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It is generally believed that abrupt stimulus changes, which in speech may be time-varying 

frequency edges associated with consonants, transitions between consonants and vowels and 

transitions within vowels are critical to the perception of speech by humans and for speech 

recognition by machines. Noise affects speech transitions more than it affects quasi-steady-state 

speech. I believe that identifying and selectively amplifying speech transitions may enhance the 

intelligibility of speech in noisy conditions. The purpose of this study is to evaluate the use of 

wavelet transforms to identify speech transitions. Using wavelet transforms may be 

computationally efficient and allow for real-time applications. The discrete wavelet transform 

(DWT), stationary wavelet transform (SWT) and wavelet packets (WP) are evaluated. Wavelet 

analysis is combined with variable frame rate processing to improve the identification process. 

Variable frame rate can identify time segments when speech feature vectors are changing rapidly 

and when they are relatively stationary. Energy profiles for words, which show the energy in 

each node of a speech signal decomposed using wavelets, are used to identify nodes that include 

predominately transient information and nodes that include predominately quasi-steady-state 

information, and these are used to synthesize transient and quasi-steady-state speech 

components. These speech components are estimates of the tonal and nontonal speech 

components, which Yoo et al identified using time-varying band-pass filters. Comparison of 
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spectra, a listening test and mean-squared-errors between the transient components synthesized 

using wavelets and Yoo’s nontonal components indicated that wavelet packets identified the best 

estimates of Yoo’s components. An algorithm that incorporates variable frame rate analysis into 

wavelet packet analysis is proposed. The development of this algorithm involves the processes of 

choosing a wavelet function and a decomposition level to be used. The algorithm itself has 4 

steps: wavelet packet decomposition; classification of terminal nodes; incorporation of variable 

frame rate processing; synthesis of speech components. Combining wavelet analysis with 

variable frame rate analysis provides the best estimates of Yoo’s speech components. 
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1.0 INTRODUCTION 

 

 Listening to someone speak in a noisy environment, such as a cocktail party, 

requires some effort and tends to be exhausting. Speaking louder, which is equivalent to 

amplifying speech by multiplying it by a constant, does not help much as it does not 

increase the intelligibility of speech in noisy conditions. In this study, we investigate 

method to improve the intelligibility of speech in noisy environment. Perhaps 

understanding what the human auditory system looks for in speech may give us clues as 

to what parts of speech we need to emphasize to enhance the intelligibility of speech.  

 

 For one who wishes to study perception of speech, the first task is obvious 

enough: it is to find the cues - the physical stimuli - that control the perception [26]. Since 

the invention of the spectrogram at AT&T Bell Laboratories, hundreds of articles on 

acoustical cues that influences the perceived phoneme have been published. A few of 

these articles, which influenced the current study, are cited here. In no way am I claiming 

that these articles are the earliest or the most influential in the research area of speech 

perception.      

 

 Potter et al, in a study of the transitions between stop consonants and vowels, 

using spectrograms, found that there are different movements of the second formant of 

the start of a vowel for stops with different place of articulation [41]. Joos also noted that 
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formant transitions are characteristically different for various stop-consonant-vowel 

syllables [18].  

 

 Liberman characterized the formant transitions between stop-consonants-plus-

vowel syllables, and concluded that (1) the second formant transition can be an important 

cue for distinguishing among either the voiceless stops /p, t, k/ or the voiced stops /b, d, 

g/ and (2) the perception of the different consonants depends on the direction and size of 

the formant transition and on the vowel [25]. In the same study, Liberman determined 

that the same transitions of the second formant observed for stop consonants can be used 

to distinguish the place of articulation of nasal consonants /m, n, n/. Characteristics of the 

spectrum during the release of the consonant as well as formant transition between 

consonants and vowels are important clue for identifying the place of articulation [15]. 

 

 Third formants of vowels as compared to the first two formants typically carry 

much lower energy and have little or no effect on the phonetic identity of vowels [27]. 

This has led to fewer studies on the effect of third formant transition on perception. A 

study by Liberman found that, when frequencies of the first and second formants and the 

transition into these formants for the vowels /ae/ and /i/ are fixed, the transition of the 

third formant influenced the perceived place of articulation for voiced stop consonant /b, 

d, g/ [26]. 

 

 These studies tied the place of articulation of stop consonants to the patterns in 

transitions of formants observed on spectrograms. It is to be noted though that 
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spectrographic pattern for a particular phoneme typically looks very different in different 

contexts. For example, Liberman noted that /d/ in the syllable /di/ has a transition that 

rises into the second formant of /i/, while /d/ in /du/ has a transition that falls into the 

second formant of /u/ [28]. We should also note that the most important cues are 

sometimes among the least prominent parts of the acoustic signal [26]. The studies cited 

above also accentuate the importance of formant transition as acoustic cues for 

identifying and distinguishing some phonemes. Although these studies were conducted in 

noise-free environments, we believe that the same acoustic cues may be important for 

identifying and differentiating phonemes in noisy environments.   

   

 Steady-state formant activity is associated with vowels; in fact the perception of 

vowels depends primarily on the formant frequencies [28]. On the other hand, formant 

transitions are probably associated with consonants, transitions between consonants and 

vowels and transitions within some vowels. Compared to steady-state formant activity, 

formant transitions are short-lived and have very low energy, making them more 

susceptible to noise. 

 

 Researchers in the speech community have incorporated the importance of speech 

transitions into speech processing applications. Variable frame rate speech processing has 

been shown, by several authors, to improve the performance of automated speech 

recognition systems [40], [56], [23] [24]. Brown and Algazi identified spectral transitions 

in speech using the Karhunen-Loeve transform, with the intention of using them for sub-

word segmentation and automatic speech recognition [4]. Quatieri and Dunn developed a 
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speech enhancement method motivated by the sensitivity of the auditory system to 

spectral change [42]. Yoo et al intended to isolated transition information in speech, with 

the goal of using this information for speech enhancement [54]. Their method, which 

motivated the current study, is described below.    

 

 Yoo et al applied three time-varying band-pass filters (TVBF), based on a formant 

tracking algorithm by Rao and Kumaresan, to extract quasi-steady-state energy from 

highpass filtered speech [44], [54]. The algorithm applied multiple dynamic tracking 

filters (DTF), adaptive all-zero filters (AZF), and linear prediction in spectral domain 

(LPSD) to estimate the frequency modulation (FM) information and the amplitude 

modulation (AM) information. Each TVBF was implemented as an FIR filter of order 

150 with the center frequencies determined by the FM information, and the bandwidth 

estimated using the AM information. 

  

 The output of each time-varying band pass filter was considered to be an estimate 

of the corresponding formant. The sum of the outputs of the three filters was defined as 

the tonal component of the speech. Yoo et al estimated the nontonal component of the 

speech signal by subtracting the tonal component from the highpass filtered speech 

signal. They considered the tonal component to contain most of the steady-state 

information of the input speech signal and the non-tonal component to contain most of 

the transient information of the input speech signal.  
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 The speech signals were preprocessed by highpass filtering at 700 Hz to remove 

most of the energy associated with the first formant. Without highpass filtering, the 

adaptation of the TVBF was dominated by low-frequency energy. Removing this low-

frequency energy made the algorithm more effective in extracting quasi-steady-state 

energy. The highpass filtered speech signals were as intelligible as the original speech 

signals, as shown by psychoacoustic studies of growth of intelligibility as a function of 

speech amplitude.  

 

 Yoo et al illustrated their decomposition of the word ‘pike’ (phonetically 

represented by /paIk/) spoken by a female [54]. Their results are reproduced in Fig 1.1, 

which shows the waveforms and corresponding spectrograms for the original and 

highpass filtered speech, and the tonal and nontonal components. The tonal component 

included most of the steady-state formant-activity associated with the vowel /aI/, from 

approximately 0.07 to 0.17 sec. The nontonal component captured the energy associated 

with the noise burst release accompanying the articulatory release of /p/, from 

approximately 0.01 sec to 0.07 sec, and the articulatory release of /k/ at around 0.38 sec. 

The tonal component included 87 % of the energy of the highpass filtered speech but it 

was unintelligible. The nontonal component included only 13 % of the energy of the 

highpass filtered speech but was almost as intelligible as the highpass filtered speech. 
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Figure 1.1: Waveform of speech (left column) and spectrograms (right column) for (a) 
highpass filtered speech, (b) tonal component and (c) nontonal component. 

 

 To determine the relative intelligibility of the highpass filtered, tonal and nontonal 

components compared to the original speech, Yoo et al determined psychometric 

functions to show the growth of intelligibility as signal amplitude increased. 300 

phonetically-balanced consonant-vowel-consonant (CVC) words obtained from the NU-6 

word lists were processed using their algorithm.  They presented test words in quiet 

background, through headphones, to 5 volunteer subjects with normal hearing, who sat in 
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a sound-attenuated booth. The subjects repeated the words they heard and the number of 

errors was recorded. 

 

 Their results showed that the mean of energy of the tonal component was 82 % of 

the energy of the highpass filtered speech and 18 % of the energy in the original speech. 

The mean of energy of the nontonal component was 18 % of the energy of the highpass 

filtered speech and 2 % of the energy in the original speech. These results are presented 

in Table 1.1, with standard deviations in parenthesis. 

 

Table 1.1 Mean of energy in tonal and nontonal components of monosyllabic words 
relative to the energy in the highpass filtered speech and in the original speech. 

 Tonal Nontonal 

% of highpass filtered speech 82 % (6.7) 18 % (6.7) 

% of original speech 12 % (5.5) 2 % (0.9) 

 

 The maximum word recognition rates for the original, highpass filtered, tonal and 

nontonal components, determined by Yoo et al, are presented in Table 1.2, with standard 

deviations in parenthesis. Statistical analyses of the maximum word recognition rates 

showed that the tonal component had a significantly lower maximum recognition rate 

than other components. The maximum word recognition rate of the nontonal was slightly 

lower than that of the original and highpass filtered speech. The original and highpass 

filtered speech had similar maximum word recognition rates. The fact that the nontonal 

component, which emphasizes formant transitions, had a maximum recognition rate that 
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is almost twice that of the tonal asserts the importance of formant transitions as important 

cues for identifying and distinguishing phonemes. 

 

 
 

Table 1.2: Maximum recognition rates for original and highpass filtered speech, and for 
tonal and nontonal components. 

 Max. recognition rate 

original 98.7 % (3.0) 

highpass filtered 96.5 % (2.1) 

tonal 45.1 % (19.3) 

nontonal 84.9 % (14.4) 

 

 The algorithm of Yoo et al appears to be effective in extracting quasi-steady-state 

energy from speech, leaving a speech component that emphasizes transitions. They 

suggested that selective amplification of the nontonal component might enhance the 

intelligibility of speech in noisy conditions. However, the algorithm is computationally 

intensive and unsuitable for real-time applications. Wavelet analysis provides a method 

of time-frequency analysis that can be implemented in real-time. The purpose of this 

study is to determine whether a wavelet-based analysis can be used to identify the 

nontonal speech component described by Yoo et al. Identifying speech transitions using 

wavelets may reduce the computation time and allow for real-time applications of the 

proposed speech enhancement technique.  
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 In this study, wavelet analysis of the highpass filtered speech, tonal and nontonal 

components of Yoo are carried out. Wavelet coefficients of the highpass filtered speech 

are then compared to those of the tonal and nontonal components to determine whether 

specific coefficients are associated with the tonal or nontonal. Through the analysis, 

speech components that are similar to the tonal and nontonal of Yoo components are 

identified. Although the identification process will use the components of Yoo, it is 

expected to shed light on the extent to which wavelet analysis can be applied to the 

identification of speech transitions. 

 

 Wavelet transforms have been used by several investigators in the speech research 

community for automatic speech recognition [45] [13], pitch detection [20] [46] [6], 

speech coding and compression [34] [50] [38], speech denoising and enhancement [1] 

[51] [29] [14] and other processes. Wavelet analysis, because of its multiresolution 

properties, can detect voiced stops, since stops have a sudden burst of high frequency 

[13]. 

 

 Another method of identifying speech transitions is provided by variable frame 

rate (VFR) processing, which identifies time segments when speech feature vectors are 

changing rapidly. Variable frame rate techniques have been used by several investigators 

in speech recognition studies [40], [56], [23] [24]. These studies were primarily 

concerned with reducing the amount of data to be processed and improving recognition 

rates. Time segments of the speech signal in which the speech feature vectors are 

changing rapidly may be associated with transient speech, while time segments in which 
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the speech feature vectors are slowly changing may be associated with quasi-steady-state 

speech. An investigation to determine whether incorporating variable frame rate 

processing can improve the identification of speech transitions is also carried out. 

 

 This thesis is arranged as follows. Chapter 2 gives a summary of the relevant 

literature. This chapter begins with a summary of wavelet theory and a review of the use 

of wavelets in speech processing. A review of variable frame rate techniques follows, 

including discussions of linear predictive coding (LPC) and Mel-frequency cepstral 

coefficients (MFCC). Chapter 2 concludes with a brief discussion of Yoo’s formant 

tracking algorithm. Chapter 3 describes the methods used and results obtained when the 

discrete wavelet transform, stationary wavelet transform and wavelet packets were 

evaluated for use in identifying transient and quasi-steady-state speech components. 

Chapter 4 presents an algorithm for identifying transient and quasi-steady-state speech 

components that incorporates wavelet packet analysis and variable frame rate processing.  

Results obtained with this algorithm are described. Chapter 5 discusses the results and 

limitations, possible improvement, and possible uses of the speech transient identification 

techniques. 
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2.0 BACKGROUND 

 

The basic theory of wavelet transforms discussed here covers the continuous wavelet 

transform, multiresolution analysis, the discrete wavelet transform, the overcomplete 

wavelet transform, and signal decomposition and reconstruction using filter banks. In the 

discussion, the continuous wavelet, the discrete wavelet and the discrete scaling functions 

and their properties will be described.   

 

 Variable frame rate processing, linear predictive coding (LPC), Mel-frequency 

cepstral coefficients (MFCC) and the formant tracking algorithm are also discussed. The 

discussion of LPC and MFCC will focus on how these feature vectors are computed from 

speech and how they are applied to the variable frame rate process. 

 

2.1 WAVELET THEORY 

 

The use of wavelets in signal processing applications is continually increasing. This use 

is partly due to the ability of wavelet transforms to present a time-frequency (or time-

scale) representation of signals that is better than that offered by Short-time Fourier 

transform (STFT). Unlike the STFT, the wavelet transform uses a variable-width window 
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(wide at low frequencies and narrow at high frequencies) which enables it to “zoom in” 

on very short duration high frequency phenomena like transients in signals [7].  

 

 This section reviews the basic theory of wavelets. The discussion is based on [5] 

[7] [8] [17] [31] [32] [35] [47] [48] and [49]. The continuous wavelet transform (CWT), 

multiresolution analysis (MRA), the discrete wavelet transform (DWT), the overcomplete 

wavelet transform (OCWT), and filter banks are discussed. Wavelet properties that 

influence the type of wavelet basis functions that is appropriate for a particular 

application will be examined, and some of the uses of wavelets in speech processing will 

be reviewed. 

 

2.1.1 The Continuous Wavelet Transform 

 

A function ψ(t) ∈L2(R) is a continuous wavelet if the set of functions 

   ⎟
⎠
⎞

⎜
⎝
⎛ −

=
a

bt
a

tab ψψ 1)(,      (2.1) 

 

is an orthonormal basis in the Hilbert space L2(R), where a and b are real. 

The set of functions )(, tabψ  are generated by translating and dilating the function ψ(t). 

Parameter (a) is a scaling parameter. Varying it changes the center frequency and the 

bandwidth of ψ(t). The time and frequency resolution of the wavelet transform, discussed 

below, also depend on a. Small values of the scaling parameter (a) provide good time 

localization and poor frequency resolution, and large values of the scaling parameter 

provide good frequency resolution and poor time resolution. The time delay parameter 
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(b) produces a translation in time (movement along the time axis). Dividing ψ by a  

insures that all members of the set { )(, tabψ } have unity Euclidean norm (L2-norm) i.e. 

