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Abstract

In this article, new feature extraction methods, which utilize wavelet decomposition and reduced order linear
predictive coding (LPC) coefficients, have been proposed for speech recognition. The coefficients have been
derived from the speech frames decomposed using discrete wavelet transform. LPC coefficients derived from
subband decomposition (abbreviated as WLPC) of speech frame provide better representation than modeling the
frame directly. The WLPC coefficients have been further normalized in cepstrum domain to get new set of features
denoted as wavelet subband cepstral mean normalized features. The proposed approaches provide effective
(better recognition rate), efficient (reduced feature vector dimension), and noise robust features. The performance
of these techniques have been evaluated on the TI-46 isolated word database and own created Marathi digits
database in a white noise environment using the continuous density hidden Markov model. The experimental
results also show the superiority of the proposed techniques over the conventional methods like linear predictive
cepstral coefficients, Mel-frequency cepstral coefficients, spectral subtraction, and cepstral mean normalization in
presence of additive white Gaussian noise.

Keywords: feature extraction, linear predictive coding, discrete wavelet transform, cepstral mean normalization,
hidden Markov model

1. Introduction
A speech recognition system has two major compo-
nents, namely, feature extraction and classification. Fea-
ture extraction method plays a vital role in speech
recognition task. There are two dominant approaches of
acoustic measurement. First is a temporal domain or
parametric approach such as linear prediction [1], which
is developed to closely match the resonant structure of
human vocal tract that produces the corresponding
sound. Linear prediction coefficients (LPC) technique is
not suitable for representing speech because it assumes
signal stationary within a given frame and hence not
analyze the localized events accurately. Also it is not
able to capture the unvoiced and nasalized sounds prop-
erly [2]. Second approach is nonparametric frequency
domain approach based on human auditory perception
system and known as Mel-frequency cepstral coefficients
(MFCC) [3]. The widespread use of the MFCCs is due

to its low computational complexity and better perfor-
mance for ASR under clean matched conditions. Perfor-
mance of MFCC degrades rapidly in presence of noise
and degradation is directly proportional to signal-to-
noise ratio (SNR). Poor performance of LPC and its dif-
ferent forms like reflection coefficients, linear prediction
cepstral coefficients (LPCC) as well as MFCC and its
various forms [4] in noisy conditions has led many
researchers to investigate alternative robust feature
extraction algorithms.
In the literature, various techniques have been pro-

posed to improve the performance of ASR systems in
the presence of noise. Speech enhancement techniques
such as spectral subtraction (SS) [5] or cepstrums from
difference of power spectrum [6] reduce the effect of
noise either using statistical information of noise or fil-
tering the noise from noisy speech before feature extrac-
tion. Techniques like perceptual linear prediction [7]
and relative spectra [8] incorporate some of the features
of the human auditory mechanism and give noise robust
ASR. Feature enhancement techniques like cepstral
mean subtraction [9] and parallel model combination
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[10] improve ASR performance by compensating for
mismatch effects in cepstral domain features.
In another approach [11-16] wavelet transform and

wavelet packet tree have been used for speech feature
extraction in which the energies of wavelet decomposed
subbands have been used in place of Mel filtered sub-
band energies. Because of its better energy compaction
property [17], wavelet transform-based features give bet-
ter recognition accuracy than LPC and MFCC. Mel fil-
ter-like admissible wavelet packet structure [14]
performs better than MFCC in unvoiced phoneme
recognition. Wavelet subband features proposed in [15]
used normalized subband energies as features which
show good performance in presence of additive white
noise. However, in these wavelet-based approaches, the
time information is lost due to use of wavelet subband
energies. We used the actual wavelet coefficients pro-
posed in [18], which preserve the time information, and
also these features performed better than LPCC and
MFCC due to the combined advantages of LPC and
WT. LPC can better distinguish words having distinct
vowel sounds [19] and WT can model the details of
unvoiced sound portions of speech signal. However, the
performance of these features is not well for the noisy
speech recognition.
We propose the modification in the features proposed

