10 research outputs found

    Proceedings of the 6th international conference on disability, virtual reality and associated technologies (ICDVRAT 2006)

    Get PDF
    The proceedings of the conferenc

    Proceedings of the 10th international conference on disability, virtual reality and associated technologies (ICDVRAT 2014)

    Get PDF
    The proceedings of the conferenc

    DOKY: A Multi-Modal User Interface for Non-Visual Presentation, Navigation and Manipulation of Structured Documents on Mobile and Wearable Devices

    Get PDF
    There are a large number of highly structured documents available on the Internet. The logical document structure is very important for the reader in order to efficiently handling the document content. In graphical user interfaces, each logical structure element is presented by a specific visualisation, a graphical icon. This representation allows visual readers to recognise the structure at a glance. Another advantage is that it enables direct navigation and manipulation. Blind and visually impaired persons are unable to use graphical user interfaces and for the emerging category of mobile and wearable devices, where there are only small visual displays available or no visual display at all, a non-visual alternative is required too. A multi-modal user interface for non-visual presentation, navigation and manipulation of structured documents on mobile and wearable devices like smart phones, smart watches or smart tablets has been developed as a result of inductive research among 205 blind and visually impaired participants. It enables the user to get a fast overview over the document structure and to efficiently skim and scan over the document content by identifying the type, level, position, length, relationship and content text of each element as well as to focus, select, activate, move, remove and insert structure elements or text. These interactions are presented in a non-visual way using Earcons, Tactons and synthetic speech utterances, serving the auditory and tactile human sense. Navigation and manipulation is provided by using the multitouch, motion (linear acceleration and rotation) or speech recognition input modality. It is a complete solution for reading, creating and editing structured documents in a non-visual way. There is no special hardware required. The name DOKY is derived from a short form of the terms document, and accessibility. A flexible platform-independent and event-driven software architecture implementing the DOKY user interface as well as the automated structured observation research method employed for the investigation into the effectiveness of the proposed user interface has been presented. Because it is platform- and language-neutral, it can be used in a wide variety of platforms, environments and applications for mobile and wearable devices. Each component is defined by interfaces and abstract classes only, so that it can be easily changed or extended, and grouped in a semantically self-containing package. An investigation into the effectiveness of the proposed DOKY user interface has been carried out to see whether the proposed user interface design concepts and user interaction design concepts are effective means for non-visual presentation, navigation and manipulation of structured documents on mobile and wearable devices, by automated structured observations of 876 blind and visually impaired research subjects performing 19 exercises among a highly structured example document using the DOKY Structured Observation App on their own mobile or wearable device remotely over the Internet. The results showed that the proposed user interface design concepts for presentation and navigation and the user interaction design concepts for manipulation are effective and that their effectiveness depends on the input modality and hardware device employed as well as on the use of screen readers

    Evacuation dynamics in the maritime field: modelling, simulation and real-time human participation

    Get PDF
    The topic of evacuation analysis is becoming increasingly important in the maritime field, especially after the recent approval of relevant amendments to SOLAS. These amendments make evacuation analysis in early design stage mandatory not only for ro-ro passenger ships, as in the past, but also for other passenger ships, constructed on or after 1st January 2020, carrying more than 36 passengers. Tools used to perform evacuation simulations are generally run in a non-interactive batch mode. However, the introduction of the possibility for humans to interactively participate in a simulated evacuation process together with computer controlled agents in an immersive virtual environment, can open a series of interesting possibilities for design, research and development. Therefore, with particular reference to the maritime field, the research described in this dissertation is focused on the development and implementation of a mathematical model for simulating the dynamics of evacuation processes, which also allows real time human interaction through the use of virtual reality. The developed mathematical model, which is capable of naturally embedding human interaction, was verified and validated through a series of tests and through comparisons with other models and experimental data, as well as by referring to the relevant guidelines proposed by the International Maritime Organization (IMO). Particular attention was given to the calibration and validation of the counterflow model, developed during the research activity, and to the analysis of flow-density relation. The possibility of real time user participation, consisting in the user taking control over an agent inside the simulation, was introduced along with a vibrotactile haptic interface which was created to enhance the user perception of the surrounding virtual environment. The developed tool and user interfaces were adopted in an experiment where the subject was immersed in a virtual environment and interacted with simulated agents. The analysis of experiments provided results on the effects of the developed haptic interface on the subjects\u2019 behaviour. Moreover, the obtained data allowed comparing the behaviour of subjects with that of simulated agents. The mathematical model was subsequently extended with the introduction of ship motion effects on agents behaviour, considering that, in the maritime field, the platform is usually moving. Fictitious forces, in the developed model, are directly applied to the agents and might therefore modify their trajectories. This represents an added value of the proposed model, because, usually, the effects of ship motions are embedded in simulation models only through a speed reduction. The model was used to assess ship motion effects in some IMO test cases. Finally, the tool was tested on a specifically developed case targeting the maritime field whose geometry was ideated as a simplification of the general plan of a real cruise vessel. The evacuation simulations were run firstly without ship motions, then with some representative situations combining heel, trim and periodic motions and, finally, with motions due to irregular waves. Ship motions, in this latter case, have been generated considering a notational cruise vessel whose dimensions were in line with the cruise vessel the test geometry was inspired to. A model introducing ship motion effects on the control of the avatar was finally developed, together with an approach to provide perception of ship motions through the developed vibrotactile interface. Models and results presented in this dissertation provide new insight to the field of ship evacuation analysis and to the application of virtual reality in this field

    ‘Subtle’ Technology: Design for Facilitating Face-to-Face Interaction for Socially Anxious People