1
22, == ψψ ab  for all integer a and b. The function )(tψ  from which the set of 

functions )(, tabψ are generated is called the mother or analyzing wavelet. 

The function ψ(t) has to satisfy the following properties to be a wavelet: 

1. ψ(t) integrates over time to zero and it’s Fourier transform ( )ωΨ  equals to zero at 

ω = 0 [35] 

 .     (2.2) ( ) ( )∫
∞

∞−

===Ψ 00 dttψω

2. ψ(t) has finite energy, i.e. most of the energy of ψ(t) has to be confined to a finite 

duration 

 ( )∫
∞

∞−

∞<dtt 2ψ .      (2.3) 

3. ψ(t) satisfies the admissibility condition, [35] i.e.      

  
( )

∫
∞

∞−

∞<=
Ψ

ψω
ω
ω

Cd
2

     (2.4) 

 The admissibility condition ensures  perfect reconstruction of a signal from its 

 wavelet representation and will be discussed later in this section. 

 

The wavelet function ψ(t) may be complex. In fact, a complex wavelet function is 

required to analyze the phase information of signals [32]. 
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 The continuous wavelet transform (CWT) ( )abWx ,  of a continuous-time signal 

x(t) is defined by [35] 

( ) ( )∫
∞

∞−

⎟
⎠
⎞

⎜
⎝
⎛ −

= dt
a

bttx
a

abWx
*1, ψ     (2.5) 

 

where a and b are real. The CWT is the inner product of x(t) and the complex conjugate 

of the translated and scaled version of the wavelet, ψ(t), i.e. ( ) ( ) ( )ttxabW abx ,
*,, ψ= . Eq. 

2.5, shows that the wavelet transform ( )abWx ,  of a one dimensional signal x(t) is two 

dimensional. The CWT can be expressed as a convolution by [47]  

 

   ( ) ( ) ( ) ( ) ( )ttxttxabW ababx −∗== ,
*

,
*,, ψψ .   (2.6) 

 

The CWT expressed as a convolution may be interpreted as the output of an infinite bank 

of linear filters described by the impulse responses ( )tab,ψ  over the continuous range of 

scales a [47]. 

 

 To recover x(t) from ( )abWx , , the mother wavelet ψ(t) has to satisfy the 

admissibility condition given in Eq. 2.4. If the admissibility condition is satisfied, x(t) can 

be perfectly reconstructed from ( )abWx ,  as 

 ( ) ( ) ( )∫ ∫
∞

∞−

∞

∞−

= dadbtabW
aC

tx abx ,
*

2 ,11
*

ψ
ψ

.   (2.7) 
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The constant  is the admissibility constant and is defined in Eq. (2.4). ψC

 

The CWT is covered here for completeness. It was not evaluated for use in identifying 

transient and quasi-steady-state speech, since the CWT is mainly useful for 

characterization of signals (analysis) [17]. Since computers are usually used to evaluate 

wavelet transform, the CWT cannot be evaluated directly in most applications. The 

discrete version is needed. For some signals, the coordinates (a, b) may cover the entire 

time-scale plane, giving a redundant representation of x (t). The calculation of the CWT 

is also not efficient because the CWT is defined continuously over the time-scale plane 

[47].  

 

2.1.2 Multiresolution Analysis and Scaling function 

 

In this section, the scaling function φ(t) will be introduced via a multiresolution analysis. 

The relationship between the scaling function φ(t) and the wavelet function ψ(t) will be 

discussed. This discussion follows the description given by Vaidyanathan et al [48]. In 

the following discussion, L2 refers to the space of square-integrable signals.  

 

 Multiresolution analysis involves the approximation of functions in a sequence of 

nested linear vector spaces {Vk} in L2 that satisfy the following 6 properties: 

1. Ladder property: ...  ...V V V V V− −⊂ ⊂ ⊂ ⊂2 1 0 1 2

2. . { }0=
∞

−∞=
I
j

jV
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3. Closure of is equal to LU
∞

−∞=j
jV 2 

4. Scaling property: x(t)∈Vj if and only if x(2t)∈Vj+1. Because this implies that 

“x(t) V∈ 0 if and only if x(2-jt)∈Vj”, all the spaces Vj are scaled versions of the 

space V0. For j>0, Vj is a coarser space than V0.  

5. Translation invariance: If x(t)∈V0, then x(t-k)∈V0; i.e. the space V0 is invariant 

to translation by integers. The scaling property implies that Vj is invariant to 

translation by 2-jk.  

6. Special Orthonormal basis: A function ( )tφ ∈V0 exists such that the integer 

shifted version ({ kt − )}φ  forms an orthonormal basis for V0. Using the scaling 

property means that (
⎭
⎬
⎫

⎩
⎨
⎧

−−−
ktj

j

22 2φ )  is an orthonormal basis of Vj. The function 

( )tφ  is called the scaling function of multiresolution analysis. 

 

 The scaling function ( ) ( ktt j
j

kj −= −−
22 2

, φφ )

)}

 spans the space Vj. To better describe 

and parameterize signals in this space, a function that spans the difference between the 

spaces spanned by various scales of the scaling function is needed. Wavelets are these 

functions.  

 

The space Wj spanned by the wavelet function has the following properties [49]; 

1. ({ kt −ψ  is an orthonormal basis of W0, given by the   

 orthogonal complement of V0 in V1, i.e. 001 WVV ⊕= , where V0   

 is the initial space spanned by φ(t). 
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2. If ( )tψ ∈W0 exists, then ( ) ( )ktt j
j

kj −= −−
22 2

, ψψ  is an    

 orthonormal basis of the space Wj. Wj is the orthogonal complement of Vj 

 in Vj+1, i.e. mmmm WWWVWVV ⊕⊕⊕⊕=⊕=+ L1001 . 

3.  ...100
2 ⊕⊕⊕= WWVL

 

 Using the scaling function and the wavelet function, a set of functions that span 

all of L2 can be constructed. A function x(t)∈L2 can be written as a series expansion in 

terms of these two functions as [5] 

   .   (2.8) ( ) ( ) ( ) ( ) ( )∑ ∑∑
∞

−∞=

∞

=

∞

−∞=

+=
k j k

kjkJ tkjdtkjctx
0

,, ,, ψφ

 

Here J is the coarsest scale. In the above expression, the first summation gives an 

approximation to the function x(t) and the second summation adds the details. The 

coefficients c(j,k) and d(j,k) are the discrete scaling coefficients and the discrete wavelet 

coefficients of x(t) respectively [5] 

 

2.1.3 The Discrete Wavelet Transform 

 

The discrete wavelet transform (DWT) is obtained in general by sampling the 

corresponding continuous wavelet transform [47]. The discussion of this section is based 

on [47].   

 

 17



 To discretize the CWT, an analyzing wavelet function that generates an 

orthonormal (or biorthonormal) basis for the space of interest is required. An analyzing 

wavelet function with this property allows the use of finite impulse response filters (FIR) 

in the DWT implementation. There are many possible discretizations of the CWT, but the 

most common DWT uses a dyadic sampling lattice. Figure 2.1 shows the time-scale cells 

corresponding to dyadic sampling. Dyadic sampling and restricting the analyzing 

wavelets to ones that generates orthonormal bases allows the use of an efficient algorithm 

known as the Mallat algorithm or fast wavelet transform in the DWT implementation 

[31]. The Mallat algorithm will be discussed in the next section. 

 

↓
→

a
b  

                                

                

        

    

1 

 
2 

 
4 

 
8 

 

Figure 2.1: Time-scale cells corresponding to dyadic sampling. 

 

Sampling the CWT using a dyadic sampling lattice, the discrete wavelet is given by 

   ( ) ( ktt j
j

kj −= −−
22 2

, ψ )ψ      (2.9) 

where j and k take on integer values only. Parameter j and k are related to parameters a 

and b of the continuous wavelet by a = 2j, and k = 2-jb.  
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2.1.4 Signal Decomposition and Reconstruction using Filter Banks 

 

The discussion of this section will follow the description given by [5]. Eq. 2.8 can be 

expanded as 

   ( ) ( ) ( ) ( ) (∑ ∑ −+−= −−−−

k k

j
j

j
j

ktkjdktkjctx 22,22, 22 ψφ ) (2.10) 

In this and subsequent equations, scale j+1 is coarser that scale j. 

If the wavelet function is orthonormal to the scaling function, the level j coefficients 

c(j,k) and d(j,k) can be obtained as: 

   ( ) ( ) ( ) ( )∫ −== −−
dtkttxtxkjc j

j

kj 22,, 2
, φφ    (2.11) 

   ( ) ( ) ( ) ( )∫ −== −−
dtkttxtxkjd j

j

kj 22,, 2
, ψψ .   (2.12) 

The level j+1 scaling and detail coefficients can be obtained from the level j scaling 

coefficients as [5] 

   ( ) ( ) ( )∑ −=+
m

mjckmhkjc ,2~,1     (2.13) 

   ( ) ( ) ( )∑ −=+
m

mjckmgkjd ,2~,1     (2.14) 

Using these equations, level j+1 scaling and wavelet coefficients can be obtained from 

the level j scaling coefficients by filtering with finite impulse response (FIR) filters ( )nh~  

and ( )ng~ , then downsampling the result. This technique is known as the Mallat 

decomposition algorithm and is illustrated in Figure 2.2 [31]. The partial binary tree of 

Figure 2.2 is sometimes referred to as a Mallat tree. 
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Figure 2.2: A three-stage Mallat signal decomposition scheme 

 

 In the decomposition scheme, the first stage splits the spectrum into two equal 

bands: one highpass and the other lowpass. In the second stage, a pair of filters splits the 

lowpass spectrum into lower lowpass and bandpass spectra. This splitting results in a 

logarithmic set of bandwidth shown in Figure 2.3. 

 

8
π

4
π

8
3π

2
π π0

( )ωH

ω

 

 

Figure 2.3: Frequency response for a level 3 discrete wavelet transform decomposition 
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 Level j scaling coefficients can be reconstructed from the level j+1 wavelet and 

scaling coefficients by 

   ( ) ( ) ( ) ( ) ( )∑∑ −++−+=
mm

mkgmjdmkhmjckjc 2,12,1, . (2.15) 

 

In words, the level j scaling coefficients are obtained from the level j+1 scaling and 

wavelet coefficients by upsampling the level j+1 wavelet and scaling coefficients, 

filtering the outputs from the upsamplers using filters h(n) and g(n), and then adding the 

filter outputs. The signal reconstruction scheme is illustrated in Figure 2.4. 

 

2↑

2↑

( )ng

( )nh

2↑

2↑

( )ng

( )nh

ja

1+jd

2↑

2↑

( )ng

( )nh3+ja

3+jd

2+jd

2+ja

1+ja

 

 

Figure 2.4: A three-stage Mallat signal reconstruction scheme  

 

Filters ( )nh~  and h(n) are low-pass whereas filters ( )ng~  and g(n) are high-pass. The 

impulse responses of these filters satisfy the following properties [31]; 

1. ( )nh~  = h(-n) and ( )ng~  = g(-n).  
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2. g(n) = (-1)1-nh(1-n) i.e. H and G are quadrature mirror filters.  

3. |H(0)| = 1 and h(n) = O(n-2) at infinity, i.e. the asymptotic upper bound of h(n) at 

infinity is n-2. 

4. |H(ω)|2 + |H(ω+π)|2 = 1. 

 

2.1.5 The Overcomplete Wavelet Transform 

 

Because the discrete wavelet transform uses a dyadic sampling grid and generate an 

orthonormal basis, it is computationally efficient and has reasonable storage requirements 

(an N sample signal decomposed at a maximum scale S produces  

samples when using the DWT versus  samples when using the CWT). The efficiency 

of the DWT is achieved with potential loss of performance benefits compared to the 

CWT. Compared to the CWT, the DWT is more susceptible to noise and has restrictions 

on the analyzing wavelet used. A compromise can be reached by using the overcomplete 

wavelet transform (OCWT). 

NN S
S

s

s −

=

−∑ +22
1

SN

 

 Nason and Silverman described the Stationary Wavelet Transform (SWT), which 

like the OCWT defined by Liew is similar to the DWT but omits decimation [39]. With 

the SWT, the level j+1 scaling and wavelet coefficients are computed from the level j 

scaling coefficients by convolving the latter with modified version of filter h(n) and g(n). 

The filters are modified by inserting a zero between every adjacent pair of elements of 

the filters h(n) and g(n). Teolis defined his OCWT by sampling, on the time-scale plane, 

the corresponding CWT [47]. However the sampling lattice for the OCWT is not dyadic. 
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Teolis defined a semilog sampling grid for the OCWT whereby the scale samples were 

exponentially spaced and the time samples where uniformly spaced [47]. Mallat et al 

computed the OCWT by computing the DWT and omitting the decimations [30].  

 

 Specifically, the OCWT is defined by an analyzing wavelet, the corresponding 

CWT, and a discrete time-scale sampling set [47]. A condition put on the sampling set is 

that it should produce an OCWT representation that spans the Hilbert space [47]. If this 

condition is met, the OCWT representation is invertible and an inverse transform exists 

[47]. 

 

The advantages of the OCWT over the DWT include [47]; 

(1) Robustness to imprecision in representation of coefficients, for example, 

 quantization effects. 

(2) Freedom to select an analyzing wavelet since the OCWT does not require an 

 analyzing wavelet that generates an orthonormal basis. 

(3) Robustness to noise that arises from the overcompleteness of the representation.     

 

2.1.6 Wavelet Packets 

 

The DWT results in a logarithmic frequency resolution. High frequencies have wide 

bandwidth whereas low frequencies have narrow bandwidth [5]. The logarithmic 

frequency resolution of the DWT is not appropriate for some signals. Wavelet Packets 

allow for the segmentation of the higher frequencies into narrower bands. An entropy 
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measure can also be incorporated into the wavelet packet system to achieve an adaptive 

wavelet packet system (adapted to particular signal or class of signals [5]). This section 

discusses the full wavelet packet decomposition, following [5]. The coarsest level will be 

designated by the highest numerical level, rather than level 0 as in [5].  

 

2.1.6.1 Full Wavelet Packet Decomposition 
 
In the DWT decomposition, to obtain the next level coefficients, scaling coefficients 

(lowpass branch in the binary tree) of the current level are split by filtering and 

downsampling. With the wavelet packet decomposition, the wavelet coefficients 

(highpass branch in binary tree) are also split by filtering and downsampling. The 

splitting of both the low and high frequency spectra results in a full binary tree shown in 

Figure 2.5 and a completely evenly spaced frequency resolution as illustrated in Figure 

2.6. (In the DWT analysis, the high frequency band was not split into smaller bands.) In 

the structure of Figure 2.5, each subspace, also referred to as a node, is indexed by its 

depth and the number of subspaces below it at the same depth. The original signal is 

designated depth zero. 
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Figure 2.5: Three-stage full wavelet packet decomposition scheme 
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Figure 2.6: Frequency response for a level 3 wavelet packets decomposition 
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 An alternative tree labeling scheme is shown in Figure 2.7 for a wavelet packet 

decomposition of depth 4. In this scheme, the nodes are labeled using counting numbers 

with index 0, corresponding to the original signal, as the root of the tree.  

 

 

 

Figure 2.7: Alternate wavelet packet tree labeling. 

 

 The wavelet packet reconstruction scheme is achieved by upsampling, filtering 

with appropriate filters and adding coefficients. This scheme is shown in Figure 2.8. This 

WP reconstruction tree structure is labeled the same as the WP decomposition structure. 
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Figure 2.8: Three-stage full wavelet packet reconstruction scheme  

 

As in the DWT scheme, ( )nh~  and h(n) are lowpass filters whereas ( )ng~  and g(n) are 

highpass filters. Additional properties that were presented for these filters in the DWT 

scheme (section 2.1.3) also hold here. 

 

2.1.7 Choosing a Wavelet Function 

 

Since the formulation of the Haar wavelet in the early twentieth century, many other 

wavelets have been proposed. The paper ‘Where do wavelets come from?-a personal 

point of view’ by Daubechies presents a good historical perspective on wavelets [8]. This 
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paper, among others, discusses the works of Morlet, Grossmann, Meyer, Mallat and 

Lemarié that led to the development of wavelet bases and the wavelet transforms. 