in [18] to derive effective, efficient, and noise robust fea-
tures from the frequency subbands of the frame. Each
frame of speech signal is decomposed (uniformly/dyadic)
into different frequency subbands using discrete wavelet
transform (DWT) and each subband is further modeled
using linear predictive coding (LPC). The WT has a bet-
ter capability to model the details of unvoiced sound
portions. Hence, the subband decomposition has been
performed by means of DWT. DWT is more popular in
the field of digital signal processing due to its multireso-
lution capability and it has the property of constant Q,
which is one of the demands of many signal processing
applications, especially in the processing of the speech
signals (as human’s hearing system is constant Q per-
ceptional) [20]. Wavelet decomposition results in a loga-
rithmic set of bandwidths, which is very similar to the
response of human ear to frequencies (logarithmic fash-
ion). The LPC coefficients derived from the speech sub-
bands obtained after DWT decomposition provide
WLPC features [18]. Further these features were nor-
malized in cepstrum domain using well-known cep-
strum mean normalization (CMN) technique to get the
noise robust features. These new features are denoted as
wavelet subband-based cepstral mean normalized fea-
tures (WSCMN) which perform better in additive white
noise environment. The performance of the proposed
features is tested on TI-46 and Marathi digits database

using continuous density hidden Markov model
(CDHMM) as a classifier.
The rest of the article is organized as follows. In Sec-

tion 2, we describe a brief theory about DWT. The pro-
posed WLPC feature extraction and its normalization
are described in Section 3. The various experiments and
recognition results are given in Section 4. Section 5
gives the concluding remarks based on the
experimentation.

2. Discrete wavelet transform
The speech is a nonstationary signal. The Fourier trans-
form (FT) is not suitable for the analysis of such nonsta-
tionary signal because it provides only the frequency
information of signal but does not provide the informa-
tion about at what time which frequency is present. The
windowed short-time FT (STFT) provides the temporal
information about the frequency content of signal. A
drawback of the STFT is its fixed time resolution due to
fixed window length. The WT, with its flexible time-fre-
quency window, is an appropriate tool for the analysis
of nonstationary signals like speech which have both
short high frequency bursts and long quasi-stationary
components also.
WT decomposes signals over translated and dilated

mother wavelets. Mother wavelet is a time function with
finite energy and fast decay. The different versions of
the single wavelet are orthogonal to each other. The
continuous wavelet transform (CWT) is given by Equa-
tion (1) where the function ψ(t), a, and b are called the
(mother) wavelet, scaling factor, and translation para-
meter, respectively.

Wx(a, b) =
1√
a

∞∫
−∞

x(t)ψ∗
(
t − b
a

)
dt. (1)

As CWT is a function of two parameters, it contains
high redundancy while analyzing the signals. Instead of
this, analysis of the signal using small number of scales
with varying number of translations at each scale, i.e.,
discretizing scale and translation parameters as a = 2j

and b = 2jk gives DWT. DWT theory [20,21] requires
two sets of related functions called scaling function and
wavelet function given by

φ(t) =
N−1∑
n=0

h[n]
√
2φ(2t − n) (2)

and

ψ(t) =
N−1∑
n=0

g[n]
√
2φ(2t − n), (3)
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where function j(t) is called scaling function, h[n] is
an impulse response of a low-pass filter, and g[n] is an
impulse response of a high-pass filter. The scaling and
wavelet functions can be implemented effectively using
a pair of filters, i.e., h[n] and g[n]. These filters are
called a quadrature mirror filters that satisfy the prop-
erty g[n] = (-1)1-n h[1-n] [17]. The input signal is low-
pass filtered to give the approximate components and
high-pass filtered to give the detail components of the
input speech signal. The approximate signal at each
stage is further decomposed using same low-pass and
high-pass filters to get the approximate and detail com-
ponents for the next stage. This type of decomposition
is called dyadic decomposition, whereas decomposition
of detail signal along with the approximate signal at
each stage is called uniform decomposition. Dyadic
decomposition divides the input signal bandwidth into
the logarithmic set of bandwidths, whereas the uniform
decomposition divides it into the uniform set of
bandwidths.
In speech signal, high frequencies are present very

briefly at the onset of a sound while lower frequencies
are present latter for long period [21]. DWT resolves all
these frequencies well. The DWT parameters contain
the information of different frequency scales. This helps
in getting the speech information of corresponding fre-
quency band. In order to parameterize the speech signal,
the signal is decomposed into four frequency bands uni-
formly or in dyadic fashion.

3. Proposed WLPC feature extraction
Among the speech recognition approaches, the family
based on LPC coefficient and their cepstrum (LPCC) is
well known for its performance and relative simplicity.
LPC are the coefficients of an auto-regressive model [2]
of a speech frame. The all-pole representation of the
vocal tract transfer function is as given below

H(z) =
G

1 −
p∑
i=1

aiz−i (4)

where ap are the prediction coefficients and G is the
gain. These LPC can be derived by minimizing the
mean square error between the actual samples of speech
frame and the estimated samples by autocorrelation
method. LPCC were obtained directly using Equation
(5) [2].

