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ABSTRACT

Grasping is an essential skill for almost every assistive robot. Variations in shape and/or weight

of different objects involved in Activities of Daily Living (ADL) lead to complications, especially,

when the robot is trying to grip novel objects for which it has no prior information –too much force

will deform or crush the object while too little force will lead to slipping and possibly dropped

objects. Thus, successful grasping requires the gripper to immobilize an object with the mini-

mal force. In Chapter 2, we present the design, analysis, and experimental implementation of an

adaptive control to facilitate 1-click grasping of novel objects by a robotic gripper. Motivated by

a desire to obtain a reduced-order controller, a previously developed grasp model is reparameter-

ized to design an adaptive backstepping controller. A Lyapunov-based analysis is utilized to show

asymptotic convergence of the object slip velocity to the origin. Furthermore, the analysis shows

that the closed-loop controller is able to estimate the minimal steady-state force required to grasp

the object. Simulation and experiment results both show that the object is immobilized within

the gripper without any significant deformation. Also, in Chapter 3 we present the design and

implementation of an algorithm, equipped with a switched adaptive controller, for grasping un-

known objects using a robot gripper. A Lyapunov-based analysis demonstrates that the switching

controller is indeed asymptotically stable with both the translational and rotational slip velocities

converging to the origin. Experimental results using a novel sensorized gripper prototype and ob-

jects of different sizes, shapes, and weights show that the proposed algorithm not only ensures

prevention of slippage of the grasped objects, but it is also able to apply the minimal force needed

to safely grasp these objects without causing excessive deformation.

In Chapter 4, the Pearson and Spearman correlation tests are employed to capture the joint prob-

ability distribution of human variables related to human-robot interaction using experiment data

obtained from 93 individuals. The findings show that some human factors are jointly distributed
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within the same group as: (spatial visualization (SpV), spatial orientation (SpO), and visual per-

ception (VP)), (gross dexterity (GD) and fine dexterity (FD)) and (visual acuity WV and SV), while

the Reaction Time (RT), working memory (WM), depth perception (DP) are related insignificantly.

Furthermore, we present Principal Components Analysis (PCA) of human factors. By using Vari-

max Rotation matrix to gain obvious interpretations, it confirms the same observations about the

interdependencies between the human factors.
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CHAPTER 1: INTRODUCTION

One of the biggest endeavors in robotics is to endow robots with the ability to grasp a variety

of objects with precision and accuracy via direct interaction with its environment similar to how

human hands are utilized in daily activities. To this end, for decades, modern robotic arms have

incorporated robotic grippers of different sizes and types to accomplish heterogeneous tasks in

broad application areas including industrial, medical, collaborative, and assistive technologies.

Most robots (JACO, MICO, iARM, PR2, Baxter, NAO, etc.) possess two-finger and in some cases

three-finger grippers to satisfy the most important conditions of grasping objects, namely, form

closure and force closure. In addition, robotic grippers ought to be controlled to optimize the force

applied by the finger-gripper so as to not cause slippage and/or deformation of objects, which in

many applications is undesirable. Furthermore, this pursuit faces a significant challenge due to the

complexity that arises from a large diversity of objects that a robot is required to grasp. The com-

plexity intensifies considerably as the order of the structure of the environment and pre-existing

knowledge of objects’ shape and size decreases. Grasping an object with insufficient force may

cause a failure in picking the object appropriately or cause it to slip during manipulation of the

robot to place the grasped object elsewhere. On the other hand, grasping too firmly can unin-

tentionally crush or damage objects – this may have economic or safety implications. Therefore,

the ability to adaptively control robotic grippers in real-time to apply minimal force that prevents

slippage as well as deformation of grasped objects is indispensable for certain tasks where delicate

objects are being handled (e.g., assistive robots performing ADL tasks).

Previous papers have proposed slip avoidance techniques to solve the problem at hand with slip de-

tecting sensors ranging from biomimetic to optical-mechanical sensors. These approaches can be

grouped into optical-sensor-based, pressure/force-based, and vibration-based. In [1], researchers

studied the efficacy of the use of optical sensors for a variety of textures. In [2], a closed-loop
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controller, equipped with an optical sensor for slip detection, was used to tune the grasping force.