 

 A well chosen wavelet basis will result in most wavelet coefficients being close to 

zero [32]. The ability of the wavelet analysis to produce a large number of non-

significant wavelet coefficients depends on the regularity of the analyzed signal x(t), and 

the number of vanishing moments and support size of ψ(t). Mallat related the number of 

vanishing moments and the support size to the wavelet coefficients amplitudes [32].  

 

Vanishing Moments 

ψ(t) has p vanishing moments if  

   .    (2.16) ( ) pkfordttt k <≤=∫
∞

∞−

00ψ

 

If x(t) is regular and ψ(t) has enough vanishing moments, then the wavelets coefficients 

( ) ( ) kjtxkjd ,,, ψ=  are small at fine scale. 

 

Size of Support 

If x(t) has an isolated singularity (a point at which the derivative does not exist although 

it exists everywhere else) at t0 and if t0 is inside the support of ( )tkj ,ψ , then 

( ) ( ) kjtxkjd ,,, ψ=  may have large amplitudes. If ψ(t) has a compact support of size K, 

there are K wavelets ( )tkj ,ψ  at each scale 2j whose support includes t0. The number of 

large amplitude coefficients may be minimized by reducing the support size of ψ(t). 
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 If ψ(t) has p vanishing moments, then its support size is at least 2p – 1 [32]. A 

reduction in the support size of ψ(t) unfortunately means a reduction in the number of 

vanishing moments of ψ(t). There is a trade off in the choice of ψ(t). A high number of 

vanishing moments is preferred if the analyzed signal x(t) has few singularities. If the 

number of singularities of x(t) is large, a ψ(t) with a short support size is a better choice. 

 

Examples of wavelets basis 

This subsection presents some properties of three wavelet families, Daubechies, Symlets 

and Morlet. Daubechies and Symlets wavelets were evaluated for use in decomposing 

speech.  

 

 Daubechies and Symlets wavelets are orthogonal wavelets that have the highest 

number of vanishing moments for a given support width. In the naming convention, dbi 

or symi, i is an integer that denotes the order, e.g. db8 is an order 8 Daubechies wavelet 

and sym7 is an order 7 Symlets wavelet [7]. An order i wavelet has i vanishing moments, 

a support width of 2i-1 and a filter of length 2i. These wavelets are suitable for use with 

both the continuous wavelet transform and the discrete wavelet transform. The difference 

between these two wavelet functions is that Daubechies wavelets are far from symmetry 

while Symlets wavelets are nearly symmetric. As an example, Figure 2.9 (a) and (b) 

show wavelet (psi) and scaling functions (phi) for order 4 Daubechies and Symlets 

wavelets. 
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Figure 2.9: Order 4 Daubechies scaling (phi) and wavelet (psi) functions. 
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Figure 2.10: Order 4 Symlets scaling (phi) and wavelet (psi) functions. 
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 The Morlet wavelet was formulated by J. Morlet for a study of seismic data [37]. 

The Morlet wavelets function is a complex wavelet which, because of the lack of 

existence of a corresponding scaling function, can only be used for CWT analysis. 

Although the Morlet wavelet has infinite support, its effective support is in the range  

[-4 4]. The Morlet wavelet function, which is a modulated Gaussian function, is given by  

   ( ) 2

2

0

t
tj eet ωψ =       (2.17) 

 

Figure 2.11 shows the real part of the Morlet wavelet function with ω0 = 5, 

( ( ) ( )tet
t

5cos2

2

=ψ ). The real part of the Morlet wavelet is a cosine modulated Gaussian 

function.  
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Figure 2.11: Morlet wavelet function 
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2.2 USE OF WAVELETS IN SPEECH PROCESSING 

 

Recently, wavelet transforms have found widespread use in various fields of speech 

processing. Among the many applications, wavelets have been used in automatic speech 

recognition, pitch detection, speech coding and compression, and speech denoising and 

enhancement. This subsection will review some of the work in applying wavelets to 

speech processing. 

 

 Ris, Fontaine and Leich presented a method to represent relevant information of a 

signal with a minimum number of parameters [45]. They proposed a pre-processing 

algorithm that produces acoustical vectors at a variable frame rate. Signal analysis and 

segmentation of Ris et al was based on the Malvar wavelets [33]. They computed a 

Malvar cepstrum from the Malvar wavelet coefficients and used it as input to a Hidden 

Markov model (HMM) based speech recognizer. Before the Malvar wavelet coefficients 

were presented to the HMM recognizer, segmentation based on an entropy measure was 

performed to produce a variable frame rate coded feature vector. The segmentation 

produced short segments for transient and unvoiced speech and long segments for voiced 

speech. In an isolated word speech recognition task, the performance of the Ris et al 

method was comparable to that of an LPC cepstrum recognizer when segmentation was 

not used. With segmentation in the Ris method, the LPC cepstrum recognizer performed 

better than the Ris method. 

 32



 Farooq and Datta used a Mel filter-like admissible wavelet packet (WP) structure 

instead of the popular Mel-frequency cepstral coefficients (MFCC) to partition the 

frequency axis into bands similar to those of the Mel-scale for speech recognition [13]. 

Instead of using the logarithm of the amplitude Fourier transform coefficients as input to 

the filter banks, they used WP coefficients. Just as in the MFCC computation, Farooq et 

al computed the discrete cosine transform of the output of the filter banks. In a speech 

recognition test, they observed that the features derived from WP performed better than 

MFCC features for unvoiced fricatives and voiced stops, and MFCC features 

outperformed WP features for voiced fricatives and vowels. According to Farooq et al, 

the reason for this was that the STFT (which uses cosines and sines) which is used in the 

MFCC computation is more efficient for the extraction of periodic structure from a 

signal. Also wavelet packets have multiresolution properties that enable them to capture 

stops because stops have a sudden burst of high frequency. 

 

 Kadambe and Boudreaux-Bartels developed a noise-robust event-detection pitch 

detector that was based on the dyadic wavelet transform [20]. Their pitch detector was 

suitable for both low-pitched and high-pitched speakers.  The dyadic wavelet transform 

was applied to detect the glottal closure (defined as an event), and the time interval 

between two such events was the estimate of the pitch period. They demonstrated that 

their pitch detector was superior to classical pitch detectors that utilize autocorrelation 

and cepstrum methods to estimate pitch period. More recent wavelet-based pitch 

detectors have followed the work of Kadambe and Boudreaux-Bartels. 

 

 33



 Shelby et al used the pitch detection method of Kadambe and Boudreaux-Bartels 

to detect pitch period in tone languages [46]. Jing and Changchun incorporated an 

autocorrelation function into the pitch detector of Kadambe and Boudreaux-Bartels [20]. 

 

 Chen and Wang improved the pitch detector of Kadambe et al [20] by developing 

a wavelet-based method for extracting pitch information from noisy speech [6]. They 

applied a modified spatial correlation function to improve the performance of the pitch 

detector in a noisy environment. To further increase the performance of their pitch 

detector, an aliasing compensation algorithm was used to eliminate the aliasing distortion 

caused by the downsampling and the upsampling performed in the computation of DWT 

coefficients. Through simulations, they showed that their pitch detection method gave 

better results in noisy conditions than other time, spectral and wavelet domain pitch 

detectors. 

 

 Mandridake and Najim described a scheme for speech compression that employed 

discrete wavelet transform and vector quantization (VQ) [34]. In their coding system 

which they called discrete wavelet vector transform quantization (DWVTQ), a speech 

signal was transformed to wavelet coefficients corresponding to different frequency 

bands which were then quantized separately. Their method used product code structure 

for each frequency band. Mandridake et al took account of both the statistics of the 

wavelet coefficients and the fact that the ear is less sensitive to high frequencies in their 

bit assignment for the vector codes. Results showed that their method outperformed the 
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discrete wavelet scalar transform quantization (DWSTQ) method; it was more efficient, 

and showed improved optimal bit allocation in comparison to uniform bit allocation. 

 

 Xiaodong, Yongming and Hongyi presented a speech compression method based 

on the wavelet packet transform [50]. The signals were compressed in domains with 

different time-frequency resolutions according to their energy distributions in those 

domains, i.e. a signal whose energy was more concentrated in a domain with high time 

resolution was compressed in the time domain, while a frequency domain signal was 

compressed in the frequency domain. They showed that their method was simple to 

implement and effective for compressing audio and speech at bit rates as low as 2 kbps. 

 

 Najih et al evaluated the wavelet compression technique on speech signals [38]. 

They evaluated a number of wavelet filters to determine the most suitable filters for 

providing low bit rate and low computation complexity. Their speech compression 

technique employed five procedures: ‘one-dimensional wavelet decomposition’; 

‘thresholding’; ‘quantization’; ‘Huffman coding’; ‘reconstruction using several wavelet 

filters’. Najih et al evaluated their method using peak signal to noise ratio (PSNR), signal 

to noise ratio (SNR) and normalized root mean squared error (NRMSE). Their results 

showed that the Daubechies-10 wavelet filter gave higher SNR and better speech quality 

than other filters. They achieved a compression ratio of 4.31 times with satisfactory 

quality of decoded speech signals.     
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 Farooq and Datta proposed a pre-processing stage based on wavelet denoising for 

extracting robust MFCC features in the presence of additive white Gaussian noise [14]. 

They found that MFCC features extracted after denoising were less affected by Gaussian 

noise and improved recognition by 2 to 28 % for signal-to-noise ratios in the range 20 to 

0 dB.  

 

 Barros et al developed a system for enhancement of the speech signal with highest 

energy from a linear convolute mixture of n statistically independent sound sources 

recorded by m microphones, where m<n [2]. In their system, adaptive auditory filter 

banks, pitch tracking, and the concept of independent component analysis were used. 

Wavelets were used in the process of extracting the speech fundamental frequency and as 

a bank of adaptive bandpass filters. They constructed a bandpass filter, using wavelets, 

centered around the central frequency given at each time instant by a quantity they 

termed the driver. The driver was defined as the frequency value corresponding to the 

maximum value of the speech spectrogram at each time instant in a given frequency 

range.  

  

 Their filter banks where centered at the fundamental frequency and its harmonics, 

thus mimicking the nonlinear scaling of the cochlea. They used a modified Gabor 

function. Where they had access to the original signal, Barros et al used objective quality 

measures to evaluate their system, and their results showed good performance. For the 

cases where there was no access to the original signal, they measured subjective quality 

by the MOS scale, which is a five-point scale providing the options Excellent, Good, 
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Fair, Poor, and Bad. Using this scale, the enhanced speech was generally regarded as 

good when compared to the mixed speech signal, which was generally regarded as poor.   

 

 Yao and Zhang investigated the bionic wavelet transform (BWT) for speech 

signal processing in cochlear implants [51]. The BWT is a modification of a wavelet 

transform that incorporates the active cochlear mechanism into the transform, resulting in 

a nonlinear adaptive time-frequency analysis.  When they compared speech material 

processed with the BWT to that processed with the WT, they concluded that application 

of the BWT in cochlear implants has a number of advantages, including improved 

recognition rates for both vowels and consonants, reduction in the number of channels in 

the cochlear implant, reduction in the average stimulation duration for words, better noise 

tolerance and higher speech intelligibility rates.  

 

 Bahoura and Rouat proposed a wavelet speech enhancement scheme that is based 

on the Teager energy operator [1]. The Teager energy operator is a nonlinear operator 

that is capable of extracting signal energy based on mechanical and physical 

considerations [22]. Their speech enhancement process was a wavelet thresholding 

method where the discriminative threshold in various scales was time adapted to the 

speech waveform. They compared their speech enhancement results with those obtained 

using an algorithm by Ephraim et al [12] and concluded that their scheme yields higher 

SNR. Unlike the speech enhancement method of Ephraim et al, the method of Bahoura et 

al did not require explicit estimation of the noise level or a priori knowledge of the 

signal-to-noise ratio (SNR). 
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 Favero devised a method to compound two or more wavelets and used the 

compounded wavelet to compute the sampled CWT (SCWT) of a speech signal [16]. He 

used the compound-wavelet computed SCWT coefficients as input parameters for a 

speech recognition system. Favero found that using the compound wavelet decreases the 

number of coefficients input to a speech recognition system and improves recognition 

accuracy by about 15 per cent. 

 

 Kadambe and Srinivasan used adaptive wavelet coefficients as input parameters 

to a phoneme recognizer [21]. The wavelet was adapted to the analyzed speech signal by 

choosing the sampling points on the scale and time axes according to the speech signal. 

This adaptive sampling was achieved using conjugate gradient optimization and neural 

networks. The adaptive wavelet based phoneme recognizer produced results that were 

comparable to cepstral based phoneme recognizers. 

  

2.3 VARIABLE FRAME RATE CODING OF SPEECH 

 

Variable frame rate (VFR) techniques allow for the reduction of frames processed by a 

front-end automatic speech recognizer (ASR) and, importantly for this study, the 

identification of speech transients. To reduce the amount of data processed and improve 

recognition performance, the VFR technique varies the rate at which acoustic feature 

vectors are selected for input to an ASR system. A higher frame rate is used where the 
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feature vectors change rapidly while a lower frame rate is used when feature vectors 

change slowly. Acoustic feature vectors evaluated for VFR coding of speech for this 

study are linear prediction code (LPC) and Mel-frequency cepstral coefficients (MFCC).  

 

 A description of LPC and MFCC is given below focusing on how these feature 

vectors are created from speech. This will be followed by a discussion of VFR. 

 

2.3.1 Linear Prediction Analysis 

 

Linear prediction analysis has found widespread use in speech processing, particularly 

speech recognition. This section gives a brief description of how the linear prediction 

parameters (code) are obtained from speech. A detailed explanation of linear prediction 

analysis may be found in [11] and [43]. 

 

2.3.1.1 Long-term Linear Prediction Analysis 
The objective of Linear Prediction (LP) is to identify, for a given speech signal s(n), the 

parameters ( ) of an all-pole speech characterization function given by; ( )iâ
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In Eq. 2.18, H(z) is a filter that represents the vocal tract, G is the gain and M is the order 

of the LPC analysis. The all-pole nature of the LP characterization of speech means that 

the magnitude of the spectral dynamics of the speech is preserved while the phase 

characteristics are not. Typical values for the order of LPC analysis (M) are 8 to 16 [43].  

Figure 2.12 shows a block diagram for the linear prediction model of speech synthesis. 

 

 

 

Figure 2.12: LP speech synthesis model 

 

From Figure 2.12, the relation between u(n) and s(n) is 
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In the time domain, the relation is 

        (2.21) ( ) ( )∑
=

+−=
M

i
nGuinsians

1
)()(ˆ

 

Except for the excitation sequence, s(n) can be predicted using a linear combination of its 

past values, hence the name linear prediction. The ( )iâ ’s form the prediction equation 

coefficients and their estimates are called the linear prediction code [11]. 

 

Linear Prediction Equations 

The input and output to the block diagram of Figure 2.12 are known but the transfer 

function is unknown. The problem is to find H’(z) (estimate of the true frequency 

response) such that the mean squared error between the true speech s(n) and the estimated 

speech s’(n) is minimized. From Figure 2.13 (a) we realize that the ( )iâ ’s are nonlinearly 

related to H’(z), which makes the problem of determining the ( )iâ ’s a difficult one. The 

problem can be simplified by considering the inverse model shown in Figure 2.13 (b). In 

this model, the ’s are linearly related to H’( )iâ inv(z) and 

        (2.22) ( ) ( ) ( )∑
∞

=

−+=
1

' 0
i

i
inv zizH αα

 

Imposing the constraints ( )0α  = 1 and ( )iα  = 0 for i>M, the problem now reduces to 

finding a finite impulse response (FIR) filter of length M+1 that minimizes the mean 

squared error between the true excitation sequence u(n) and the estimated excitation 
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sequence u’(n). The LP parameters are then given by ( )iâ  = - ( )iα , ( )iα  being the 

coefficients of the inverse filter ( )zHinv
' . 
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Figure 2.13: (a) Estimated model and (b) Inverse model 

 

From Figure 2.13 (b), Eq. 2.22 and using ( )0α  = 1 we have the mean squared error 
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Differentiating Eq. (2.23) with respect to ( )ηα  and setting the result to zero, we have 
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where ( )ηφss  is the time autocorrelation of s(n) and ( )ηφus  is the time cross-correlation of 

the sequences s(n) and u(n). The assumption that the sequences s(n) and u(n) are wide-

sense stationary (WSS) has been made. If we also assume that the excitation sequence is 

a unity-variance orthogonal random process, i.e., ( ) (nee )δηφ = , then 

( ) ( ) 0≥= ηηδηφ forCus , which is therefore zero for positive η [11]. 

