25 research outputs found

    A revisit to gradient-descent bearing-only formation control

    Get PDF
    This paper addresses the problem of bearing-only formation control of multi-agent systems, where each agent can merely obtain the relative bearing measurements of their neighbor neighbors whereas relative distance or position measurements are unavailable. In particular, we revisit a bearing-only formation control law proposed in [1]. Unlike many other existing ones, this control law is gradient-descent, which is favorable from the stability analysis point of view. It has the potential to be extended to handle more complex agent models and moving target formations. Up to now, this control law has not attracted sufficient attention probably because its stability analysis is based on optimization techniques and challenging to generalize. The contribution of this paper is to present a new stability analysis of this formation control law based on Lyapunov approaches. The new stability analysis reveals some new properties of the control law such as exponential convergence rate and lays a foundation for deriving new bearing-only control laws in the future

    Flying Free: A Research Overview of Deep Learning in Drone Navigation Autonomy

    Get PDF
    With the rise of Deep Learning approaches in computer vision applications, significant strides have been made towards vehicular autonomy. Research activity in autonomous drone navigation has increased rapidly in the past five years, and drones are moving fast towards the ultimate goal of near-complete autonomy. However, while much work in the area focuses on specific tasks in drone navigation, the contribution to the overall goal of autonomy is often not assessed, and a comprehensive overview is needed. In this work, a taxonomy of drone navigation autonomy is established by mapping the definitions of vehicular autonomy levels, as defined by the Society of Automotive Engineers, to specific drone tasks in order to create a clear definition of autonomy when applied to drones. A top–down examination of research work in the area is conducted, focusing on drone navigation tasks, in order to understand the extent of research activity in each area. Autonomy levels are cross-checked against the drone navigation tasks addressed in each work to provide a framework for understanding the trajectory of current research. This work serves as a guide to research in drone autonomy with a particular focus on Deep Learning-based solutions, indicating key works and areas of opportunity for development of this area in the future

    Enhanced faster region-based convolutional neural network for oil palm tree detection

    Get PDF
    Oil palm trees are important economic crops in Malaysia. One of the audit procedures is to count the number of oil palm trees for plantation management, which helps the manager predict the plantation yield and the amount of fertilizer and labor force needed. However, the current counting method for oil palm tree plantation is manually counting using GIS software, which is tedious and inefficient for large scale plantation. To overcome this problem, researchers proposed automatic counting methods based on machine learning and image processing. However, traditional machine learning and image processing methods used handcrafted feature extraction methods. It can only extract low-middle level features from the image and lack of generalization ability. It’s applicable only for one application and will need reprogramming for other applications. The widely used feature extraction methods are local binary patterns (LBP), scale-invariant feature transform (SIFT), and the histogram of oriented gradients (HOG), which usually achieve low accuracy because of their limited feature representation ability and without generalization capability. Hence, this research aims to close the research gaps by exploring the deep learning-based object detection algorithm and the classical convolutional neural network (CNN) to build an automatic deep learning-based oil palm tree detection and counting framework. This study proposed a new deep learning method based on Faster RCNN for oil palm tree detection and counting. To reduce the overfitting problem during the training, this study uses the image processing method to augment the training dataset by random flipping the image and to increase the data’s contrast and brightness. The transfer learning model of ResNet50 was used as the CNN backbone and the Faster RCNN network was retrained to get the weight for automatic oil palm tree counting. To improve the performance of Faster RCNN, feature concatation method was used to integrate the high-level and low-level feature from ResNet50. The proposed model validated the testing dataset of three palm tree regions with mature, young, and mixed mature and young palm trees. The detection results were compared with two machine learning methods of ANN, SVM, image processing-based TM method, and the original Faster RCNN model respectively. The proposed enhanced Faster RCNN model shows a promising result of oil palm tree detection and counting. It achieved an overall accuracy of 97% in the testing dataset, 97.2% in the mixed palm tree region, and 96.9% in the mature and young palm tree region, while the traditional ANN, SVM, and TM methods are less than 90%. The accuracy of comparison reveals that the proposed EFRCNN model outperforms the Faster RCNN and the traditional ANN, SVM, and TM methods. It has the potential to apply in counting a large area of oil palm tree plantation

    Variational Inference for a Recommendation System in IoT Networks Based on Stein’s Identity

    Get PDF
    The recommendation services are critical for IoT since they provide interconnection between various devices and services. In order to make Internet searching convenient and useful, algorithms must be developed that overcome the shortcomings of existing online recommendation systems. Therefore, a novel Stein Variational Recommendation System algorithm (SVRS) is proposed, developed, implemented and tested in this paper in order to address the long-standing recommendation problem. With Stein’s identity, SVRS is able to calculate the feature vectors of users and ratings it has generated, as well as infer the preference for users who have not rated certain items. It has the advantages of low complexity, scalability, as well as providing insights into the formation of ratings. A set of experimental results revealed that SVRS performed better than other types of recommendation methods in root mean square error (RMSE) and mean absolute error (MAE)

    Biomimetic Design, Modeling, and Adaptive Control of Robotic Gripper for Optimal Grasping