LPCCi = ai +
i−1∑
k=1

(
k − i
i

)
LPCCi−kak (5)

where i = 1,2,...,p. The obtained LPC and LPCC fea-
tures cannot capture the high frequency peaks present

in the speech signal and also cannot analyze the loca-
lized events accurately which wavelet transform can ana-
lyze. However, LPC can better distinguish between the
words that have distinct vowel sounds than those share
common vowel sounds [19]. WT is able to model the
details of unvoiced sound portion of speech than LPC
[19]. Also subband signals (wavelet coefficients)
obtained from the wavelet decomposition can preserve
the time information [12] and LPC can be estimated
from such time domain signals easily. So, we can apply
LPC technique on each subband signal after the wavelet
decomposition which gives the combined benefits of
LPC and WT. Hence, the combination of LPC with WT
has been proposed in this article.
The LPCC features have been estimated from the sub-

band signals obtained from the DWT in the proposed
feature extraction technique. Figure 1 shows the block
diagrams of proposed feature extraction systems. Three
levels DWT decomposition of preprocessed and wind-
owed speech frames has been done using Daubechies’s
wavelet filters. Actual wavelet coefficients retain the
time information; hence, LPC features have been esti-
mated from the DWT coefficients in time domain. LPC
features of pth order have been extracted from each
subband of wavelet decomposed speech signal. The
schematic of this technique is shown in Figure 1 a. The
LPC coefficients obtained from each subband are conca-
tenated to form a final feature vector denoted as Dyadic
wavelet decomposed LPC (DWLPC). Thus, the feature
vector fi derived from frame i can be expressed as

(a)                                           (b) 
Figure 1 WLPC Feature extraction methods: (a) DWLPC; (b)
UWLPC.
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fi = [aA3 aD3 aD2 aD1 ]
T , (6)

where, aA3 is a row vector formed using prediction
coefficients obtained from the approximate components
A3 at third level and aDj is row vector formed using
prediction coefficients obtained from the detail compo-
nents Dj (j = 1,2,3) at jth level. T indicates a vector
transpose.
Figure 1b shows the schematic of uniform wavelet

decomposed LPC (UWLPC) feature extraction from
subbands of uniform bandwidth. The subbands are
obtained by two-level wavelet packet decomposition
[21]. Then, the UWLPC feature vector is formed similar
to DWLPC by concatenation of LPC coefficients esti-
mated from the uniformly decomposed subband signals.

3.1. WSCMN features
CMN [9] is the simplest feature normalization technique
to implement. It provides many of the benefits available
in the more-advanced normalization algorithms. The
LPCC cepstrums were derived using Equation (5) from
the WLPC features estimated from the subband signals
of each frame. Thus, a sequence of cepstral vectors {x1,
x2,...,xT} is obtained from a speech sample. Further these
cepstral vectors were normalized using CMN. In its
basic form, CMN consists of subtracting the mean fea-
ture vector μx from each vector xt and normalizing by
variance sx to obtain the normalized vector x̂t .

x̂t =
xt − μx

σx
(7)

where

μx =
1
T

∑
t

xt and σ 2
x =

1
T

T∑
t=1

(
x2t − μ2

x

)
(8)

This gives the proposed WSCMN feature vectors. Fig-
ure 2 shows the WSCMN feature extraction steps where
U-WSCMN are the uniform decomposed WSCMN fea-
ture vectors and D-WSCMN are the dyadic decomposed
WSCMN feature vectors.
After normalization, the mean of the cepstral

sequence is zero, and it has a variance of one. This nor-
malization is also called as cepstral mean and variance
normalization. The CMN makes the features robust to
some linear filtering of the acoustic signal, which might
be caused by microphones with different transfer

functions, varying distance from user to microphone,
the room acoustics, or transmission channels [9].

4. Experimental results
This section evaluates the performance of the proposed
techniques on isolated words in presence of stationary
white noise using TI-46 and own created Marathi
databases.