Recalling that  = -( )iâ ( )iα , Eq. (2.24) becomes 

( ) ( ) ( )∑
=

=−
M

i
ssss iia

1

ˆ ηφηφ      (2.25) 

 

The M Eqs of (2.25), sometimes called the normal equations, are used to compute the 

conventional LP parameters [11]. 

 

 Since speech is considered quasi-steady state only over short time intervals, 

computing long-term LP parameters for a short speech segment of interest would give 

bad estimates. Short-term LP analysis resolves this problem by computing LP parameters 

in the interval of interest only. 

 

2.3.1.2 Short-term Linear Prediction Analysis 
There are two well known short-term LP techniques; the autocorrelation method and the 

covariance method. 
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Autocorrelation Method 

The N sample short-term autocorrelation function for the signal s(n) is defined as [11] 
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  (2.26) 

 

where w(n) is a window function which is zero outside the interval of N points ending at 

m. Using the short-term autocorrelation function in the long-term normal equation gives 
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In matrix notation, Eq. (2.27) can be expressed as 
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The M-by-M matrix ( ) of autocorrelation values known as the short-term 

autocorrelation matrix is a Toeplitz matrix and can be solved using the Durbin algorithm 

[11]. 

)(mRss
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Covariance Method 

The N sample short-term covariance function for the signal s(n) for time in the interval 

m-N+1 < n < m is defined as [11] 

 ( ) ( ) (∑
+−=

−−=
m

Nmn
ss nsns
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m

1

1;, βαβαϕ )

)

.   (2.30) 

 

The covariance estimator of the LP parameters is obtained by using the short-term 

covariance function (Eq. 2.30) as an estimate of autocorrelation in the long-term normal 

equations (Eq. 2.25). This gives 
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In matrix notation, Eq. 2.31 can be expressed as  

 ( )mmam sss ϕ=Φ )(ˆ)(       (2.32) 
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The M-by-M matrix  of covariance values known as the short-term covariance 

matrix can be solved using the Cholesky decomposition method. 

( )mssΦ
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Note that the covariance method does not involve the use of a window function; it is 

computed over a range of points and uses the unweighted speech directly. Of the two 

methods for computing short-term LP parameters, the autocorrelation method has found 

the most extensive use in speech processing.  

 

2.3.2 Mel-Frequency Cepstral Coefficients 

 

Today, most automatic speech recognizers use Mel-frequency Cepstral coefficients 

(MFCC), which have proven to be effective and robust under various conditions [36]. 

MFCC capture and preserve significant acoustic information better than LPC [10]. 

MFCC have become the dominant features used for speech recognition and the following 

discussion of MFCC will follow the description of [29]. 

 

 Figure 2.14 shows the process for creating MFCC features from a speech signal. 

The first step is to convert the speech into frames by applying a windowing function; 

frames are typically 20 to 30 ms in duration with a frame overlap of 2.5 to 10 ms. The 

window function (typically a Hamming window) removes edge effects at the start and 

end of the frame. A cepstral feature vector is generated for each frame. 
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Figure 2.14: Process to create MFCC features from speech 

 

The next step is to compute the discrete Fourier transform (DFT) for each frame. Then 

the logarithm of the amplitude spectrum of the DFT is computed. Computing the 

amplitude of the DFT discards the phase information but retains the amplitude 

information which is regarded as the most important for speech perception [30]. In the 

next step, the Fourier spectrum is smoothed using filter-banks arranged on a mel-scale. 

The mel-scale emphasizes perceptually meaningful frequencies. This scale is 

approximately linear up to 1000 Hz and logarithmic thereafter. In the final step, the 

discrete cosine transform (DCT) is computed. The discrete cosine transform, which is 
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used here as an approximation of the Karhunen-Loeve (KL) transform, has the effect of 

decorrelating the log filter-bank coefficients and compressing the spectral information 

into the lower-order coefficients.  

 

LPC Parameter Conversion to Cepstral Coefficients 

LPC cepstral coefficients, cm, can be derived directly from LPC parameters by using the 

recursive formulas [43] 
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where G is the gain term in the LPC model, am are the LPC coefficients, and M is the 

order of the LPC analysis. The cepstral coefficients have been shown to be a more robust 

and reliable feature set for speech recognition than the LPC coefficients [43]. Generally, 

a cepstral representation with N > M coefficients is used in speech recognition, 

where MN ⎟
⎠
⎞

⎜
⎝
⎛≈

2
3 . 

 

2.3.3 Variable Frame Rate Techniques 

 

In most speech recognizers, a speech signal is windowed into frames (typically of 20 – 30 

ms duration) with a certain fixed overlap between adjacent frames. Windowing is done 

with the assumption that speech is not stationary, but exhibits quasi-stationary properties 
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over short segments of time. Each frame is then represented with feature vector 

parameters such as MFCC or LPC. These parameters are used in the pattern matching 

stage of the recognizer.  

 

In the vowel parts of speech, parameters of successive frames may look much 

alike and computing parameters every 20 to 30 ms may be redundant. Variable frame rate 

techniques take advantage of this by picking more frames where parameters of successive 

frames are different and few where parameters are similar. This reduces the 

computational load of speech recognizers without performance loss. 

 

 A number of variable frame rate (VFR) analysis methods for speech recognition 

have been proposed for use in automatic speech recognizers [40], [56], [23].  

 

 Ponting and Peeling proposed a VFR technique where the Euclidean distance 

between the current frame and the last retained frame was used in the frame picking 

decision [40]. This method will be referred to as the classical method. In Ponting and 

Peeling’s VFR technique, a frame was picked if the Euclidean distance between that 

frame and the last retained frame was greater than a set threshold.  

  

Zhu and Alwan improved on the classical VFR technique by weighing the 

Euclidean distance with the log energy of the current frame [56]. They also proposed a 

new frame picking method where a frame was picked if the accumulated weighted 
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Euclidean distance was greater than a set threshold. Their method will be referred to as 

the log-energy method. 

  

 Le Cerf and Van Compernolle proposed a derivative VFR technique, where the 

Euclidean norm of the first derivatives of the feature vectors was used as the decision 

criteria for frame picking [23]. The derivative method VFR technique discards a frame if 

the Euclidean norm of that frame is less than a chosen threshold. 

 

 The fact that variable frame rate techniques pick more frames when there is rapid 

change and fewer frames elsewhere suggests that they can be used for identification of 

transients in speech. In the classical method, only two frames are considered in the 

decision-making process, and this does not represent completely the whole environment 

of the frame [23] [24]. The calculation of derivatives takes into account the whole 

environment of the frame and is able to measure the change in the signal better [23] [24]. 

For this reason the derivative method VFR technique was used for detection of transients 

in speech in this study. 

 

2.4 DECOMPOSING SPEECH USING THE FORMANT TRACKING 
ALGORITHM 

 

Yoo et al applied multiple time-varying band-pass filters, based on a formant tracking 

algorithm by Rao and Kumaresan, to track speech formants [44], [52], [53]. The formant 

tracking algorithm applied multiple dynamic tracking filters (DTF), adaptive all-zero 
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filters (AZF), and linear prediction in spectral domain (LPSD) to estimate the frequency 

modulation (FM) information and the amplitude modulation (AM) information. The FM 

information was then used to determine the center frequencies of the DTF and to update 

the pole and zero locations of the DTF and the AZF. The AM information was used to 

estimate the bandwidth of the time-varying band-pass filters.  

 

 The output of each time-varying band pass filter was considered to be an estimate 

of the corresponding formant. The sum of the outputs of the filters was defined as the 

tonal component of the speech. Yoo et al estimated the non-tonal component of the 

speech signal by subtracting the tonal component from the original speech signal. Yoo et 

al considered the tonal component to contain most of the steady-state information of the 

input speech signal and the non-tonal component to contain most of the transient 

information of the input speech signal. A block diagram of the formant tracking speech 

decomposition scheme is shown in Figure 2.15. 

 

 In the present study, the tonal and nontonal speech components obtained from the 

formant tracking algorithm of Yoo et al will be used as reference signals to which the 

quasi-steady-state and transient speech components synthesized from wavelet 

representations will be compared. 
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Figure 2.15: Block diagram of formant tracking speech decomposition [55]. 
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3.0 WAVELET TRANSFORMS AND PACKETS TO IDENTIFY TRANSIENT 
SPEECH 

 

 

The process of using of the discrete wavelet transform (DWT), stationary wavelet 

transform (SWT) and wavelet packet (WP) for identifying transient and quasi-steady-

state speech components is described here. As stated earlier, these speech components are 

based on and compared to the nontonal and tonal speech components defined by Yoo 

[52], [53] [54]. 

 

 The analysis algorithms were implemented using MATLAB software. The 

wavelet toolbox, the Voicebox speech processing toolbox developed at Imperial College 

[3], and WaveLab802 developed by Donoho D., Duncan M. R., Huo, X. and Levi, O. at 

Stanford University were particularly important tools. Speech samples were obtained 

from the audio CDROM that accompanies Contemporary Perspectives in Hearing 

Assessment, by Frank E. Musiek and William F. Rintelmann, Allyn and Bacon, 1999 

(referred to as CDROM # 1). These speech signals were downsampled from 44100 Hz to 

11025 Hz and highpass filtered at 700 Hz. Yoo’s formant tracking algorithm worked 

better when the first formant was removed. The highpass filtered speech signals were as 

intelligible as the original speech signals, as shown by psychoacoustic studies of growth 

of intelligibility as a function of speech amplitude [54].  
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 Wavelet analysis is equivalent to a bank of bandpass filters that divides the 

frequency axis into logarithmic bandwidths when the DWT and SWT are used or into 

equal bandwidths when wavelet packets are used. The wavelet level concept as used to 

refer to the number of decimations performed in the DWT and SWT analysis may be 

thought of as an index label of the filter banks and is associated with a particular 

frequency interval. The terminal node label of wavelet packets analysis may be thought 

of in the same way. 

 

 Daubechies and Symlets wavelets of different orders were evaluated to determine 

the wavelet basis to use for the decompositions. The db20 wavelet function, shown in 

Figure 3.1, was chosen because it has a median time support length (3.54 ms). Results 

obtained using the db20 where not very different from those obtained using other 

Daubechies wavelets and Symlets wavelets of comparable time support. Wavelets with 

short time support, like db1 (Haar), do not have good frequency localization, and wavelet 

with long time support resulted in long computation times. 
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Figure 3.1: Wavelet and scaling functions for db20 
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3.1 METHOD FOR DISCRETE AND STATIONARY WAVELET 
TRANSFORMS 

 

The DWT and SWT are similar in a number of ways. As a result, the procedures by 

which they were used for the identification of transient and quasi-steady-state speech 

components have several similarities and the methods used will be discussed together. 

Energy profiles, which are used to identify the dominant type of information (transient or 

quasi-steady-state information) of the wavelet coefficients at each level, will be defined 

first. 

 

 The highpass filtered, tonal and nontonal speech components were decomposed 

using a db20 wavelet function and a maximum decomposition level of 6. With this 

decomposition, the wavelet coefficients at level 5 and 6 and the scaling coefficients at 

level 6, which fall below the 700 Hz cutoff frequency, have very low energy. Using a 

decomposition level above 6 would not be beneficial since the wavelet coefficients at 

these higher levels would also have very low energy. Figure 3.2 shows, as a reference for 

the frequency intervals of each level, the filter frequency responses for levels 1 to 6. In 

this diagram, di, i = 1, 2… 6 is the filter frequency response for the wavelet coefficient at 

level i, and a6 is the filter frequency response for the scaling coefficients at level 6.  
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Figure 3.2: Filter frequency response at each level for a db20 wavelet function. 

 

 The energy distribution by level is used to identify wavelet levels which 

predominately include transient and quasi-steady-state information. This energy 

distribution will be refereed to as the energy profile for the word.  

 

 To identify wavelet levels with predominately transient or predominately quasi-

steady-state information, the energy profile of the highpass filtered speech was compared 

to the energy profiles of Yoo’s tonal and nontonal speech components. At a given level, 

if the energy of the wavelet coefficients of the highpass filtered speech was closer to the 

energy of the wavelet coefficients of the tonal speech, then the wavelet coefficients of the 

highpass filtered speech at that level are considered to have more quasi-steady-state 

information than transient information. On the other hand, if the energy of the wavelet 

coefficients of the highpass filtered speech was closer to the energy of the wavelet 

coefficients of Yoo’s nontonal speech, then the wavelet coefficients of the highpass 

filtered speech at that level are considered to have more transient information.  
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 Figure 3.3 shows, as an example, the energy profiles for the highpass filtered, 

nontonal and tonal speech components for the word ‘pike’ as spoken by a female 

obtained using the DWT and SWT. A db20 wavelet function was used for the level 6 

decomposition. In this example, level 1, 2, 5 and 6 wavelet coefficients of the highpass 

filtered speech are considered to have transient information, since their energies are 

closer to energies of the wavelet coefficients of Yoo’s nontonal component at the same 

levels. Level 3 and 4 wavelet coefficients of the highpass filtered speech are considered 

to have quasi-steady-state information, since their energies are closer to the energies of 

the corresponding coefficients of the tonal component. Level 5 and 6 wavelet coefficients 

and scaling coefficients at level 6 had insignificant amounts of energy. A maximum 

decomposition level of 6 will be used in subsequent decomposition since any higher level 

will result in higher level wavelet coefficients of negligible energy. 
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Figure 3.3: Energy profiles for the highpass filtered, nontonal and tonal speech 
components for the word ‘pike’ spoken by a female computed using the DWT and SWT. 
 

 In this example, level 1, 2, 5 and 6 wavelet coefficients of the highpass filtered 

speech are considered to have transient information, since their energies are closer to 

energies of the wavelet coefficients of Yoo’s nontonal component at the same levels. 

Level 3 and 4 wavelet coefficients of the highpass filtered speech are considered to have 

quasi-steady-state information, since their energies are closer to the energies of the 

corresponding coefficients of the tonal component. Level 5 and 6 wavelet coefficients 

and scaling coefficients at level 6 had insignificant amounts of energy. A maximum 
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decomposition level of 6 will be used in subsequent decomposition since any higher level 

will result in higher level wavelet coefficients of negligible energy. 

 

 After associating wavelet levels with either transient or quasi-steady-state speech, 

the inverse DWT and SWT are used to synthesize transient and quasi-steady-state speech 

components. A transient speech component is synthesized using wavelet levels that are 

identified to have transient information, and a quasi-steady-state speech component is 

synthesized using wavelet levels that are identified to have quasi-steady-state 

information. The synthesized speech components are compared, in the time- and 

frequency-domain, to Yoo’s tonal and nontonal speech components. The spectra below 

700 Hz and above 4 kHz, which relatively had low energy and did not contribute 

significantly to speech intelligibility, are ignored. An informal listening test was also used 

to compare the wavelet derived speech components to the speech components obtained 

using the algorithm of Yoo. The informal subjective listening test was conducted by the 

author listening to the speech components and making a judgment of how similar they 

sounded. These comparisons are a measure of how successful a wavelet transform was in 

identifying speech components that are a close estimate of the speech components of 

Yoo’s algorithm. 