    Get PDF
    Grasping is an essential skill for almost every assistive robot. Variations in shape and/or weight of different objects involved in Activities of Daily Living (ADL) lead to complications, especially, when the robot is trying to grip novel objects for which it has no prior information –too much force will deform or crush the object while too little force will lead to slipping and possibly dropped objects. Thus, successful grasping requires the gripper to immobilize an object with the minimal force. In Chapter 2, we present the design, analysis, and experimental implementation of an adaptive control to facilitate 1-click grasping of novel objects by a robotic gripper. Motivated by a desire to obtain a reduced-order controller, a previously developed grasp model is reparameterized to design an adaptive backstepping controller. A Lyapunov-based analysis is utilized to show asymptotic convergence of the object slip velocity to the origin. Furthermore, the analysis shows that the closed-loop controller is able to estimate the minimal steady-state force required to grasp the object. Simulation and experiment results both show that the object is immobilized within the gripper without any significant deformation. Also, in Chapter 3 we present the design and implementation of an algorithm, equipped with a switched adaptive controller, for grasping unknown objects using a robot gripper. A Lyapunov-based analysis demonstrates that the switching controller is indeed asymptotically stable with both the translational and rotational slip velocities converging to the origin. Experimental results using a novel sensorized gripper prototype and objects of different sizes, shapes, and weights show that the proposed algorithm not only ensures prevention of slippage of the grasped objects, but it is also able to apply the minimal force needed to safely grasp these objects without causing excessive deformation. In Chapter 4, the Pearson and Spearman correlation tests are employed to capture the joint probability distribution of human variables related to human-robot interaction using experiment data obtained from 93 individuals. The findings show that some human factors are jointly distributed within the same group as: (spatial visualization (SpV), spatial orientation (SpO), and visual perception (VP)), (gross dexterity (GD) and fine dexterity (FD)) and (visual acuityWVand SV), while the Reaction Time (RT), working memory (WM), depth perception (DP) are related insignificantly. Furthermore, we present Principal Components Analysis (PCA) of human factors. By using Varimax Rotation matrix to gain obvious interpretations, it confirms the same observations about the interdependencies between the human factors

    Review of Path Selection Algorithms with Link Quality and Critical Switch Aware for Heterogeneous Traffic in SDN

    Get PDF
    Software Defined Networking (SDN) introduced network management flexibility that eludes traditional network architecture. Nevertheless, the pervasive demand for various cloud computing services with different levels of Quality of Service requirements in our contemporary world made network service provisioning challenging. One of these challenges is path selection (PS) for routing heterogeneous traffic with end-to-end quality of service support specific to each traffic class. The challenge had gotten the research community\u27s attention to the extent that many PSAs were proposed. However, a gap still exists that calls for further study. This paper reviews the existing PSA and the Baseline Shortest Path Algorithms (BSPA) upon which many relevant PSA(s) are built to help identify these gaps. The paper categorizes the PSAs into four, based on their path selection criteria, (1) PSAs that use static or dynamic link quality to guide PSD, (2) PSAs that consider the criticality of switch in terms of an update operation, FlowTable limitation or port capacity to guide PSD, (3) PSAs that consider flow variabilities to guide PSD and (4) The PSAs that use ML optimization in their PSD. We then reviewed and compared the techniques\u27 design in each category against the identified SDN PSA design objectives, solution approach, BSPA, and validation approaches. Finally, the paper recommends directions for further research

    A Survey of Computer Vision Methods for 2D Object Detection from Unmanned Aerial Vehicles

    Get PDF
    The spread of Unmanned Aerial Vehicles (UAVs) in the last decade revolutionized many applications fields. Most investigated research topics focus on increasing autonomy during operational campaigns, environmental monitoring, surveillance, maps, and labeling. To achieve such complex goals, a high-level module is exploited to build semantic knowledge leveraging the outputs of the low-level module that takes data acquired from multiple sensors and extracts information concerning what is sensed. All in all, the detection of the objects is undoubtedly the most important low-level task, and the most employed sensors to accomplish it are by far RGB cameras due to costs, dimensions, and the wide literature on RGB-based object detection. This survey presents recent advancements in 2D object detection for the case of UAVs, focusing on the differences, strategies, and trade-offs between the generic problem of object detection, and the adaptation of such solutions for operations of the UAV. Moreover, a new taxonomy that considers different heights intervals and driven by the methodological approaches introduced by the works in the state of the art instead of hardware, physical and/or technological constraints is proposed

    Integration and optimal control of microcsp with building hvac systems: Review and future directions

    Get PDF
    Heating, ventilation, and air-conditioning (HVAC) systems are omnipresent in modern buildings and are responsible for a considerable share of consumed energy and the electricity bill in buildings. On the other hand, solar energy is abundant and could be used to support the building HVAC system through cogeneration of electricity and heat. Micro-scale concentrated solar power (MicroCSP) is a propitious solution for such applications that can be integrated into the building HVAC system to optimally provide both electricity and heat, on-demand via application of optimal control techniques. The use of thermal energy storage (TES) in MicroCSP adds dispatching capabilities to the MicroCSP energy production that will assist in optimal energy management in buildings. This work presents a review of the existing contributions on the combination of MicroCSP and HVAC systems in buildings and how it compares to other thermal-assisted HVAC applications. Different topologies and architectures for the integration of MicroCSP and building HVAC systems are proposed, and the components of standard MicroCSP systems with their control-oriented models are explained. Furthermore, this paper details the different control strategies to optimally manage the energy flow, both electrical and thermal, from the solar field to the building HVAC system to minimize energy consumption and/or operational cost
    corecore