However, the study mentioned neither if the grasped force avoids deformation of objects nor if the

controller can be used beyond the only one object they tested for. In [3], upon detection of slip, via

an optical-mechanical tactile sensor, objects were grasped by a preset amount of force to prevent

additional slip and ensure fine finger-force control. In [4] and [5], following a slip event, detected

by tracking the rate of change of force from static conditions against a preset threshold, the gripper

applies an additional grasping force that is established prior to slip detection. In [6], a pressure

conductive rubber was used to construct a slip sensor to apply a gripping force proportional to

the slip signal. In [7], a sliding mode controller was designed to approximate the grasping force

after calculating slip based on the high frequency vibration of the shear force and its derivative;

however, the ISMSP controller is slow to converge and only accounts for translational slipping.

In [8], researchers used a biomimetic tactile sensor in order to establish force estimation together

with slip detection and classification. They used machine learning techniques to map slip signals,

detected by the change in the tangential force and slip-related micro-vibrations from the sensor, to

force. In addition, a gripper force was controlled by estimating the friction coefficient. In [9]-[11],

minimum force object immobilization controllers are considered using 6-axis F/T sensors and no

motion sensors but they do require initial object exploration as well as offline estimation of the

translational and rotational stiffnesses of the sensor pad which is an implicit way to generate ob-

ject motion estimates through an admittance formulation. In [12], an algorithm is described that

is intuitive but suffers from the issue of having to require a large number of parameters including

object stiffness. An empirical approach in [13] proposes a learning-based approach for slip pre-

diction but suffers from failure to compensate for rotational slip. A recent work in [14] provides

a novel control formulation but does not offer stability guarantees. Machine-learning approaches

to tactile force and object dynamics inferencing have been reported in [15] and [16]. Although the

aforementioned methods provided solid proposals, none of them meets the overall goal of build-

ing a real-time system theoretic adaptive system with stability guarantees that can be implemented
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out of the box for preventing slippage of never before seen objects while also minimizing grasped

object deformation.

In our initial work in [18], an open-loop force flatness detection-based adaptive grasping algo-

rithm was implemented to grasp a large set of novel objects. While this technique works for some

objects, it is not successful for “soft and compressible” objects like plastic and Styrofoam cups

which do not provide any functional flatness profile before deformation. Prompted by this, in [19]

we implemented a closed-loop adaptive algorithm which effectively grasped an arbitrary wide set

of objects with minimal grasping force after slip has been detected. Motivated by our desire to

design a reduced-order controller, in Chapter 2 [20], we propose a reparameterization for the sys-

tem model developed in [19]. This facilitates the design of an adaptive controller that guarantees

stability and convergence of the object slip velocity. Specifically, using a simple linearly param-

eterizable model for the interaction between a robotic gripper and an arbitrary object, we design

an adaptive backstepping controller that relies on measurements of the object-gripper interaction

force and object slip velocity. A Lyapunov-based stability analysis is utilized to show asymptotic

convergence of the object slip velocity to the origin. The analysis also shows that the closed-loop

controller is able to estimate the minimal steady-state force required to grasp the object. The main

advantage of this work over its predecessors is the reduced order and, thereby, lower computational

complexity of the controller.

To extend our previous designs so as to be able to avoid both linear and rotational slippage, in Chap-

ter 3, a new model is derived and thus a corresponding modification of adaptive control based on

switching between translational and rotational motion-based controllers is proposed [21] . More-

over, in the past work the controller design relied on measurements of the object-gripper interaction

force and object linear slip velocity. In order to estimate the angular slip velocity of the grasped

object, we redesigned our sensorized robotic gripper prototype in [19] to incorporate a single force

sensing resistor (FSR) and a stereo laser-based optical slip sensor set. The main contribution of this
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work, in addition to the novel sensorized gripper prototype design and gripper-object interaction

modeling, is the novel real-time algorithm that can adaptively grasp objects independent of their

geometry, texture, and weight. Furthermore, the algorithm guarantees the application of minimal

grasping force, to minimize object deformation as long as there is pure rotational or translational

motion. When there exists a combination of motions and switching is activated, no guarantees can

be provided; however, extensive experimental results show that the force applied is close to the

minimal required for immobilization.

Until this point, we have studied how to model gripper object interaction and adapted for it to de-

sign control based on different object shape, gripper type, and friction between gripper/ object, etc.