 

 As a means of comparing the transient component synthesized using wavelets to 

Yoo’s nontonal component across many words, the estimation errors were computed for 

18 words using the mean-squared-error (MSE) between the spectra of the two 

components.  
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3.2 RESULTS FOR DISCRETE AND STATIONARY WAVELET 
TRANSFORMS 

 

 This section presents examples of the results obtained when the DWT and SWT 

were used for decomposing speech into transient and quasi-steady-state components. For 

each type of wavelet transform, figures comparing the wavelet coefficients and energy 

profiles of the highpass filtered speech to those of Yoo’s tonal and nontonal speech are 

given. Following are figures comparing the transient and quasi-steady-state speech 

components, synthesized as described earlier, to Yoo’s nontonal and tonal speech 

components. 

 

Discrete Wavelet Transform (DWT) 

The DWT was explored for use in identifying transient and quasi-steady-state speech. 

Figure 3.4 shows, as an example, the DWT coefficients for the highpass filtered, tonal 

and nontonal speech components, and Figure 3.5 shows the energy profiles for these 

components. In Figure 3.4, in each column, level 0 is the original signal. For example, in 

the middle column, level 0 is Yoo’s nontonal component. Observing the energy profiles 

of Figure 3.5, the energy of the wavelet coefficients of the highpass filtered speech at 

level 1 is closer to the energy of the wavelet coefficients of Yoo’s nontonal speech 

component at level 1. These coefficients are considered to predominately include 

transient information. The wavelet coefficients of the highpass filtered speech at levels 2, 

3, 4, 5 and 6 have energy that is closer to that of the wavelet coefficients of the tonal 
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component than Yoo’s nontonal component at the same levels. Therefore these 

coefficients are considered to predominately include quasi-steady-state information.  
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Figure 3.4: DWT coefficients for (a) highpass filtered speech, (b) nontonal speech and (c) 
tonal speech for the word ‘pike’ as spoken by a male. 
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Figure 3.5: Energy profiles for the highpass filtered, nontonal and tonal speech 
components for the word ‘pike’ spoken by a male. 

  

 A transient speech component for the word ‘pike’ was synthesized from the level 

1 wavelet coefficients of the highpass filtered speech. Figure 3.6 (c) and (c) show the 

DWT estimated transient component and the nontonal component, and Figure 3.7 (c) and 

(d) show their spectra. The spectrum of the transient component has little energy in the 

frequency interval of (0.7-1.5) kHz, where the spectrum of the nontonal component has 

significant energy. In the listening test, the transient speech component synthesized using 
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the DWT was more whispered than and not as intelligible as the nontonal speech 

component. 

 

 The quasi-steady-state speech component for the word ‘pike’ was synthesized 

from the levels 2, 3, 4, 5 and 6 DWT coefficients of the highpass filtered speech. Figure 

3.6 (a) and (b) show the quasi-steady-state component, estimated using the DWT and 

Yoo’s tonal component. The spectra of these two signals are shown in Figure 3.7 (a) and 

(b). The spectrum of the quasi-steady-state component includes frequencies present in the 

spectrum of Yoo’s tonal component and additional frequencies. The spectrum of the tonal 

component has some spectral peaks that where not observed in the spectrum of the quasi-

steady-state component. In a listening test, the quasi-steady-state component synthesized 

using the DWT was more intelligible than Yoo’s tonal component. 
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Figure 3.6: Time-domain plots of DWT estimate of quasi-steady-state and transient 
speech component, and of the tonal and nontonal speech components for the word ‘pike’ 

spoken by a male. 
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Figure 3.7: Frequency-domain plots of DWT estimate of quasi-steady-state and transient 
speech component, and of the tonal and nontonal speech components for the word ‘pike’ 

spoken by a male. 
 

 Figure 3.8 shows spectrograms for the quasi-steady-state and transient 

components synthesized using the DWT, and Yoo’s tonal and nontonal components for 

the word ‘pike’ spoken by a male. The spectrograms were computed using a 10 msec. 

Hamming window. The spectrograms show that, compared to Yoo’s tonal component, 

the quasi-steady-sate synthesized using the DWT is wideband and has some energy for t 

> 0.5 sec. The transient component synthesized using the DWT does not have energy for 
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frequencies approximately less than 2 kHz. All these features were shown in the time-

waveforms and spectra of the speech components, shown in Figures 3.6 and 3.7. The 

time-waveforms, though, also show that there is a difference in the characteristics of the 

release of the stop consonant /k/ (at approximately 0.45 sec.) observed for the transient 

component as compared to the nontonal component. These differences are not shown by 

the spectrograms, and for these reasons, the time-waveforms and spectra will be used for 

the remainder of this thesis, instead of spectrograms.  

 

 

 

Figure 3.8: Spectrograms of (a) quasi-steady-state, (b) tonal, (c) transient and (d) 
nontonal speech components for the word ‘pike’ spoken by a male. 
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 Level classifications for 18 words obtained using the DWT computed energy 

profiles are shown in Table A1 in the appendix. For most words, the wavelet coefficients 

at level 1, which constitute the upper half of the signal spectrum, were considered to have 

transient information. Level 3 wavelet coefficients, whose spectrum has its energy 

concentrated in the (700 1500) Hz frequency range, were identified as having quasi-

steady-state information. The other levels were mixed. In general, transient components 

synthesized using the DWT were more whispered and less intelligible than Yoo’s 

nontonal components, and quasi-steady-state components were more intelligible than 

Yoo’s tonal components. 

 

Stationary Wavelet Transform (SWT) 

The use of the SWT to synthesize transient and quasi-steady-state components was 

explored using level 6 decomposition. As an example, Figure 3.9 shows the SWT 

coefficients for the highpass filtered, nontonal and tonal speech components for the word 

‘pike’, spoken by a male, and Figure 3.10 shows their energy profiles. From the energy 

profiles shown, levels 1 and 5 were identified as having transient information and levels 2 

and 3 were considered to have more quasi-steady-state information. Levels 5 and 6, 

which have very low energy, were classified as quasi-steady-state even though their 

energies were equally close to energies of Yoo’s tonal and nontonal components at the 

same levels. This ambiguity will be resolved in Chapter 4. 
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Figure 3.9: SWT coefficients for; (a) the highpass filtered speech, (b) the nontonal 
component and (c) the tonal component for the word ‘pike’ spoken by a male. 
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Figure 3.10: Energy profiles for the highpass filtered, nontonal and tonal speech 
components for the word ‘pike’ spoken by a male. 

  

 Transient and quasi-steady-state speech components for the word ‘pike’ spoken 

by a male were synthesized from the levels 1 and 5, and levels 2, 3, 4 and 6 SWT 

coefficients, respectively. Figure 3.11 compares the transient and quasi-steady-state 

speech components synthesized using the SWT to Yoo’s nontonal and tonal speech 

components respectively. Figure 3.11 compares the spectra of these speech components.  
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Figure 3.11: SWT estimated speech components, and the tonal and nontonal speech 
components of the word ‘pike’ spoken by a male. 
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Figure 3.12: Spectra of SWT estimated speech components, and of the tonal and nontonal 
speech components of the word ‘pike’ spoken by a male. 

 

 The spectrum of the transient component had a narrower bandwidth than the 

spectrum of the nontonal component, while the spectrum of the quasi-steady-state 

component had a bandwidth wider than that of the tonal component. As in the DWT case, 

the transient component synthesized using the SWT was more whispered than the 

nontonal component and the quasi-steady-state component was more intelligible than the 

tonal component. 
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 Table A2 in the appendix includes level classifications for 18 words obtained 

using the energy profiles computed using the SWT. Like the DWT, for most words, the 

wavelet coefficients at level 1, which constitute the upper half of the signal spectrum, 

were considered to have transient information. Level 3 wavelet coefficients, whose 

spectrum has energy concentrated in the (700 1500) Hz frequency range, were identified 

as having quasi-steady-state information. 

 

 In general, as observed with the DWT, transient components synthesized using 

the SWT were more whispered and less intelligible than the nontonal speech components, 

and quasi-steady-state components were more intelligible than the tonal components.   

 

3.3 METHOD FOR WAVELET PACKETS 

 

The DWT and SWT divide the signal spectrum into frequency bands that are narrow in 

the lower frequencies and wide in the higher frequencies. This limits how wavelet 

coefficients in the upper half of the signal spectrum are classified. Wavelet packets divide 

the signal spectrum into frequency bands that are evenly spaced and have equal 

bandwidth and will be explored for use in identifying transient and quasi-steady-state 

speech. 

 

 MATLAB software used to implement the wavelet packet based algorithm uses a 

‘natural order’ index, which does not correspond to increasing frequency, to label nodes. 
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A wavelet packet tree for a decomposition depth of 4 generated using the ‘natural order’ 

index labeling of MATLAB was presented in Figure 2.7. For ease of reference, the 

terminal nodes in subsequent figures are rearranged to show increasing frequency from 

left-to-right. Tables 3.1, 3.2, and 3.3 show the frequency ordered nodes that correspond to 

natural order for decomposition levels of 0 to 4, 5 and 6 respectively. 

 

Table 3.1: Frequency ordered terminal nodes for depths 0 to 4. 
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Table 3.2: Frequency ordered terminal nodes for level 3 and 5. 
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Table 3.3: Frequency ordered terminal nodes for level 3 and 6. 
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 The distribution by terminal nodes of the signal energy for decomposed speech 

depends on the specific word, the preprocessing applied to the speech signal, and the 

gender of the speaker. Figure 3.13 shows examples of this energy distribution for the 

word ‘nice’ as spoken by a male and a female speaker. A db20 wavelet function was used 

for the depth 3 decomposition. This energy distribution by wavelet node will be referred 

to as the energy profile of the word. The energy profiles obtained using the DWT and 

SWT presents information similar to the energy profile obtained using wavelet packets in 

that both give information on how the energy of a speech signal is distributed into 

frequency intervals. 
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Figure 3.13: Energy distribution by node for the word ‘nice’ as spoken by a female and a 
male. 

 

 As in the DWT and SWT case, energy profiles are used to classify terminal nodes 

of the highpass filtered speech as having either more transient information or more quasi-

steady-state information. Nodes with mostly transient information will be referred to as 

transient nodes, and nodes with mostly quasi-steady-state information will be referred to 

as quasi-steady-state nodes. 

  

 An example of the node classification is shown in Figure 3.14. In this figure, 

energy profiles for the highpass filtered, tonal and nontonal speech components are 
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shown for the word ‘pike’ spoken by a female. A db20 wavelet function was used with 

decomposition level of 4. Even though a lower level was used, WP divided the frequency 

spectrum into 16 bands whereas the DWT and SWT divided the spectrum into only 6 

bands. It can be observed that at node 18, the energy of the highpass filtered speech node 

is very close to that of the corresponding node of the tonal speech component, hence node 

18 is considered to have predominately quasi-steady-state information. At node 27, the 

energy of the highpass filtered speech is closer to that of the nontonal speech component 

than the tonal component. As a result, this node is classified as a transient node. For this 

word, transient nodes are nodes {15, 21, 22, 20, 19, 27, 28, 30, 29, 25, 26 and 24}, and 

quasi-steady-state nodes are nodes {16, 18, 17 and 23}. 
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Figure 3.14: Node classification for the word ‘pike’ spoken by a female. 

 

 The inverse wavelet packet transform (IWPT), which was discussed in Chapter 2, 

was used to synthesize transient and quasi-steady-state speech components from the 

wavelet packet representation. To synthesize the transient speech component, wavelet 

coefficients of transient nodes were used, with wavelet coefficients of quasi-steady-state 

nodes set to zero. To synthesize the quasi-steady-state speech component, wavelet 

coefficients of quasi-steady-state node were used, with wavelet coefficients of transient 

nodes set to zero. 
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 To evaluate how closely the estimates of the transient and quasi-steady-state 

speech components synthesized using wavelet packets approximated Yoo’s nontonal and 

tonal components, the former were compared, in the time- and frequency-domain, to the 

latter. A listening test was also used to compare the wavelet derived speech components 

to the speech components obtained using the algorithm of Yoo. As before, the listening 

test was conducted by the author listening to the speech components and then making a 

judgment of how similar they were. 

 

 

3.4 RESULTS FOR WAVELET PACKETS 

 

In this subsection, example results using wavelet packets to identify transient and quasi-

steady-state speech are presented through an example that illustrates the node 

classification and the speech component synthesis processes for the word ‘pike’ spoken 

by a male. A db20 wavelet function was used for the depth 4 decomposition. Figure 3.15 

shows the energy profiles for the highpass filtered, tonal and nontonal speech 

components. Using these energy profiles, transient nodes were identified as node {15, 20, 

19, 27, 28, 30, 29, 25, 26 and 23}, and quasi-steady-state node were identified as nodes 

{16, 18, 17, 21, 22 and 24}.  
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Figure 3.15: Energy profiles for the highpass filtered, tonal and nontonal components of 
the word ‘pike’ spoken by a male. 

 

As an example of the synthesis process, Figure 3.16 compares the transient and 

quasi-steady-state components synthesized using wavelet packets to the nontonal and 

tonal components, respectively. Figure 3.17 compares the spectra of these speech 

components. The spectrum of the quasi-steady-state component synthesized using 

wavelet packets, like the spectrum of Yoo’s tonal component, has its energy concentrated 

in the frequency ranges of (700, 1800) Hz and (2600, 4000) Hz. Although the transient 

component has a narrower spectrum than the nontonal component, the shallow peaks 
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observed in the transient component (around 2190, 2600, 3220, 3740 and 4140 Hz) match 

those observed in the nontonal component. In a listening test, the quasi-steady-state 

speech component was a close estimate of the tonal speech component although slightly 

more intelligible. The transient speech component was also a close estimate of the 

nontonal speech component, although slightly more whispered. 
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Figure 3.16: Wavelet packet synthesized speech components, and the tonal and nontonal 
speech components of the word ‘pike’ spoken by a male. 
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Figure 3.17: Spectra of wavelet packet estimated speech components, and of the tonal 
and nontonal speech components of the word ‘pike’ spoken by a male. 

 

 Table A3 in the appendix shows the node classification obtained for 18 words 

using a level 4 wavelet packet decomposition. For most words, one of nodes {16, 18 and 

17}, which includes the signal spectrum from 700 Hz to 1800 Hz, was identified as a 

quasi-steady-state node. Most nodes from the set of nodes {20, 19, 27, 28, 30 and 29} 

were considered as transient nodes. Nodes {15 and 16} had zero energy because of the 

highpass filtering which was performed, and nodes {25, 26, 24 and 23} had insignificant 

amounts of energy. Nodes {21 and 22} were mixed. 

 82



 

 Transient components synthesized using the wavelet packets were slightly more 

whispered than the nontonal speech components, and quasi-steady-state components were 

slightly more intelligible than the tonal components. 

 

 The estimation errors for 18 words, as given by the MSE between the spectra of 

the transient component synthesized using wavelet packets and the nontonal component, 

are given in Table 3.4. Table 3.4 also includes estimation errors incurred when the speech 

components were synthesized using the DWT and SWT. The subscript m and f denotes 

whether the word was spoken by a male or a female. The estimation errors incurred when 

wavelet packets were used to synthesize the transient components, as compared to when 

the DWT and SWT were used, are substantially smaller.  

 

 In general, the speech components synthesized using wavelet packets were better 

estimates of the tonal and nontonal speech components than the speech components 

synthesized using the DWT and SWT. This is evident from the spectral comparisons, the 

MSE measurement summarized in Table 3.4, and the listening tests. 
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Table 3.4: Estimation errors for transient speech components for 18 words synthesized 
using wavelet packets (2nd column), the SWT (3rd column) and DWT (right column). 

 

Word MSE for WP MSE for SWT MSE for DWT 

pikem 0.6808 2.3479 2.3011 

pikef 0.4755 0.4191 0.4768 

calmm 0.0388 0.0199 0.0335 

calmf 2.9531 3.0055 2.9932 

nicem 3.0623 6.4804 6.4760 

nicef 0.2678 0.6444 0.6169 

kegm 6.8761 19.7000 19.6998 

kegf 7.9848 9.0271 9.1006 

failm 19.8731 18.1025 19.3032 

failf 0.0945 0.2257 0.2481 

deadm 1.2299 3.1481 3.1488 

chieff 15.0378 27.7720 28.9644 

livem 0.9396 2.3942 2.2602 

mergef 10.2598 48.4013 30.1761 

juicef 2.3053 3.8451 3.8850 

armchairf 21.0267 24.3349 27.2667 

headlightm 3.3756 4.8069 4.7091 

headlightf 0.0814 0.07680 0.0814 

Mean 5.364606 9.708433 8.985606 
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Comparing the level 6 DWT and SWT decompositions to the depth 4 wavelet 

packet decomposition, the wavelet packet decomposition is able to divide the level 1 

signal spectrum into 8 frequency bands, and the level 2 signal spectrum into 4 frequency 

bands. This division of the signal spectrum allows for a more efficient classification of 

which frequency bands (as given by node) have more transient or more quasi-steady-state 

information.  

