34 research outputs found

    Wavelet-based techniques for speech recognition

    Get PDF
    In this thesis, new wavelet-based techniques have been developed for the extraction of features from speech signals for the purpose of automatic speech recognition (ASR). One of the advantages of the wavelet transform over the short time Fourier transform (STFT) is its capability to process non-stationary signals. Since speech signals are not strictly stationary the wavelet transform is a better choice for time-frequency transformation of these signals. In addition it has compactly supported basis functions, thereby reducing the amount of computation as opposed to STFT where an overlapping window is needed. [Continues.

    Wavelet methods in speech recognition

    Get PDF
    In this thesis, novel wavelet techniques are developed to improve parametrization of speech signals prior to classification. It is shown that non-linear operations carried out in the wavelet domain improve the performance of a speech classifier and consistently outperform classical Fourier methods. This is because of the localised nature of the wavelet, which captures correspondingly well-localised time-frequency features within the speech signal. Furthermore, by taking advantage of the approximation ability of wavelets, efficient representation of the non-stationarity inherent in speech can be achieved in a relatively small number of expansion coefficients. This is an attractive option when faced with the so-called 'Curse of Dimensionality' problem of multivariate classifiers such as Linear Discriminant Analysis (LDA) or Artificial Neural Networks (ANNs). Conventional time-frequency analysis methods such as the Discrete Fourier Transform either miss irregular signal structures and transients due to spectral smearing or require a large number of coefficients to represent such characteristics efficiently. Wavelet theory offers an alternative insight in the representation of these types of signals. As an extension to the standard wavelet transform, adaptive libraries of wavelet and cosine packets are introduced which increase the flexibility of the transform. This approach is observed to be yet more suitable for the highly variable nature of speech signals in that it results in a time-frequency sampled grid that is well adapted to irregularities and transients. They result in a corresponding reduction in the misclassification rate of the recognition system. However, this is necessarily at the expense of added computing time. Finally, a framework based on adaptive time-frequency libraries is developed which invokes the final classifier to choose the nature of the resolution for a given classification problem. The classifier then performs dimensionaIity reduction on the transformed signal by choosing the top few features based on their discriminant power. This approach is compared and contrasted to an existing discriminant wavelet feature extractor. The overall conclusions of the thesis are that wavelets and their relatives are capable of extracting useful features for speech classification problems. The use of adaptive wavelet transforms provides the flexibility within which powerful feature extractors can be designed for these types of application

    Identification of Transient Speech Using Wavelet Transforms

    Get PDF
    It is generally believed that abrupt stimulus changes, which in speech may be time-varying frequency edges associated with consonants, transitions between consonants and vowels and transitions within vowels are critical to the perception of speech by humans and for speech recognition by machines. Noise affects speech transitions more than it affects quasi-steady-state speech. I believe that identifying and selectively amplifying speech transitions may enhance the intelligibility of speech in noisy conditions. The purpose of this study is to evaluate the use of wavelet transforms to identify speech transitions. Using wavelet transforms may be computationally efficient and allow for real-time applications. The discrete wavelet transform (DWT), stationary wavelet transform (SWT) and wavelet packets (WP) are evaluated. Wavelet analysis is combined with variable frame rate processing to improve the identification process. Variable frame rate can identify time segments when speech feature vectors are changing rapidly and when they are relatively stationary. Energy profiles for words, which show the energy in each node of a speech signal decomposed using wavelets, are used to identify nodes that include predominately transient information and nodes that include predominately quasi-steady-state information, and these are used to synthesize transient and quasi-steady-state speech components. These speech components are estimates of the tonal and nontonal speech components, which Yoo et al identified using time-varying band-pass filters. Comparison of spectra, a listening test and mean-squared-errors between the transient components synthesized using wavelets and Yoo's nontonal components indicated that wavelet packets identified the best estimates of Yoo's components. An algorithm that incorporates variable frame rate analysis into wavelet packet analysis is proposed. The development of this algorithm involves the processes of choosing a wavelet function and a decomposition level to be used. The algorithm itself has 4 steps: wavelet packet decomposition; classification of terminal nodes; incorporation of variable frame rate processing; synthesis of speech components. Combining wavelet analysis with variable frame rate analysis provides the best estimates of Yoo's speech components

    Phonetic Segmentation using a Wavelet-based Speech Cepstral Features and Sparse Representation Classifier, Journal of Telecommunications and Information Technology, 2021, nr 4

    Get PDF
    Speech segmentation is the process of dividing speech signal into distinct acoustic blocks that could be words, syllables or phonemes. Phonetic segmentation is about finding the exact boundaries for the different phonemes that composes a specific speech signal. This problem is crucial for many applications, i.e. automatic speech recognition (ASR). In this paper we propose a new model-based text independent phonetic segmentation method based on wavelet packet speech parametrization features and using the sparse representation classifier (SRC). Experiments were performed on two datasets, the first is an English one derived from TIMIT corpus, while the second is an Arabic one derived from the Arabic speech corpus. Results showed that the proposed wavelet packet de composition features outperform the MFCC features in speech segmentation task, in terms of both F1-score and R-measure on both datasets. Results also indicate that the SRC gives higher hit rate than the famous k-Nearest Neighbors (k-NN) classifier on TIMIT datase

    COMPARISON OF FIVE CLASSIFIERS FOR CLASSIFICATION OF SYLLABLES SOUND USING TIME-FREQUENCY FEATURES

    Get PDF
    In a speech recognition and classification system, the step of determining the suitable and reliable classifier is essential in order to obtain optimal classification result. This paper presents Indonesian syllables sound classification by a C4.5 decision tree, a Naive Bayes classifier, a Sequential Minimal Optimization (SMO) algorithm, a Random Forest decision tree, and a Multi-Layer Perceptron (MLP) for classifying twelve classes of syllables. This research applies five different features set, those are combination features of Discrete Wavelet Transform (DWT) with statistical denoted as WS, the Renyi Entropy (RE) features, the combination of Autoregressive Power Spectral Density (AR-PSD) and Statistical denoted as PSDS, the combination of PSDS and the selected features of RE by using Correlation-Based Feature Selection (CFS) denoted as RPSDS, and the combination of DWT, RE, and AR-PSD denoted as WRPSDS. The results show that the classifier of MLP has the highest performance when it is combined with WRPSDS

    Models and analysis of vocal emissions for biomedical applications

    Get PDF
    This book of Proceedings collects the papers presented at the 3rd International Workshop on Models and Analysis of Vocal Emissions for Biomedical Applications, MAVEBA 2003, held 10-12 December 2003, Firenze, Italy. The workshop is organised every two years, and aims to stimulate contacts between specialists active in research and industrial developments, in the area of voice analysis for biomedical applications. The scope of the Workshop includes all aspects of voice modelling and analysis, ranging from fundamental research to all kinds of biomedical applications and related established and advanced technologies

    Connected Attribute Filtering Based on Contour Smoothness

    Get PDF

    Connected Attribute Filtering Based on Contour Smoothness

    Get PDF
    A new attribute measuring the contour smoothness of 2-D objects is presented in the context of morphological attribute filtering. The attribute is based on the ratio of the circularity and non-compactness, and has a maximum of 1 for a perfect circle. It decreases as the object boundary becomes irregular. Computation on hierarchical image representation structures relies on five auxiliary data members and is rapid. Contour smoothness is a suitable descriptor for detecting and discriminating man-made structures from other image features. An example is demonstrated on a very-high-resolution satellite image using connected pattern spectra and the switchboard platform
    corecore