This adaptation is needed to get optimal gripper force. Similarly, optimal interaction is needed be-

tween human and robot based on individual differences between various users. In order to facilitate

engagement with a robot, Human-Robot Interaction (HRI) needs to be modeled and incorporated

into the interface such that the robot is responsive to the individual needs of the particular user.

Since the advent of robot teleoperation, researchers have been studying many characteristics of a

person’s being (also known as human factors) to identify which ones have an influence on perfor-

mance. The majority of research looking at human factors that impact user’s performance aim to

find techniques to identify potential skilled operators. Also, by identifying which factors are most

relevant, the performance of individuals can be improved by enhancing these factors through train-

ing and/or adapting human robot interface. According to Lathan and Tracy, individuals with better

spatial perception abilities produced fewer mistakes when managing a teleoperated robotic system

[22]. Gomer and Pagano [23] as well as Long and co-researchers [24]-[25] went even farther,

examining the distinct components of spatial skills to see how they related to user performance.

NASA has conducted several studies to identify how to assess potential manipulator operators for

the shuttle based on spatial abilities [26]-[28]. Wang et al. reported on the use of a teleoperation

system to predict a person’s performance based on spatial abilities in a rendezvous and docking

4



missions [27]. Paperno et al. recently conducted a major user research to model significant dif-

ferences in order to anticipate a user’s performance when using a robotic manipulator to execute

pick-and-place/object retrieval tasks [29]. Several human factors were discovered to be significant

determinants of task completion speed, command quantity, and command input rate. Motivated by

the findings of the study in [29], we propose a putative model for joint probability distribution of

human factors utilizing Principal Components Analysis (PCA) as well as Pearson and correlation

tests detailed in Chapter 4.
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CHAPTER 2: AN ADAPTIVE CONTROL BASED APPROACH FOR

GRIPPING NOVEL OBJECTS WITH MINIMAL GRASPING FORCE

©[2018] IEEE

M. Al-Mohammed and Z. Ding and P. Liu and A. Behal “An Adaptive Control Based Approach

for Gripping Novel Objects with Minimal Grasping Force,” IEEE 14th International Conference

on Control and Automation (ICCA) Anchorage, AK, 2018,, pp.1040-1045.

Problem Statement and Modeling

Using gripper velocity as the control input and the applied grasping force as well as the object slip

velocity as the measurements, the goal of this research is to drive a robot gripper to successfully

grasp a novel object with minimal grasping force. The geometry, weight, and texture of the object

are assumed to be unknown. Figure 2.1 shows the gripper fingers grabbing an arbitrary object

which is acted upon by a constant disturbance force W , applied gripper force Fa, and frictional

force Ff = µFa where µ is the coefficient of friction between the gripper and the object such that

the dynamics of the slip velocity v (t) can be written as

mv̇ = W − µFa. (2.1)

which can be reparameterized as follows

av̇ = b− Fa (2.2)
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Figure 2.1: The Free Body Diagram for Gripper Object Interaction

where a = m/µ and b = W/µ. Since it is not possible to directly control and apply the gripper

force Fa (t), we model the incremental displacement xg (t) of the gripper as proportional to the

applied force such that

Fa ∝ xg (2.3)

the time derivative of which can be related to the control input signal, the gripper velocity vg (t),

as follows

Ḟa = κvg (2.4)
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Thus, (2.2) and (2.4) represent the overall system dynamics. Here, in deference to our problem

statement above, a, b,and κ are assumed to be unknown parameters of which we will adapt for b

and κ during the control design process.

Control Design and Stability Analysis

In this section, an adaptive backstepping approach will be utilized based on the slip and force

measurements from the finger sensor. Based on the backstepping approach, we can design a desired

gripper force as

Fd = b̂+ k1v (2.5)

where k1 is a positive control gain and b̂ (t) is a parameter estimate that is yet to be designed. Now,

by adding and subtracting Fd(t) to (2.2),we can get

av̇ = b̃− Fe − k1v (2.6)

where Fe(t) is an auxiliary error variable defined as

Fe ≡ Fa − Fd, (2.7)

while b̃ is a parameter estimation error defined as follows

b̃ ≡ b − b̂. (2.8)