 

 For example, for the word ‘nice’ spoken by a male, in the upper half of the signal 

spectrum, wavelet packets analysis associated nodes {28, 30, 29, 25, 26 and 23} with the 

quasi-steady-state component and node {27 and 24} with the transient component. On the 

other hand, because of the inability of the DWT and SWT to divide the upper half of the 

signal spectrum, the entire upper half of the spectrum was associated with the transient 

component.  

 

 The spectra of the transient and quasi-steady-state components of the word ‘nice’ 

spoken by a male synthesized using the 3 wavelet transforms are compared to the spectra 

of the tonal and nontonal components in Figure 3.18. Despite the regions of low energy 

that are present in the spectra of the wavelet packet synthesized speech components but 

absent in the spectra of the tonal and nontonal components, the speech components 

synthesized using wavelet packets, as compared to those synthesized using the DWT and 

SWT, provide much better estimates of the tonal and nontonal speech components. 

 85



0 1000 2000 3000 4000 5000

10-3

10-2

10-1

100

101

Spectrum of the DWT estimate of quasi-steady-state speech

0 1000 2000 3000 4000 5000

10-3

10-2

10-1

100

101

Spectrum of the DWT estimate of transient speech

0 1000 2000 3000 4000 5000

10-3

10-2

10-1

100

101

Spectrum of the SWT estimate of quasi-steady-state speech

0 1000 2000 3000 4000 5000

10-3

10-2

10-1

100

101

Spectrum of the SWT estimate of transient speech

0 1000 2000 3000 4000 5000

10-4

10-2

100

Spectrum of WP estimated quasi-steady-state component

0 1000 2000 3000 4000 5000

10-4

10-2

100

Spectrum of WP estimated transient component

0 1000 2000 3000 4000 5000

10-3

10-2

10-1

100

101

Spectrum of tonal component

Frequency [Hz]
0 1000 2000 3000 4000 5000

10-3

10-2

10-1

100

101

Spectrum of nontonal component

Frequency [Hz]  

 

Figure 3.18: Spectra of speech components for the word ‘nice’ spoken by a male 
synthesized using the DWT (1st row), SWT (2nd row), WP (3rd row) and Yoo’s algorithm. 
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4.0 A WAVELET PACKETS BASED ALGORITHM FOR IDENTIFYING 
TRANSIENT SPEECH 

 

 

The methods used in Chapter 3 to identify transient and quasi-steady-state speech use 

energy, a global measure, and wavelets to identify these speech components. Those 

approaches required a given node to be classified as either quasi-steady-state or transient 

for the entire duration of the speech signal. Integrating variable frame rate processing into 

the method may provide a mechanism to associate coefficients of a given node with 

either the quasi-steady-state or transient component at different times depending on 

whether the speech is relatively stationary or transitive. 

 

 This chapter describes an algorithm to identify transient and quasi-steady-state 

speech components. It combines the variable frame rate process with wavelet packets 

analysis. The processes of choosing a wavelet function to use for the decomposition, 

choosing a decomposition level, classifying terminal nodes of a decomposed speech 

signal, incorporation of the VFR process into the wavelet analysis, and synthesis of 

transient and quasi-steady-state speech are described. The design and selection criteria 

are described with the algorithm. Results of studies to evaluate the different criteria are 

presented in results. 
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4.1 METHOD 

 

 The wavelet-packet based algorithm to identify transient and quasi-steady-state 

speech components involves 4 steps: 

1) Wavelet Packet decomposition of speech: The speech signal is decomposed 

using a wavelet function and a decomposition level that were selected in the 

development of the algorithm. 

2) Classification of terminal nodes: Energy profiles are used to classify terminal 

nodes of the decomposed highpass filtered speech signal as having 

predominately transient information; predominately quasi-steady-state 

information; both type of information (ambiguous). 

3) Incorporation of variable frame rate processing and synthesis of speech 

components: Variable frame rate is applied to ambiguous nodes to identify time 

segments that are predominately transient or predominately quasi-steady-state, 

and ambiguous nodes during these time segments are associated with transient or 

quasi-steady-state components accordingly.  

4) Synthesis of Speech Components: Transient and quasi-steady-state speech 

components are synthesized. 

 

4.1.1 Wavelet Packet decomposition of speech 

The goal in using wavelet packets was to obtain a division of the frequency spectrum 

with frequency bands that are equal in bandwidth, have equal peak amplitudes, no side-
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lobes and smooth frequency responses. Figure 4.1 shows filter frequency responses that 

divide the frequency spectrum into bands with these properties. The purpose of the first 

step of the algorithm was to identify a wavelet function that provides a division of the 

frequency spectrum that is as close as possible to this goal. 

 

8
π

4
π

8
3π

2
π π0

( )ωH

ω

 

 

Figure 4.1: Evenly spaced equal bandwidth frequency splitting. 

 

 For actual wavelet functions, the filter frequency responses have unequal peak 

amplitudes, bandwidths, and side-lopes. Figure 4.2 (a) shows the filter frequency 

responses for a db4 wavelet. 
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Figure 4.2: (a) Filter frequency responses and (b) filter profile for a db4 wavelet function. 
The frequency responses have side lobes, unequal bandwidth and peak amplitudes. 

 

 If the peaks filter frequency responses shown in Figure 4.2 are connected, a 

function that will be referred to as the filter profile is obtained. The filter profile may be 

interpreted as a function that shows the uniformity of the filter amplitudes. The filter 

profile for the db4 wavelet function, which has a downward slope, is shown if Figure 4.2 

(b). If a wavelet function having the properties shown in Figure 4.1 is used to decompose 

a linear swept-frequency signal (chirp) with instantaneous frequencies of 0 Hz and half 

the sampling rate occurring between t = 0 and t = tmax, then barring end effects, each 

frequency band would have the same energy. If a db4 wavelet function instead, which has 

a downward sloping filter profile, is used, then low frequencies are emphasized.   

 

 The size of side-lobes in the filter frequency responses was also a consideration. 

The wavelet function to be used for the decomposition should have narrow bands, small 

side-lobes and a flat filter profile. 
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 As an example, Figure 4.3 shows the filter frequency responses and filter profiles 

for db12 and db20 wavelet functions for a decomposition of depth 3. ψi (ω) denotes the 

filter frequency response for terminal node i, with the nodes labeled using the natural 

order. The profile for the db12 wavelet function has an upward slope, while the profile 

for the db20 wavelet function is flatter. A wavelet function with a filter profile similar to 

that of db20 would be preferred over one with a filter profile similar to that of db4 or 

db12, since this profile is a good estimate of the desired profile.  
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Figure 4.3: Filter frequency responses and filter profiles for db12 (top) and db20 (bottom) 
wavelet functions. 
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 Daubechies and Symlets wavelets were considered, but since results observed 

using the two wavelets families were very similar, only Daubechies wavelets were 

evaluated in detail to identify the wavelet function that approximated the desired 

properties most closely. 

 

4.1.2 Classification of Terminal Nodes 

 

Energy profiles for the highpass filtered speech, and the tonal and nontonal speech 

components were used to classify terminal nodes of the highpass filtered speech as 

having either more transient information or more quasi-steady-state information, as 

described below. Nodes with mostly transient information will be referred to as transient 

nodes, and nodes with mostly quasi-steady-state information will be referred to as quasi-

steady-state nodes. There are instances where a given terminal node is not predominately 

either type. These nodes will be refereed to as ambiguous nodes. Specific procedures to 

identify these nodes are explained below.  

 

 To classify terminal nodes of a highpass filtered speech signal, the energy profile 

of the highpass filtered speech is compared node-by-node to the energy profiles of the 

tonal and nontonal speech components. A terminal node from the highpass filtered 

speech is classified as transient if its energy is close to the energy in the corresponding 

node of the nontonal component and greater that a threshold difference δ from the energy 

in the corresponding node of the tonal component. A terminal node of the highpass 

filtered speech is classified as quasi-steady-state if its energy is close to the energy of the 
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corresponding node of the tonal component and δ greater than the energy of the 

corresponding node of the nontonal component. If the energy of a terminal node of the 

highpass filtered speech is within δ dB of the energies of both Yoo’s tonal and nontonal 

components, that node is considered to have mixed information and is identified as an 

ambiguous node. The threshold, δ, is referred to as the ambiguity threshold. The node 

grouping formula can be summarized as follows;  

 

 For a given terminal node with label fi, 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

ambiguousnodeelse

esteadystatnodefEfEANDfEfEfEfEif

transientnodefEfEANDfEfEfEfEif

intihpintihpitihp

itihpitihpintihp

=

=>−−<−

=>−−<−

δ

δ

 

Ehp(fi), Ent(fi) and Et(fi) are the energies of the highpass filtered, nontonal, and tonal 

speech, respectively, for the node labeled fi. A threshold value of δ = 0, results in no 

ambiguous nodes, while a threshold value of δ = ∞ results in all nodes being classified as 

ambiguous. This method of node classification is similar to the method used in Chapter 3, 

with the addition of ambiguous nodes. 

 

 The effect of decomposition level on the energy in ambiguous nodes was 

investigated. We assume that it would be desirable to have as little energy in ambiguous 

nodes as possible. To reduce the proportion of energy in ambiguous nodes, the 

decomposition level was increased from the initial decomposition level of 3 to 4, on the 

basis that the children of the nodes classified as ambiguous nodes at level 3 might not be 
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classified as ambiguous nodes at level 4. If ambiguous nodes still existed at level 4, the 

decomposition was increased to 5, and then 6 if ambiguities still existed at level 5. The 

different decomposition levels are compared with respect to the energy in ambiguous 

nodes to determine the best level to use. 

 

 An example of the node classification using δ = 7 dB, is illustrated in Figure 4.4. 

Energy profiles for the highpass filtered, tonal and nontonal speech components are 

shown for the word ‘pike’ spoken by a female. A db20 wavelet function was used with 

decomposition level of 4. Consider node 17. The energy in node 17 of the highpass 

filtered speech is very close to that of node 17 of the tonal speech, while the energy of 

node 17 of the nontonal component is more than δ = 7 dB smaller. Therefore this node is 

classified as a quasi-steady-state node. Node 27 is classified as a transient node because 

the energy of node 27 of the highpass filtered speech is closer to the energy of node 27 of 

the nontonal speech than node 27 of the tonal speech. At node 21, the energies of both the 

tonal and nontonal nodes are within 7 dB of the highpass filtered speech. This node is 

classified as ambiguous.  

 

 The overall node classification is shown in the bar beneath the energy profiles 

plot. Transient nodes are nodes {22, 20, 19, 27, 28, 30, 29, 25 and 26}, quasi-steady-state 

nodes are nodes {16, 18 and 17}, and ambiguous nodes are nodes {15, 21, 24 and 23}. In 

this bar, transient, quasi-steady-state, and ambiguous nodes are indicated by; 
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Figure 4.4: Example of node classification. 
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4.1.3 Incorporation of Variable Frame Rate Processing 

 

We propose that ambiguous nodes include both transient and quasi-steady-state 

information that could not be isolated using frequency domain processing by wavelet 

packets alone. Variable frame rate processing, was investigated as a method to separate 

transient information from quasi-steady-state information in these nodes. Wavelet 

coefficients of the ambiguous nodes were included in the synthesis of the transient or 

quasi-steady-state speech component based on the VFR analysis. 

 

 Variable frame rate processing can identify time segments of speech where 

speech feature vectors are changing rapidly and time segments where speech feature 

vectors are relatively stationary. The approach to classification used here assumes that the 

time segments with rapidly changing feature vectors are associated with transient speech, 

while the time segments with slowly changing feature vectors are associated with quasi-

steady-state speech. 

 

 The feature vector used for the variable frame rate algorithm is the Mel-frequency 

cepstral coefficients (MFCC). The flow chart of Figure 2.14, as discussed in Chapter 2, 

shows the process by which MFCC feature vectors are created from speech. In this 

section, the setup of this process and the values of the parameter used will be described. 

The variable frame rate (VFR) algorithm of Le Cerf and Van Compernolle [23] [24], 

which was used in this study, will be revisited with particular attention to parameter 

settings.  
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 The speech signal is framed using a Hamming window of length 25 ms with 

frame step size of 2.5 ms. Twelve Mel-frequency cepstral coefficients per frame are 

calculated. The log energy and the first derivative cepstra are included, bringing the total 

number of coefficients per frame to twenty-six. Twenty-seven filters are used in the filter 

banks at the mel-scaling and smoothing stage as described in Chapter 2. These filters are 

adjusted to cover the spectrum from 0 Hz to half the sampling rate (5512.5 Hz).  

 

 The Euclidean norm of the first derivative cepstra is computed. This norm is large 

when the MFCC of two successive frames are different and small when the MFCC are 

similar. It provides information about the transitiveness of a speech signal and will be 

referred to as the transitivity function. The transitivity function is quantized so that it has 

a value of 1 when it is greater that the threshold, and 0 otherwise. Transient speech is 

synthesized by multiplying the speech signal by the quantized transitivity function. The 

number of samples in the original transitivity function is equal to the number of frames of 

the original signal, and as a result, the transitivity function must be interpolated before 

multiplying so that it has as many samples as the speech signal itself. The interpolated 

and quantized transitivity function will be called the quantized transitivity function 

(QTF).  

 

 The quantized transitivity function is used to select coefficients of an ambiguous 

node to be included in the synthesis of transient and quasi-steady-state speech 

components, as illustrated in Figures 4.5, 4.6 and 4.7. These figure are a fictitious 

example that uses a level 2 wavelet packet tree to illustrate the synthesis method. f0 is the 
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original speech signal, f1, and f2 are the level 1 wavelet packet nodes, and f3, f4, f5, and f6 

are the level 2 wavelet packet nodes. Node f3 is a quasi-steady-state node, nodes f5 and f6 

are transient nodes, and node f4 is an ambiguous node. The wavelet coefficients of node 

f4 are multiplied by the quantized transitivity function (QTF) to define a transient 

component and by (1-QTF) to define a quasi-steady-state component of these 

coefficients.  

 

4.1.4 Synthesis of Speech Components 

 

The fourth component of the algorithm involves synthesis of transient and quasi-steady-

state speech components using the node grouping obtained as described above. These 

components were used as estimates of the tonal and nontonal components. The inverse 

wavelet packet transform (IWPT), which was discussed in Chapter 2, was used to 

synthesize the speech components from the wavelet packet representation. To synthesize 

the transient speech component, wavelet coefficients of quasi-steady-state nodes were set 

to zero, and to synthesize quasi-steady-state component, wavelet coefficients of transient 

nodes were set to zero. Ambiguous nodes were handled as described below. In the 

synthesis of the transient component, shown in Figure 4.6, the wavelet coefficients of 

node f4 are replaced by their VFR estimate of the transient coefficients, and the wavelet 

coefficients of node f3, which is a quasi-steady-state node, are replaced by zeros. The 

estimate of the transient component is synthesized from the nodes f5, f6 and the transient 

part of f4. 
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 In the synthesis of the quasi-steady-state component, shown in Figure 4.7, the 

wavelet coefficients of nodes f5 and f6, which are transient nodes, are replaced by zeros, 

and the wavelet coefficients of node f4 are replaced by their VFR quasi-steady-state 

coefficients. The estimate of the quasi-steady-state component is synthesized from node 

f3 and the quasi-steady-state component of f4. 
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Figure 4.5: Wavelet packet decomposition and application of VFR. 
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Figure 4.6: Synthesis of transient speech component 
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Figure 4.7: Synthesis of quasi-steady-state speech component 

 

 As a preliminary study to establish whether the variable frame rate algorithm 

detected transitions in speech, tests were carried out on a synthetic signal. The synthetic 
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signal used will be referred to as the tone-chirp-tone signal, and is shown in Figure 4.8. 