4.1 Databases
The speech recognition experiments were conducted
under clean and noisy conditions using the TI-46 and
own created Marathi digit database. The TI-46 Speaker
Dependent Isolated Word Corpus [22] has two datasets,
namely, TI-20 and TI-ALPHA. The TI-20 vocabulary
consists of ten English digits “zero” through “nine” and
ten control words “yes, no, erase, rubout, repeat, go,
enter, help, stop, and start”. The TI-ALPHA subset con-
sists of “a” through “z” English alphabets. In both the
subsets, data are collected from eight male and eight
female speakers. There are 26 utterances of each word
from each speaker out of which 10 were used as training
tokens and remaining 16 were used as testing tokens.
So, TI-20 subset has total 3200 training samples and
5120 test samples, whereas TI-ALPHA has 4160 training
samples and 6656 test samples. All the data samples
were digitized with sampling frequency 12.5 kHz.
For Marathi database, data were collected from 56

male and 44 female speakers in a quiet room and dis-
cretized with sampling frequency 10 kHz. There are 20
utterances of each word from each speaker recorded in
2 different sessions at an interval of 1 week. In each ses-
sion, ten utterances of each word from each speaker
were recorded. For experiments, the samples recorded
in first session were used for training and the samples
recorded in second session were used for testing. Thus,
this database has total 10,000 training samples and
10,000 test samples. Table 1 shows the English digits
and their equivalent Marathi digit pronunciation.

4.2 Experimental setup
The input speech samples are pre-emphasized by a first-
order filter with transfer function H(z) = 1-0.97z-1. The
pre-emphasized speech data are divided into blocks of
25.6 ms duration with 50% overlap between every adja-
cent frame. The smooth frequency transitions are
ensured using a Hamming window to each frame.

Figure 2 WSCMN Feature extraction methods.

Table 1 English and equivalent Marathi digit
pronunciation

Zero One Two Three Four Five Six Seven Eight Nine

Shunya Ek Don Teen Char Paach Saha Sat Aath Nau
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Noisy test samples of each dataset (TI-20, TI-ALPHA,
and Marathi Digits) were obtained by artificially adding
stationary white Gaussian noise under a wide range of
SNRs (0, 5, 10, 15, 20, and 30 dB) into the test samples
of each dataset. Tests were carried out on clean as well
as noisy test samples. For training and testing, diagonal
covariance left-right CDHMM [2] with 4-mixtures and
5-states (as this combination yields best performance)
was used as a classifier.

4.3 Baseline experiment
The baseline experiments were performed using LPCC
and MFCC features on each database. First in the LPCC
feature extraction, the prediction coefficients were
extracted from each speech frame using 13th order
LPC. From the obtained prediction coefficients, cepstral
coefficients and its temporal derivatives (first and second
derivatives) were extracted and concatenated to form a
final LPCC feature vector (this gives feature dimension
39).
In MFCC feature extraction process, the magnitude

spectrum of windowed speech frame was filtered using a
triangular Mel filter bank consisting of 20 Mel filters.
From a set of 20 Mel-scaled log filter bank outputs,
MFCC feature vector that consists of 13 MFCC and the
corresponding delta and acceleration coefficients (total
39 coefficients) is extracted from each frame. The per-
formance of LPCC and MFCC features was tested on
each dataset under clean test condition and presented in
Table 2. The recognition results obtained using MFCC
features (under clean test condition) are comparable to
the state-of-the-art recognition results presented in [23].
These results are used as a baseline for the comparison.
We tested the performance of LPCC and MFCC fea-

tures for different LPC orders and different number of
Mel-filters in the triangular filter bank, respectively. It
was observed that 13th-order LPC (p = 13), 20 Mel-fil-
ters in filter bank, and feature vector of length 39 (13
LPC/MFCC coefficients and their first and second deri-
vatives) yield best performance on the databases. Hence,
the results were obtained for these values of parameters.

4.4 WLPC features
In this section, features were extracted using proposed
techniques. In the first type, each speech frame was

decomposed into subbands of logarithmic bandwidth by
three level DWT and 32nd-order Daubechies’s wavelet
(the algorithms were tested for various orders and it is
observed that 32nd order gives the best performance).
Prediction coefficients with different LPC orders (vary-
ing from 3 to 7) were derived from the subbands. These
prediction coefficients were then concatenated to form
DWLPC feature vector. In the second type, each speech
frame was decomposed into subbands of uniform band-
width by two level wavelet packet transform. Then, the
prediction coefficients were estimated from the sub-
bands of uniform decomposition similar to first type
and were concatenated to form UWLPC feature vector.
In both the feature extraction types, we select LPC of
order 5 (as it gives the best performance). Five predic-
tion coefficients from each subband give feature vector
of dimension 20. Performances of these features were
tested using CDHMM with 4-mixtures and 5-states. For
the comparison of performance based on the feature
dimension, we also considered the 21 coefficients in
LPCC and MFCC feature vectors (7 LPC/MFCC coeffi-
cients and their first and second derivatives). The per-
formances of LPCC, MFCC, and WLPC (UWLPC/
DWLPC) features have been tested on TI-20 database
and presented in Table 3.
Percentage recognition rate using LPCC and WLPC