To motivate the design for an adaptive parameter estimator, we define a positive-definite function

V0(t) as follows

V0 =
1

2
av2 +

1

2
γ−1
1 b̃2 (2.9)
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where a and γ1 are positive constants. After differentiating ( 2.9) along the trajectory of (2.6) and

rearranging terms, one can obtain

V̇0 = −k1v
2 − Fev + (v − γ−1

1
˙̂
b)b̃ (2.10)

Based on the parenthesized term in (2.10), we design an adaptive estimator for b̂(t) as follows

˙̂
b = γ1v (2.11)

By substituting (2.11) into (2.10), we obtain

V̇0 = −k1v
2 − Fev. (2.12)

To complete the design, we can time differentiate (2.7) to obtain the dynamics of Fe(t) as follows

Ḟe = κvg − γ1v − Y θ (2.13)

where Y (t) ≡ [k1 −k1Fa (t)] is a measurable regression vector, θ ≡ [ b
a

1
a
]T is an unknown

parameter vector, and we have utilized (2.2) and (2.11) to substitute for v̇(t) and ˙̂
b (t), respectively.

Motivated by the structure of (2.13), we can design vg(t) as follows

vg = κ̂−1(v − k2Fe +
˙̂
b+ Y θ̂) (2.14)

where k2 is a positive control gain, while κ̂ (t) and θ̂ (t) are parameter estimates which are yet to

be designed. After substituting (2.14) into (2.13) and rearranging the terms, we obtain

Ḟe = v − k2Fe − Y θ̃ + κ̃κ̂−1(v − k2Fe +
˙̂
b+ Y θ̂) (2.15)
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where κ̃ (t) , θ̃ (t) are parameter estimation errors defined as follows

κ̃ ≡ κ − κ̂

θ̃ ≡ θ − θ̂
. (2.16)

To analyze the stability of the overall system and design the adaptive parameter estimation for κ̂ (t)

and θ̂(t), we define another positive-definite function V (t) as follows

V = V0 +
1

2
F 2
e +

1

2
γ−1
2 κ̃2 +

1

2
γ−1
3 θ̃T θ̃ (2.17)

where γ2 and γ3 are positive constants, while V0(t) has been previously defined in (2.9). By time

differentiating (2.17) along (2.12) and (2.15) and rearranging the terms, we obtain

V̇ = −k1v
2 − k2F

2
e + θ̃T [−Y TFe − γ−1

3
˙̂
θ]

−κ̃ [ γ−1
2

˙̂κ− κ̂−1(v − k2Fe +
˙̂
b+ Y θ̂)Fe]

(2.18)

Motivated by the structure of the bracketed terms in (2.18), the adaptive update laws for κ̂ (t) and

θ̂(t) can be designed as follows

˙̂κ = γ2κ̂
−1(v − k2Fe +

˙̂
b+ Y θ̂)Fe (2.19)

˙̂
θ = −γ3Y

TFe (2.20)

Substituting (2.19) and (2.20) into (2.18) yields a negative semi-definite expression for V̇ (t) as

follows

V̇ = −k1v
2 − k2F

2
e ≤ 0 (2.21)

It is clear to see from (2.17) and (2.21) that v (t) , Fe (t) ∈ L2 ∩ L∞ while b̂ (t) , κ̂ (t) , θ̂ (t) ∈ L∞.

Based on previous assertions, it is also clear to see from (2.6) and (2.15) that v̇ (t) , Ḟe (t) ∈ L∞.
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Thus, one can utilize Barbalat’s Lemma [37][38] to prove that lim
t→∞

v (t) , Fe (t) = 0. Now, based

on (2.6), it is clear to see that lim
t→∞

b̃ (t) = 0. From the aforementioned facts and (2.5), it is clear to

see that Fa = Fd = W/µ in the limit which implies that the object gets immobilized in the gripper

with minimal grasping force.

Remark1: A block diagram of the complete control design given by (2.5), (2.11), (2.14), (2.19),

and (2.20) is shown in Figure 2.2

Figure 2.2: Block diagram of the full adaptive grasping controller.

Implementation

Experimental Setup

The testbed for the proposed adaptive algorithm is the UCF-MANUS platform [36] which has a

gripper embedded with a force sensing resistor (FSR) and a laser-based slip sensor. The gripper
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setup is shown in Figure 2.3. Details of the Gripper Prototype Assembly are available in [19]. We

utilized a half-filled and a fully-filled water bottle as test objects for the experiments.