This signal consists of a tone at a low frequency, a transition to a higher frequency and 

another tone at this higher frequency. The duration of both tones is 40 ms. The first tone 

has a 10 ms start period created by multiplying the tone by a window function, shown in 

Figure 4.9, having a 10 ms ramp. The ramp is created using a half period of a cosine 

function. The second tone has a 10 ms end duration formed in the corresponding way. 

Zero padding of 50 ms was inserted at the beginning and end of the tone-chirp-tone 

signal. The duration of the chirp (transition to the second tone) and the frequencies of the 

tones were varied to create four different test scenarios as given in Table 4.1.  

 

 In the tone-chirp-tone synthetic signal, the tones and the chirp are intended to 

model quasi-steady-state and transient speech, respectively. The transitivity function 

computed for the tone-chirp-tone signal had a minimum value of 0 and a maximum value 

of 16.7. To determine the threshold for each test situation of Table 4.1, the threshold was 

varied from 0 to 17, in increments of 0.5. This threshold will be referred to as the 

transient-activity threshold. A threshold value of 0 includes the entire tone-chirp-tone 

signal in the computation of the transient component, while a value of 17 includes the 

entire tone-chirp-tone signal in the computation of the quasi-steady-state component.  
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Figure 4.8: Spectrogram for the tone-chirp-tone signal with tones frequencies of 0.6 kHz 

and 4.0 kHz, and a tone duration of 40 ms. 
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Figure 4.9: Window function used to create start and end periods of the tones. 
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Table 4.1: Test conditions evaluated for the tone-chirp-tone signal 

 
Run Tone 1 frequency Tone 2 frequency Chirp duration 

1 0.6 kHz 1.9 kHz 40 ms 

2 0.6 kHz 1.9 kHz 200 ms 

3 0.6 kHz 4.0 kHz 40 ms 

4 0.6 kHz 4.0 kHz 200 ms 

 

 Tests carried out on the tone-chirp-tone synthetic signal showed that the VFR 

algorithm was able to separate the chirp from the two tones. As an example, Figure 4.10 

shows the tone-chirp-tone signal, its spectrogram, and spectrograms of the transient and 

quasi-steady-state components obtained as described above. The two tones had 

frequencies of 600 Hz and 4000 Hz, and the duration of the chirp was 40 ms. The 

spectrograms were computed using a Hanning window of lengths 10 ms and window 

overlap of 9 ms. Also show in the figure is the transitivity function, interpolated but not 

quantized. The transient-activity threshold was set to 7.  

 

 As seen in the figure, the transient component includes the chirp, and the quasi-

steady-state component includes the two tones. The onset and offset of the tone-chirp-

tone signal, as shown in part (f) of Figure 4.10, were also captured in the transient 

component.  The transitivity function peaked during the chirp, and at the beginning and 

end of the tone-chirp-tone signal.   
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Figure 4.10: (a) Tone-chirp-tone signal, (b) spectrogram of tone-chirp-tone signal, (c) 
transitivity function and transient-activity threshold, (d) spectrogram of transient 

component (e) spectrogram of quasi steady-state component, and (f) transient component. 
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 The variable frame rate technique was also tested with speech signals. As in the 

synthetic signal, the onsets and offsets of the speech signals were included in the transient 

component. Additionally, the transient component included the onset and offset of the 

strongest formant. The quasi-steady-state component, which included everything that was 

not captured in the transient component, had much more energy than the transient 

component. The proportion of the energy of the original signal captured by the quasi-

steady-state component varied from word to word and also depended on the transient-

activity threshold. A higher threshold included more of the original signal in the quasi-

steady-state component, increasing the proportion of energy of this component.  

 

 Figure 4.11 shows the speech signal ‘calm’, as spoken by a female, processed 

using the variable frame rate algorithm. The speech signal was preprocessed by highpass 

filtering it with a cutoff frequency of 700 Hz. Also shown are the spectrogram of the 

speech signal, the interpolated transitivity function, and the spectrograms of the transient 

and the quasi-steady-state components. The spectrograms were computed using a 

Hanning window of lengths 15 ms and window overlap of 5 ms. The transient-activity 

threshold was 2.5. At this threshold, the quasi-steady-state component had 91 % of the 

total signal energy. 
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Figure 4.11: (a) Speech signal for the word ‘calm’ as spoken by a female speaker, (b) 
spectrogram of the speech signal, (c) transitivity function and transient-activity threshold, 

(d) spectrogram of transient component and (e) spectrogram of quasi-steady-state 
component. 

 

 To evaluate how closely the estimates of the transient and quasi-steady-state 

speech components synthesized using the algorithm that combines wavelet packet 

analysis with VFR approximated Yoo’s nontonal and tonal components, the former were 

compared to the latter by comparing the magnitudes of the respective Fourier transforms 

and using an informal subjective listening test, conducted by the author.  
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 As a means of comparing the transient component synthesized using wavelets to 

Yoo’s nontonal component across many words, the estimation errors were computed for 

18 words using the mean-squared-error (MSE) between the spectra of the two 

components. 

 

 

4.2 RESULTS 

 

Results for choosing a wavelet function and a decomposition level will be presented first, 

followed by the classification of terminal nodes results. Finally the results for the 

synthesis of transient and quasi-steady-state speech will be given. 

 

4.2.1 Wavelet Packet decomposition of Speech 

 

The filter profiles observed for Daubechies wavelet function were classified, according to 

their type of slope, into four types; flat, upward, downward and irregular. No particular 

filter profile slope produced noticeably better results than the others. The db20 wavelet 

function was used for the decompositions because its filter profile was the closest to flat 

for the decomposition levels studied. It also had smaller side-lodes, narrower filter 

frequency responses and its time support of 3.54 ms seemed appropriate for identifying 

speech transients, which we expect to occur over several milliseconds.  
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 Generally, the bandwidth of the filter functions and the size of the side lobes 

decreased as the wavelet order increased. In the evaluations, there was no observed 

pattern in the slope of the filter profiles as wavelet order increased, and the number of 

wavelet functions with each type of filter profile (upwards, downwards, relatively flat and 

irregular) was evenly distributed across wavelet orders. 

 

 The energy profiles of words were also investigated as a criterion to determine 

which wavelet function to use. For a given word and decomposition level, different 

wavelet functions were observed to have similar energy profiles. An example is shown in 

Figure 4.12 for the word ‘pike’ spoken by a female, decomposed at level 3 using db4, 

db20 and db38 wavelet functions.  

 

 The circles show the energy profile for highpass filtered speech, the squares show 

the energy profile for tonal speech, and the triangles show the energy profile for nontonal 

speech. The three wavelet functions produce very similar energy profiles despite the 

differences in their support size. As a result, the energy profiles of words did not provide 

a useful indication of which wavelet function to use. 
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Figure 4.12: Energy profiles for (a) db4, (b) db20 and (c) db38 wavelet functions, for the 
word ‘pike’ spoken by a female. 

 

 The best ambiguity threshold value was the one at which the mean squared error 

(MSE) between the spectrum of the transient component and the spectrum of the 

nontonal component decreased the most when VFR was applied. To determine the best 

ambiguity threshold value for a decomposition level, the MSE between the spectra of the 

wavelet packet estimated transient component and the nontonal component was 

computed for 18 words and a range of threshold values. Then the MSE between the 

spectra of the wavelet packet estimated transient component with VFR processing and the 

nontonal component was also computed for the 18 words.  ∆MSE, defined as MSE 

(without VFR) – MSE (with VFR), was interpreted as the gain in using VFR processing. 

A reduction in the MSE value (positive ∆MSE) indicated that the transient component 

estimate with VFR was better than the estimate without VFR processing. On the other 
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hand, an increase in the MSE indicated that the transient component estimate without 

VFR was better. 

 

 Figure 4.13 shows a plot of average ∆MSE, averaged across 18 words, versus the 

ambiguity threshold, δ, for decomposition level of 6. From the plot, the ambiguity 

threshold values that maximize the gain of using VFR processing are 3.0 and 4.0 dB. The 

ambiguity threshold value of δ = 3.0 dB will be used for subsequent computation, since it 

was determined to be good, not only for level 6, but also for levels 4 and 5. 

 

 112



1 2 3 4 5 6 7 8 9 10
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Threshold, δ [dB]

M
ea

n 
∆

M
SE

 

 

Figure 4.13: Determining the best ambiguity threshold, δ for decomposition level of 6. 

 

 When a decomposition level was chosen for a given word, the proportion of 

ambiguous nodes and the energy of these nodes were similar across decomposition 

levels. Table 4.2 shows the percentage of ambiguous nodes at decomposition levels of 3 

to 6 for 18 highpass filtered speech signals. Table 4.3 shows the energies of these 

ambiguous nodes as a percentage of the energy of the highpass filtered speech. A db20 

wavelet function was used in the decomposition and the ambiguity threshold was 3.0 dB. 
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The subscripts m and f denote whether the word was spoken by a female speaker or male 

speaker.  

 

 The average number of ambiguous nodes was lowest at level 3, but the average 

energy in ambiguous nodes was lowest at level 6. Level 6 was chosen, instead of level 3, 

as the best decomposition level because the differences in the average energy in 

ambiguous nodes across levels was more significant than the differences in the average 

number of ambiguous nodes across levels. Since the mean number of ambiguous nodes 

and mean energy of ambiguous nodes at other level were not very different from those 

observed at level 6, using other levels for the decomposition had little effect on the 

results. 
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Table 4.2: Percentage of ambiguous nodes for 18 words at decomposition levels 3 to 6 
and ambiguity threshold of 3.0 dB. 

 

 
 Level 

Word 3 4 5 6 

pikem 12.5000 25.0000 18.7500 23.4375 

pikef 12.5000 12.5000 12.5000 20.3125 

calmm 37.5000 25.0000 28.1250 26.5625 

calmf 25.0000 18.7500 25.0000 31.2500 

nicem 62.5000 50.0000 46.8750 39.0625 

nicef 0 18.7500 25.0000 21.8750 

kegm 12.5000 31.2500 34.3750 28.1250 

kegf 25.0000 25.0000 34.3750 34.3750 

failm 12.5000 25.0000 28.1250 28.1250 

failf 50.0000 31.2500 28.1250 28.1250 

deadm 37.5000 37.5000 40.6250 39.0625 

chieff 37.5000 37.5000 40.6250 32.8125 

livem 12.5000 25.0000 18.7500 25.0000 

mergef 25.0000 31.2500 28.1250 26.5625 

juicef 62.5000 37.5000 40.6250 29.6875 

armchairf 37.5000 31.2500 34.3750 31.2500 

headlightm 25.0000 31.2500 25.0000 26.5625 

headlightf 12.5000 31.2500 21.8750 28.1250 

Mean 27.7778 29.1667 29.5139 28.9063 
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Table 4.3: Percentage of energy in ambiguous nodes for 18 words at decomposition 
levels 3 to 6 and ambiguity threshold of 3.0 dB. 

 

 
 Level 

Word 3 4 5 6 

pikem 0.0009 2.5185 0.0009 1.3003 

pikef 0.0025 0.0001 0.0001 1.0956 

calmm 4.6353 4.0313 1.7472 2.4944 

calmf 3.2110 8.0377 5.1684 9.3160 

nicem 38.6399 32.7573 32.8854 18.9857 

nicef 0 9.8161 9.0530 10.0989 

kegm 4.8615 12.4233 16.7091 11.2798 

kegf 36.9813 21.1352 21.8985 31.6703 

failm 12.2574 13.4497 15.0487 10.1699 

failf 75.8187 24.6972 23.8000 17.7369 

deadm 23.3857 19.9028 16.2706 16.8531 

chieff 55.8857 35.8363 38.9554 25.5447 

livem 0.0012 5.1411 4.0116 6.9229 

mergef 17.2397 10.6731 13.7427 10.0224 

juicef 21.0630 10.0327 16.0793 5.0090 

armchairf 38.5106 22.6700 23.8268 18.8886 

headlightm 2.0049 12.9049 6.5212 8.8152 

headlightf 8.9237 20.6100 8.4095 11.2488 

Mean 19.0790 14.8132 14.1182 12.0807 
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4.2.2 Classification of Terminal Nodes 

 

To illustrate node classification, Figure 4.14 shows the energy profiles for highpass 

filtered, tonal and nontonal speech components for the word ‘pike’ as spoken by a female 

speaker. The decomposition level was 6 and a db20 wavelet function was used. The solid 

line with circles is the energy profile for the highpass filtered speech, the dotted line with 

squares is the energy profile for the tonal speech, and the dashed line with triangles is the 

energy profile for nontonal speech. For this example, at an ambiguity threshold value of 

3.0 dB, quasi-steady state nodes include {70 68 67 75 76 78 77 73 74}, transient nodes 

are {71 87 88 90 93 94 92 91 83 84 86 85 81 82 80 79 111 112 114 113 117 118 116 115 

123 124 126 125 121 122 120 119 103 104 106 105 109 110 108 107 100 102} and 

ambiguous nodes are {63 64 66 65 69 72 89 99 101 97 98 96 95}. 

 

 Table A4 in the appendix shows the node classification, at level 3 using an 

ambiguity threshold value of 3.0 dB, for 18 of the words studied, and Figure 4.15 shows, 

using filter frequency responses, the terminal node and their corresponding frequency 

ranges. The indices for level 4, 5 and 6 nodes that correspond to these levels are 

presented in Tables 3.1, 3.2 and 3.3. 

 117



10-6

10-5

10-4

10-3

10-2

10-1

100

Frequency ordered nodes

63

64

66

65

69

70

68

67

75

76

78

77

73

74

72

71

87

88

90

89

93

94

92

91

83

84

86

85

81

82

80

79

111

112

114

113

117

118

116

115

123

124

126

125

121

122

120

119

103

104

106

105

109

110

108

107

99

100

102

101

97

98

96

95

Energy profile

En
er

gy

 

 

Figure 4.14: Node classification for the word ‘pike’ as spoken by a female. 

 

 Using energy profiles to categorize nodes and a db20 wavelet function, for most 

words, at least one of nodes 7, 8 and 10 or their children nodes were classified as quasi-

steady-state nodes. These nodes correspond to the frequency range of 0 to 2100 Hz. In 

fact, if low frequency nodes (nodes 7 and 8) and high frequency nodes (nodes 12 and 11) 

which all have very low energy are ignored, most nodes in the frequency range 700 Hz to 

2100 Hz were classified as quasi-steady-state nodes for most words. Additionally, nodes 

9 and 13 and their children nodes, which include the frequency range of 2100 to 3400 Hz, 
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were classified as transient nodes for most words. Ambiguous nodes were not restricted 

to any frequency interval. 
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Figure 4.15: Terminal nodes and their corresponding frequency ranges. 

 

4.2.3 Incorporation of Variable Frame Rate Processing and Synthesis of Speech 

Components 

 

As a speech synthesis example, the top row of Figure 4.16 shows the spectra for the 

quasi-steady-state and transient components for the word ‘nice’ spoken by a male. A 

db20 wavelet function was used and the decomposition level was 6. Quasi-steady-state 

nodes were {63 64 66 70 75 76 78 77 73 74 72 71 87 88 90 89 93 118 116 124 125 121 

122 119 106 105 109 102 101 97} and transient nodes were {65 69 68 67 94 92 91 83 84 

86 85 81 82 80 79 111 112 114 113 117 115 123 126 120 103 104 110 108 107 99 100 98 

96 95}. 
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 The spectra of the tonal and nontonal components for the word are also shown in 

the figure as reference signals. Although the spectrum of the quasi-steady-state 

component has regions of low energy, it has spectral peaks (around 1380, 3290, 3540 and 

4390 Hz) that are displayed by the tonal component. The biggest difference between the 

spectra of the transient and nontonal components was observed between 800 Hz and 1800 

Hz. The transient component has very low energy in this frequency interval. Most of the 

nodes in this frequency interval were identified as and used to synthesize the quasi-

steady-state component.  