    Get PDF
    PhD thesisShy people have a desire for social interaction but fear being scrutinised and rejected. This conflict results in attention deficits during face-to-face situations. It can cause the social atmosphere to become ‘frozen’ and shy persons to appear reticent. Many of them avoid such challenges, taking up the ‘electronic extroversion’ route and experiencing real-world social isolation. This research is aimed at improving the social skills and experience of shy people. It establishes conceptual frameworks and guidelines for designing computer-mediated tools to amplify shy users’ social cognition while extending conversational resources. Drawing on the theories of Social Objects, ‘natural’ HCI and unobtrusive Ubiquitous Computing, it proposes the Icebreaker Cognitive-Behavioural Model for applying user psychology to the systems’ features and functioning behaviour. Two initial design approaches were developed in forms of Wearable Computer and evaluated in a separate user-centred study. One emphasised the users’ privacy concerns in the form of a direct but covert display of the Vibrosign Armband. Another focused on low-attention demand and low-key interaction preferences – rendered through a peripheral but overt visual display of the Icebreaker T-shirt, triggered by the users’ handshake and disguised in the system’s subtle operation. Quantitative feedback by vibrotactile experts indicated the armband effective in signalling various types of abstract information. However, it added to the mental load and needed a disproportionate of training time. In contrast, qualitative-based feedback from shy users revealed unexpected benefits of the information display made public on the shirt front. It encouraged immediate and fluid interaction by providing a mutual ‘ticket to talk’ and an interpretative gap in the users’ relationship, although the rapid prototype compromised the technology’s subtle characteristics and impeded the users’ social experience. An iterative design extended the Icebreaker approach through a systematic refinement and resulted in the Subtle Design Principle implemented in the Icebreaker Jacket. Its subtle interaction and display modalities were compared to those of a focal-demand social aid, using a mixed-method evaluation. Inferential analysis results indicated the subtle technology more engaging with users’ social aspirations and facilitating a higher degree of unobtrusive experience. Through the Icebreaker model and Subtle Design Principle, together with the exploratory research framework and study outcome, this thesis demonstrates the advantages of using subtle technology to help shy users cope with the challenges of face-to-face interaction and improve their social experience.RCUK under the Digital Economy Doctoral Training scheme, through MAT programme, EPSRC Doctoral Training Centre EP/G03723X/1

    Challenges and Opportunities in Applied System Innovation

    Get PDF
    This book introduces and provides solutions to a variety of problems faced by society, companies and individuals in a quickly changing and technology-dependent world. The wide acceptance of artificial intelligence, the upcoming fourth industrial revolution and newly designed 6G technologies are seen as the main enablers and game changers in this environment. The book considers these issues not only from a technological viewpoint but also on how society, labor and the economy are affected, leading to a circular economy that affects the way people design, function and deploy complex systems

    Robotics 2010

    Get PDF
    Without a doubt, robotics has made an incredible progress over the last decades. The vision of developing, designing and creating technical systems that help humans to achieve hard and complex tasks, has intelligently led to an incredible variety of solutions. There are barely technical fields that could exhibit more interdisciplinary interconnections like robotics. This fact is generated by highly complex challenges imposed by robotic systems, especially the requirement on intelligent and autonomous operation. This book tries to give an insight into the evolutionary process that takes place in robotics. It provides articles covering a wide range of this exciting area. The progress of technical challenges and concepts may illuminate the relationship between developments that seem to be completely different at first sight. The robotics remains an exciting scientific and engineering field. The community looks optimistically ahead and also looks forward for the future challenges and new development

    Desarrollo y validación de un modelo dinámico para una pila de combustible tipo PEM

    Get PDF
    JORNADAS DE AUTOMÁTICA (27) (27.2006.ALMERÍA)El objetivo de este trabajo es realizar un modelo dinámico detallado de una pila de combustible tipo PEM de 1.2 kW de potencia nominal. El modelo desarrollado incluye efectos como el ’flooding’ y la dinámica de la temperatura y es de utilidad para poder diseñar y ensayar controles tanto de la válvula de purga como de la refrigeración de la pila mediante un ventilador. Se ha desarrollado un novedoso tratamiento de la ecuación experimental que modela la curva de polarización que simplifica considerablemente su caracterización. Por último el modelo realizado ha sido validado con datos tomados de una pila real

    Advances in Robot Kinematics : Proceedings of the 15th international conference on Advances in Robot Kinematics

    Get PDF
    International audienceThe motion of mechanisms, kinematics, is one of the most fundamental aspect of robot design, analysis and control but is also relevant to other scientific domains such as biome- chanics, molecular biology, . . . . The series of books on Advances in Robot Kinematics (ARK) report the latest achievement in this field. ARK has a long history as the first book was published in 1991 and since then new issues have been published every 2 years. Each book is the follow-up of a single-track symposium in which the participants exchange their results and opinions in a meeting that bring together the best of world’s researchers and scientists together with young students. Since 1992 the ARK symposia have come under the patronage of the International Federation for the Promotion of Machine Science-IFToMM.This book is the 13th in the series and is the result of peer-review process intended to select the newest and most original achievements in this field. For the first time the articles of this symposium will be published in a green open-access archive to favor free dissemination of the results. However the book will also be o↵ered as a on-demand printed book.The papers proposed in this book show that robot kinematics is an exciting domain with an immense number of research challenges that go well beyond the field of robotics.The last symposium related with this book was organized by the French National Re- search Institute in Computer Science and Control Theory (INRIA) in Grasse, France

    Life Sciences Program Tasks and Bibliography for FY 1996

    Get PDF
    This document includes information on all peer reviewed projects funded by the Office of Life and Microgravity Sciences and Applications, Life Sciences Division during fiscal year 1996. This document will be published annually and made available to scientists in the space life sciences field both as a hard copy and as an interactive Internet web page
    corecore