Figure 2.3: Assembled gripper setup

Experimental Protocol

There are two steps in the process for testing the proposed closed-loop adaptive algorithm. The

initial step is to grasp the object with the smallest detectable force. At this time, the gripper tries

to lift the object from its resting surface. If the initial grasp force is not enough to lift the object,

slipping will occur at which time the adaptive regrasping controller will start to adjust the grasping

force. Figure 2.4 shows the progression of steps involved in initial grasping and adaptive regrasping

as needed.
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Figure 2.4: Flowchart of the proposed grasping algorithm

Initial Grasping

The details of the initial grasping are as follows. Since the gripper is asymmetric in terms of mea-

surements (i.e., force sensing on one side and slip sensing on the other), both the slip and force

sensors are employed to ensure that both fingers are touching the object. It was determined exper-

imentally that a force measurement of greater than 0.5N combined with a detected slip velocity of
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at least 0.1mm/s ensures a bilateral contact condition. Once contact is detected on both sides, the

initial grasping phase is considered to be complete.

Adaptive Regrasping

Object will slip between the gripper fingers when the initial grasping force is not sufficient to

counter gravitational force. Then the adaptive regrasping controller will be activated to stop the

slipping. To simplify the implementation of the controller designed in Section 2, we utilize a

timescale separation assumption to divide the controller into an outer loop and an inner loop as

shown in Figure 2.5. The outer loop computes the desired gripper force Fd (t) while the inner loop

utilizes the gripper velocity command vg (t) to zero out the force error between the actual force

Fa (t) and the desired force Fd (t). The simplified nested adaptive controller can be described

mathematically as follows

Fd = b̂+ k1v

˙̂
b = γ1v

vg = −k2 (Fa − Fd)

(2.22)

Figure 2.5: Block diagram of the simplified nested adaptive controller used for implementation

14



Table 2.1: Model Parameters For Both Approaches

m = 0.5kg g = 9.8m/s2

µ = 1.5 κ = 15N/cm
Fa(0) = 2N

Table 2.2: Controller Parameters for simulating the proposed approach

k1 = 8 k2 = 20
γ1 = 60 γ2 = 2

γ3 = 2 b̂ (0) = 2

θ̂(0) = [ 1 0.5 ]T

Remark2:We note here that the simplified controller design shown above in (2.22) is of lower order

than the simplified adaptive controller implemented in [19].

Results

Simulation Results

In this section, the proposed adaptive controller and the original adaptive controller presented in

[19] are simulated for the object-gripper interaction model stated in Section 2. A simple object

was modeled by a certain weight and a friction coefficient. The model parameters utilized during

numerical simulation are shown in Table 2.1. Table 2.2 shows the controller parameters for the

proposed approach while Table 2.3 shows the controller parameters for the approach proposed in

[19].

The simulation results using the proposed approach can be seen in Figure 2.7 where it can be seen

that the object gets immobilized in 0.5s. The estimated value of b converges to the true minimal
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Table 2.3: Controller Parameters for simulating the approach proposed in [19]

k1 = 12 k2 = 20
γ1 = 30 γ2 = 5
γ3 = 2 γ4 = 2

Ŵ (0) = 3 µ̂ (0) = 1.5

θ̂(0) = [ 1 0.5 ]T

Table 2.4: Experiment Controller Parameters

k1 = 600 k2 = 5

γ1 = 700 b̂ (0) = 1.4N

grasping force which is 3.26N. We can also easily notice that the applied force tracks the desired

force very well. During the entirety of the regrasping process, the object only slipped by 2.1cm

while the peak velocity of the gripper is seen to be 2.3 cm/s which is an achievable speed for most

grippers. The results for the design proposed in [19] can be seen in Figure 2.6. It can seen that the

object gets immobilized in 0.6s. The estimates for the parameters µ and W are 1.128 and 3.684

which is clearly not close to the true value. However, the ratio of these parameter estimates is

equal to the ratio for the actual parameters which shows that minimal gripping force is utilized.