 

 In a listening test, the transient component had the qualities of the nontonal 

component but was slightly more whispered. The quasi-steady-state component was more 

intelligible than the tonal component. 
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Figure 4.16: Spectra for (a) quasi-steady-state speech, (b) transient speech, (c) tonal 
speech (d) nontonal speech, (e) quasi-steady-state component with VFR processing, and 

(f) transient component with VFR processing for the word ‘nice’ spoken by a male.  
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 When variable frame rate processing was applied to the ambiguous nodes, quasi-

steady-state nodes were {70 78 77 73 74 72 71 87 88 90 89 93 118 116 124 121 106 105 

109 102}, transient nodes were {68 83 84 86 85 81 82 80 79 111 112 114 115 123 110 

108 107 99 100}, and ambiguous nodes were {63 64 66 65 69 67 75 76 94 92 91 113 117 

126 125 122 120 119 103 104 101 97 98 96 95}. Parts (e) and (f) of Figure 4.16 show the 

spectra of the quasi-steady-state and transient components of the word ‘nice’, synthesized 

using an ambiguity threshold of 3.0 dB, when VFR processing was used. The bandwidth 

of regions of low energy observed when VFR was not applied to the estimations of the 

transient and quasi-steady-state components are reduced or eliminated by VFR. The 

spectra of the synthesized transient and quasi-steady-state speech approximated those of 

the nontonal and tonal speech more closely.  

 

 When the listening test was conducted, the transient and quasi-steady-state 

components synthesized using the combination of wavelet packets analysis and VFR 

sounded closer to the nontonal and tonal speech components. 

 

 Another synthesis example is shown in Figure 4.17. The top rows are the spectra 

of the quasi-steady-state and transient components for the word ‘chief’ spoken by a 

female. A db20 wavelet function was used and the decomposition level was 6. Quasi-

steady-state nodes were {63 64 66 65 69 68 76 78 86 85 81 82 114 113 117 118 116 115 

123 125 121 122 120 119 103 101 97 98} and transient nodes were {70 67 75 77 73 74 

72 71 87 88 90 89 93 94 92 91 83 84 80 79 111 112 124 126 104 106105 109 110 108 

107 99 100 102 96 95}. 
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 Again the spectra of the tonal and nontonal components are also shown in the 

figure as reference signals. Except for the regions of low energy observed in the spectrum 

of the quasi-steady-state around 0.7, 2.7, 3.6 and 4.8 kHz, the spectrum of the quasi-

steady-state component is similar to the spectrum of the tonal component. The spectrum 

of the transient component is similar to the spectrum of the nontonal component, except 

that regions of low energy, which were not present in the spectrum of the nontonal 

component, were observed around 2.4, 3.1, 3.4 and 4.1 kHz in the spectrum of the 

transient component.  

 

 When variable frame rate processing was applied to the ambiguous nodes, quasi-

steady-state nodes were {68 76 81 114 113 117 118 116 115 121 122 120 119 101 97}, 

transient nodes were {70 67 77 73 74 72 71 87 88 90 89 93 94 92 91 83 111 124 126 106 

105 109 110 108 107 99 100 102}, and ambiguous nodes were {63 64 66 65 69 75 78 84 

86 85 82 80 79 112 123 125 103 104 98 96 95}. The spectra of the synthesized transient 

and quasi-steady-state speech approximated those of the nontonal and tonal speech more 

closely. Parts (e) and (f) of Figure 4.17 show the spectra of the quasi-steady-state and 

transient components of the word ‘chief’ as spoken by a female, when VFR processing 

was used. The bandwidth of regions of low energy observed when VFR was not applied 

to the estimation of the transient and quasi-steady-state components are reduced or 

eliminated by VFR. 
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Figure 4.17: Spectra for (a) quasi-steady-state speech, (b) transient speech, (c) tonal 
speech (d) nontonal speech, (e) quasi-steady-state component with VFR processing, and 
(f) transient component with VFR processing for the word ‘chief’ spoken by a female. 
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 When an informal listening test was conducted, the synthesized transient and 

quasi-steady-state speech for the word ‘chief’ spoken by a female with VFR processing 

applied sounded closer to the nontonal and tonal components than the synthesized 

transient and quasi-steady-state speech without application of VFR processing.  

 

 Generally, variable frame rate processing improved the synthesis of the transient 

and quasi-steady-state for most words studied. The gain in using VFR, measured using 

the mean-squared-error (MSE) between the spectra of the transient component estimate 

and the nontonal component, is given in Table 4.4 for 18 of the words studied. The 

decomposition level was 6 and a ambiguity threshold of 3.0 dB was used. A positive 

∆MSE indicates that the VFR process improved the estimation of the nontonal 

component. An improvement, although small, in the MSE values was observed for most 

words. 
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Table 4.4: MSE improvements gained when VFR processing was used. 

 

 
Word MSE Without VFR MSE With VFR ∆MSE 

pikem 0.6187 0.6081 0.0106 

pikef 0.3990 0.4060 -0.0071 

calmm 0.0330 0.0356 -0.0025 

calmf 2.0300 1.9945 0.0355 

nicem 2.1415 1.8709 0.2706 

nicef 0.2394 0.2566 -0.0172 

kegm 6.1525 4.8595 1.2929 

kegf 6.5139 5.0876 1.4262 

failm 10.6263 11.9313 -1.3050 

failf 0.0883 0.0975 -0.0092 

deadm 1.2834 1.1156 0.1678 

chieff 12.9034 9.1226 3.7808 

livem 0.9183 0.9273 -0.0090 

mergef 8.6343 7.7955 0.8388 

juicef 2.2468 2.3478 -0.1010 

armchairf 14.2346 12.7887 1.4459 

headlightm 2.6789 2.5480 0.1308 

headlightf 0.0783 0.0691 0.0093 

Mean 3.9900 3.5479 0.4421 
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5.0 DISCUSSION 

 

 

An algorithm that identifies and selectively emphasizes speech transitions may enhance 

the intelligibility of speech in noisy conditions. Yoo et al described an algorithm that uses 

time-varying bandpass filters to decompose speech into tonal and nontonal speech 

components [53], [54] [55]. The tonal component predominately included steady-state 

formant activity and most of the signal energy, but was generally unintelligible. The 

nontonal component predominately included transitions within and between formants, 

was as intelligible as the original speech, and had much lower energy. This study 

evaluated the effectiveness of DWT, SWT and wavelet packets to identify transient and 

quasi-steady-state speech components that are close estimates of Yoo’s components. 

 

 In the investigation of the DWT and SWT, the transient speech component was 

synthesized using wavelet levels that were identified as having predominately transient 

information, while the quasi-steady-state speech component was synthesized using 

wavelet levels that were identified as having predominately quasi-steady-state 

information. This meant that transient information present at a wavelet level identified as 

having quasi-steady-state information was not included in the synthesis of the transient 

component. Conversely, quasi-steady-state information present at a wavelet level 

identified as having transient information was excluded in the synthesis of the quasi-

steady-state component. This may result in errors in estimating transient and quasi-
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steady-state components. The synthesized transient component had most of its energy 

concentrated in the frequency ranges that correspond to the wavelet levels that were 

identified as having predominately transient information, and the quasi-steady-state 

component had most of its energy concentrated in the frequency range that correspond to 

the wavelet levels that were identified as having quasi-steady-state information. For most 

words, the DWT and SWT identified the same wavelet levels as having transient or 

quasi-steady-state information; as a result the speech components synthesized using these 

two transforms were very similar, despite the additional redundancy offered by the SWT. 

 

 The wavelet packets and wavelet transforms identify transient and quasi-steady-

state speech components in similar ways. In both algorithms, frequency ranges, which are 

interpreted as levels in the wavelet transform analysis, and as nodes in the wavelet packet 

analysis, are associated with either the transient or quasi-steady-state speech components. 

The advantage of using wavelet packets is that they offer a finer, more evenly spaced 

division of the frequency spectrum. When synthesizing speech components using wavelet 

packets, as with the wavelet transforms, the energy of the synthesized components is 

concentrated in the frequency ranges identified as having each kind of information 

(transient or quasi-steady-state). But since wavelet packets divide the spectrum into finer 

frequency ranges, the frequency ranges identified as having either kind of information 

generally have a narrower bandwidth. 

 

 An algorithm that incorporates wavelet packet analysis and variable frame rate 

processing for identifying transient and quasi-steady-state speech was presented. This 
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algorithm included the processes of choosing a wavelet function, choosing a 

decomposition level, classifying terminal nodes of a decomposed speech signal, synthesis 

of transient and quasi-steady-state speech, and incorporation of the VFR process into the 

wavelet analysis.  

 

 In the process of choosing a wavelet function, a filters profile for a wavelet 

function was first defined and filter profiles for Daubechies wavelets of different orders 

were compared. The filter profile for the db20 wavelet function had a flatter profile, 

smaller side-lodes and narrower filter frequency responses than other functions. This 

wavelet function was used for the decompositions. 

  

 The average number and average energy of ambiguous nodes were used to select 

the best decomposition level. The average number of ambiguous nodes was lowest at 

level 3, but the average energy in ambiguous nodes was lowest at level 6. Level 6 was 

chosen, instead of level 3, as the best decomposition level because the differences in the 

average energy in ambiguous nodes across levels were larger than the differences in the 

average number of ambiguous nodes across levels. Using other levels for the 

decomposition did not change the final results significantly since the differences in the 

average number of ambiguous nodes and average energy of ambiguous nodes were small. 

A threshold for defining ambiguous nodes was referred to as the ambiguity threshold, and 

the best ambiguity threshold was determined to be 3.0 dB. 
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 The energy profiles of the highpass filtered, tonal and nontonal speech were used 

to classify terminal nodes of the highpass filtered speech into three group; quasi-steady-

state, transient, and ambiguous nodes. For the words studied, nodes classified as transient 

nodes or quasi-steady-state nodes were not restricted to any frequency ranges. But 

generally, at least one node in the frequency range of 0 to 2100 Hz was classified as a 

quasi-steady-state node, and at least one node in the frequency range of 2100 to 3400 Hz 

was classified as a transient node. This supports the idea that quasi-steady-state activity is 

predominately lowpass, while transient activity is predominately highpass.  

 

 A limitation of using wavelet packets without VFR processing was that region of 

low energy, which were not present in the spectra of the tonal and nontonal speech 

components, were observed in the spectra of the synthesized quasi-steady-state and 

transient components. These regions of low energy occurred in the frequency ranges 

where nodes were classified as ambiguous. Incorporation of variable frame rate 

processing improved the quality of the synthesized components. With the incorporation 

of variable frame rate processing, wavelet coefficients of an ambiguous node were either 

included in the synthesis of the transient component or quasi-steady-state component 

depending on the value of the quantized transitivity function. This reduced the bandwidth 

of the regions of low energy in the spectral estimates and produced transient and quasi-

steady-state speech components that were the closest estimates of Yoo’s nontonal and 

tonal speech components, respectively. 
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 To synthesize transient and quasi-steady-state speech components, the proposed 

wavelet-based algorithm depends on the knowledge of Yoo’s nontonal and tonal speech 

components. In the future, investigations will be carried out to formulate a wavelet-based 

algorithm that can decompose speech into transient and quasi-steady-state speech 

components without knowledge of Yoo’s speech components. 

 

 The algorithm of Yoo is computationally intensive and unsuitable for real-time 

applications. The WP-VFR algorithm may provide a method to identify transient speech 

components with significantly less computation time. This approach may provide a 

method to implement a real-time speech enhancement algorithm using transient speech 

information. 
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LEVEL AND NODE CLASSIFICATIONS 
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Table A 1: DWT level classification for 18 words 

 

Word Quasi-steady-state levels Transient levels 

pikem 2  3  4  6 1  5 

pikef 3  4  6 1  2  5 

calmm 3  6 1  2  4  5 

calmf 2  3  4 1  5  6 

nicem 1  2  3  6 4  5 

nicef 2  3  4  5  6 1 

kegm 5 1  2  3  4  6 

kegf 1  3  4 2  5  6 

failm 2  3 1  4  5  6 

failf 2  3  4  6 1  5 

deadm 5  6 1  2  3  4 

chieff 1  5  6 2  3  4 

livem 2  3  5  6 1  4 

mergef 1  3  4  5 2  6 

juicef 1  2  5 3  4  6 

armchairf 1  3  6 2  4  5 

headlightm 2  3  4  5  6 1 

headlightf 3  4  6 1  2  5 
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Table A 2: SWT level classification for 18 words. 
 

Word Quasi-steady-state levels Transient levels 

pikem 2     3     4     6 1     5 

pikef 3     4     5     6 1     2 

calmm 3 1     2     4     5     6 

calmf 2     3     4     6 1     5 

nicem 1     2     3     5     6 4 

nicef 2     3     4     5     6 1 

kegm 5 1     2     3     4     6 

kegf 1     3     4     5 2     6 

failm 2     3 1     4     5     6 

failf 2     3     4     5     6  1 

deadm 5     6 1     2     3     4 

chieff 1     5     6  2     3     4 

livem 2     3     5     6 1     4 

mergef 1     2     3     4     5 6 

juicef 1     2     5 3     4     6 

armchairf 1     3     6 2     4     5 

headlightm 2     3     4     6 1     5 

headlightf 3     4     6 1     2     5 
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Table A 3: WP Node classification for 18 words decomposed at depth 4. 

 
Word Quasi-steady-state nodes Transient nodes 

pikem 16 18 17 21 22 24 15 20 19 27 28 30 29 25 26 23 

pikef 16 18 17 23 15 21 22 20 19 27 28 30 29 25 26 24 

calmm 18 17 21 24 15 16 22 20 19 27 28 30 29 25 26 23 

calmf 16 18 17 21 22 20 24 23 15 19 27 28 30 29 25 26 

nicem 15 18 17 21 28 30 29 25 23 16 22 20 19 27 26 24 

nicef 15 16 18 21 22 25 26 23 17 20 19 27 28 30 29 24 

kegm 15 18 20 19 27 24 16 17 21 22 28 30 29 25 26 23 

kegf 16 18 19 27 28 30 23 15 17 21 22 20 29 25 26 24 

failm 15 18 17 21 22 20 19 27 23 16 28 30 29 25 26 24 

failf 15 16 18 19 23 17 21 22 20 27 28 30 29 25 26 24 

deadm 15 18 20 19 27 24 23 16 17 21 22 28 30 29 25 26 

chieff 15 18 20 19 27 28 29 23 16 17 21 22 30 25 26 24 

livem 15 17 21 22 24 23 16 18 20 19 27 28 30 29 25 26 

mergef 15 16 18 19 27 25 23 17 21 22 20 28 30 29 26 24 

juicef 18 19 27 28 30 29 26 23 15 16 17 21 22 20 25 24 

armchairf 18 17 21 19 27 28 15 16 22 20 30 29 25 26 24 23 

headlightm 15 16 18 17 21 22 24 23 20 19 27 28 30 29 25 26 

headlightf 16 18 17 23 15 21 22 20 19 27 28 30 29 25 26 24 
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Table A 4 WP Node classification for 18 words decomposed at level 3. 
 

Word Quasi-steady-state nodes Transient nodes Ambiguous nodes 

pikem 7  8  10 9  13  14  12 11 

pikef 7  8 10  9  13  14  12 11 

calmm 8 9  13  14  12 7  10  11 

calmf 7  8  10 13  14  12 9  11 

nicem 8  10 9 7  13  14  12  11 

nicef 7  8  10  12 9  13  14  11 8 

kegm 9  11 7  10  13  14  12 9  14 

kegf 7  8  13 10  12  11 13 

failm 8  10  9 7  14  12  11 8  9  13  11 

failf 7 10  14  12 7  8  13 

deadm 8  10 9  13  14  12 7  11 

chieff 7  8 9  13  14  12  11 10 

livem 10 7  9  13  14  12 8  11 

mergef 7 14 8  10  9  13  12  11 

juicef 13  14 10 7  8  9  12  11 

armchairf 8 7  12  11 10  9  13  14 

headlightm 8 9  12 7  10  13  14  11 

headlightf 8 13  14  12 7  10  9  11 
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