(UWLPC/DWLPC) features for different LPC order
were also estimated and presented in Figure 3. These
results prove that the performance of WLPC (UWLPC/
DWLPC) is better than LPCC and MFCC features with
half the feature vector length than LPCC and MFCC
because the proposed features combine the advantage of
identification capability of LPC for vowel and the wave-
let’s better modeling capability of unvoiced sound por-
tions and high frequency picks of speech sound. Among
the WLPC features, DWLPC is superior to UWLPC
because the dyadic decomposition in DWLPC mimics
the human auditory perception system better.
The performance of MFCC and WLPC (UWLPC and

DWLPC) features on TI-Alpha database has been pre-
sented in Table 4.
Further, the robustness of the proposed features has

been tested by normalizing the features using CMN.

Table 2 Percentage recognition rate of LPCC and MFCC
features on various datasets

Dataset % Recognition rate

LPCC MFCC

TI-20 97.2 98.2

TI-ALPHA 80.6 85.8

Marathi Digits 78.9 84.5

Table 3 Percentage recognition rates of different features
on TI-20 database.

Features Feature vector length % Recognition rate

LPCC 39 97.2

21 92.9

MFCC 39 98.2

21 96.2

UWLPC 20 98.9

DWLPC 20 99.1
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The CMN is applied on the WLPC to get the noise
robust WSCMN (D-WSCMN and U-WSCMN) features
for the isolated word recognition. The performance of
the D-WSCMN for different prediction orders (p) was
tested on clean TI-20 database and is presented in Fig-
ure 4. From these results it is clear that the D-WSCMN
yield better results for p = 5. The robustness of
WSCMN features was tested on noisy samples gener-
ated by adding white Gaussian noise (of SNR 0, 5, 10,
and 20 dB) to the test samples of TI-20 dataset. The
results of WSCMN features were compared with LPCC,
MFCC, SS method [5], and CMN [9] features in Figure
5.
WSCMN feature performance was also tested on clean

as well as noisy Marathi digits database. The recognition
performance of WSCMN using uniform and dyadic
decomposition on this database is shown in Figure 6. It
is observed that as compared to MFCC performance on
clean data (84.50%), the performance of WSCMN fea-
tures is significantly increased (100%) on this database.
This is because the WSCMN technique is able to cap-
ture the difference between the Marathi phonemes more
clearly than the MFCC and CMN. Also it gives better
performance at various noise levels because of the cep-
strum normalization.

5. Conclusions
In this article, DWT and LPC-based techniques
(UWLPC and DWLPC) for isolated word recognition

have been presented. Experimental results show that the
proposed WLPC (UWLPC and DWLPC) features are
effective and efficient as compared to LPCC and MFCC
because it takes the combined advantages of LPC and
DWT while estimating the features. Feature vector
dimension for WLPC is almost half of the LPCC and
MFCC. This reduces the memory requirement and the
computational time. It is also observed that the perfor-
mance of DWLPC is better than UWLPC. This is
because the dyadic (logarithmic) frequency

Figure 3 Percentage recognition rate for different LPC orders
using (a) LPCC features, (b) WLPC (UWLPC/DWLPC) features.

Table 4 Performance of WLPC features on TI-Alpha
database

Features Feature vector length % Recognition rate

MFCC 39 84.1

UWLPC 20 85.2

DWLPC 20 87.0

Figure 4 D-WSCMN performance for different LPC orders p on
clean TI-20 database.
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Figure 5 Percentage recognition rate of different features on
TI-20 database in white noise environment.
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Figure 6 Performance of WSCMN features on Marathi digit
database in white noise environment.
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decomposition mimics the human auditory perception
system better than uniform frequency decomposition.
WSCMN features are noise robust features because of

normalization in cepstrum domain. It is observed that
the proposed WSCMN features yield better performance
as compared to the popular existing methods in pre-
sence of white noise because this technique is able to
capture the difference between the phonemes (especially
in Marathi database) more clearly than the MFCC and
CMN. It has also been proved experimentally that the
proposed approaches provide effective (better recogni-
tion rate), efficient (reduced feature vector dimension),
and robust features.
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