The gripper controller also drives the gripper to track the desired force perfectly. During the

entirety of the regrasping process, the object slips as low as 2.28cm which is 1.8mm longer than

proposed approach. The peak velocity of the gripper is 2.0 cm/s which is 0.3cm/s lower than the

proposed approach. Thus, it is clear to see that both approaches obtain similar performance while

the proposed approach has less complexity than the previous approach in [19].
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Figure 2.6: Simulation results for the proposed approach

Table 2.5: Actual and Estimated Parameter Values

Parameters
Half-filled Bottle Fully-filled Bottle

Value Fa Fa

Actual 1.8N 3.1N
Estimated 2.0N 3.1N

Experimental Results

The experimental results for a half-filled and a fully-filled bottle are presented in Figure 2.8 and

Figure 2.9, respectively. The controller parameters for the simplified adaptive design of (2.22 )

are shown in Table 2.4. In Figure 2.8, the half-filled bottle is initially grasped with a force of

1.4N . However, slipping occurs during lifting at which time the adaptive controller gets activated

to immobilize the object. The final estimated grasping force is 2.0N . Slippage is also seen to
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Figure 2.7: Simulation results for the approach proposed in [19]

occur for the full-filled bottle as shown in Figure 2.9. The final estimated grasping force is 3.1N .

The comparison between the estimated and the true minimal grasping force is listed in Table 2.5.

From the table, we can easily see that the estimated value for the fully-filled bottle is equal to the

minimal grasping force, while the estimated value for the half-filled bottle is only 0.2N larger than

the minimal grasping force.

18



Figure 2.8: Slip detection and regrasping of half-filled water bottle. Initial grasping stage lasts
between t = 0s and t = 5.5s using an initial grasp force of 1.41N. Robot starts lifting the bottle at t =
5.5s and the algorithm detects slipping at t = 6.3s at which time the proposed closed-loop adaptive
algorithm activates to stop slipping using final grasping force of 2.0N
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Figure 2.9: Slip detection and regrasping of fully-filled water bottle. Initial grasping stage lasts
between t = 0s and t = 3.9s using an initial grasp force of 1.43N. Robot starts lifting the bottle
and slipping is detected at t = 4.27s at which time the proposed closed-loop adaptive algorithm
activates to stop slipping using final grasping force of 3.1N.
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CHAPTER 3: A SWITCHED ADAPTIVE CONTROLLER FOR

ROBOTIC GRIPPING OF NOVEL OBJECTS WITH MINIMAL FORCE

©[2022] IEEE

M. Al-Mohammed, R. Adem, and A. Behal “A Switched Adaptive Controller for Robotic

Gripping of Novel Objects with Minimal Force,” IEEE Transactions on Control Systems

Technology, accepted, 2022.

Problem Statement and Modeling

The aim of this research is to design an algorithm to adaptively control robotic grippers in real-time

to apply minimal force that prevents slippage while respecting the critical constraint on deforma-

tion of grasped objects. In order to achieve this objective, the gripper velocity will be utilized

as the control input while the slip velocities (i.e., linear and angular ) and applied grasping force

will be the available measurements for the controller. Figure 3.1 shows a free body diagram for

an object undergoing rotational and translation motions. The gripper finger is acted upon by the

torque caused by mg, the applied force Fa, frictional force µFa, and the rotational friction force

βFa, where µ and β are the coefficients of linear and rotational friction between the gripper and

the object. The dynamics of this system can be derived using a Lagrangian formulation as given

below.

The total kinetic energy T can be written as

T =
1

2
Iθ̇2 +

1

2
mẏ22 (3.1)
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while the total potential energy U can be obtained as

U = −mgy = −mg(y1 + y2) (3.2)

where θ and y1 denote, respectively, the angular and vertical displacements of the object COM,

respectively, caused by the rotational slip, while y2 is the vertical displacement caused by the

translational slip. Here, m and I denote the mass and moment of inertia of the object about the

axis of rotation1. From Figure 3.1, it is clear to see that y1 = r sin(θ) where r is the distance of the

center of the mass from the rotation axis. Now, the Lagrangian function can be written as :

L = T − U

= 1
2
Iθ̇2 + 1

2
mẏ22 +mg(r sin(θ) + y2)

(3.3)

By using the Euler-Lagrange equations [41] ,we can obtain the system dynamics as follows

mv̇ = mg − µFa (3.4)

