i.e. we fix the plane x(3) = x(3)? , see Figure 3
for the results of the experiments. See Figure 2 for a 3-dimensional representation of (possibly
a portion of) ∂A0.5

1 in the case A is a sphere. Instead of using plain Gradient Descent, we use
ADAM [28], a version of GD with momentum and adaptive learning rate that has shown impressive
performance in Machine Learning and it is considered the state-of-the-art optimisation tool. In
particular, we prefer to include momentum, because we do not know whether 1

2 (P(τ
x ≥ 1)−0.5)2 is

convex as a function of x.
The hyper-parameters chosen are N = 10000, n = 200, maximum iteration of the GD (any

time we use it) = 50, λ = 5×10−2, γ = 1.5. With reference to the previous discussion on the
approximation of the second order information of ∂Ap

T , in order to compute the new direction, i.e.
dir in Figure 1, in addition to the gradient information, we use also the parabola approximating the
previous 4 points found on the border. For more information, we refer the reader to the code at
https://github.com/FraCose/Grid-free_prob_safety.

9 Conclusions
We have presented a new approach to find and compute probabilistic safety regions for stochastic
differential equations (SDE) without resorting to the discretisation of their state space, which is
by and large the standard approach in literature, which comes with limits related to precision and
computational scalability. This is done by formulating an optimisation problem: to solve this, we
have borrowed techniques and ideas from Malliavin Calculus and Mathematical Finance. We have
discussed two formal results that allow one to explore relevant parts of the regions of interest, thus
focusing computational load related to probabilistic safety computation for continuous-space models,
such as SDEs. We have discussed possible algorithmic issues related the procedure, and offered
strategies to cope with them. We conclude suggesting that more work on the generalisation of the
approach on high-dimensional models in a completely automatic fashion is a goal worth pursuing.
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