Iω̇ = mgr cos(θ)− βFa (3.5)

where v and w denote the translational and rotational slip velocities, respectively. Since it is not

possible to directly control and apply the gripper force Fa(t), we model the incremental displace-

ment xg(t) of the gripper as proportional to the applied force such that

Fa ∝ xg (3.6)

1Technically, for an arbitrary object, the moment of inertia I in this formulation is a function of both y2 and θ
but for simplicity of modeling, I is assumed to be fixed assuming limited object slipping before control effectively
immobilizes it in the application scenario considered here.
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the time derivative of which can be related to the control input signal, the gripper velocity vg(t), as

follows

Ḟa = κvg. (3.7)

Figure 3.1: Free Body Diagram of a Rotating and Slipping Object within the Fingers of a Robotic
Gripper

Assumption: While all objects are deformable to one extent or another (and deformation will be

seen during subsequent experiments), this paper primarily deals with objects with medium-to-high

stiffness objects which for purposes of control design will devolve to a rigidity assumption.

Control Design and Stability Analysis

Given (3.4), (3.5), and (3.7) as the overall system dynamics model, we design a switched adaptive

controller design that is shown to immobilize translational and rotational slippage of the target

object constrained within the fingers of a robotic gripper. In order to simplify the analysis, we

assume a timescale separation where the desired force is generated in a slow outer loop which then

acts as the setpoint for a fast inner loop to command the gripper velocity to converge the desired
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force to the actual force using a simple proportional controller. For the outer loop, we switch

(state-based switching) appropriately between desired forces adaptively generated by the linear-

motion based dynamics and the angular-motion based dynamics. A stability analysis is presented

for the switched system using a common Lyapunov function which shows that the linear velocity

v and angular velocity ω converge to the origin asymptotically. In the next three subsections, Fa is

considered to be the control input into the system based on our scale separation assumption stated

earlier.

Linear Motion Based System

By defining a = m/µ, we rewrite the dynamics of (3.4) as follows

av̇ = ag − Fa (3.8)

from which we can design a control input F v
a based solely on the linear-motion based as follows

F v
a = âg + k1v. (3.9)

where k1 > 0 is a control gain and â (t) is a yet to be designed adaptive parameter estimate. Given

a Lyapunov function V1(t) defined as follows

V1 =
1

2
av2 +

1

2
γ−1
1 ã2 (3.10)

where ã ≜ a − â is a parameter estimation error and γ1 > 0 is a control input, a gradient type

adaptive update law of the form

˙̂a = γ1gv (3.11)
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yields a time derivative of V1 (t) along the trajectories of (3.8), (3.9), and (3.11) as follows

V̇1 = ãgv − k1v
2 + γ−1

1 ã (−γ1gv)

= −k1v
2 < 0

(3.12)

From (3.10) and (3.12), it can be shown that v (t) ∈ L2 ∩ L∞ while ã (t) ∈ L∞. Given the

closed-loop velocity dynamics

av̇ = ãg − k1v

it is clear to see that v̇ (t) ∈ L∞. Now, using Barbalat’s Lemma [37][38], it can be proved that

lim
t→∞

v(t) = 0. It follows also from the above equation that lim
t→∞

ã(t) = 0 for the linear system

standing in isolation.

Angular Motion Based System

By defining b = mgr/β, we rewrite the dynamics of (3.5) as follows

Iω̇

β
= b cos θ − Fa (3.13)

from which we can design a control input F ω
a based solely on the angular-motion based as follows

F ω
a = b̂ cos θ + k2ω. (3.14)

where k2 > 0 is a control gain and b̂ (t) is a yet to be designed adaptive parameter estimate. Given

a Lyapunov function V2(t) defined as follows

V2 =
Iω2

2β
+

1

2
γ−1
2 b̃2 (3.15)
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where b̃ ≜ b − b̂ is a parameter estimation error and γ2 > 0 is a control input, a gradient type

adaptive update law of the form
˙̂
b = γ2ω cos θ (3.16)

yields a time derivative of V2 (t) along the trajectories of (3.13), (3.14), and (3.16) as follows

V̇2 = b̃ cos θω − k2ω
2 + γ−1

2 b̃ (−γ2ω cos θ)

= −k2ω
2 < 0

(3.17)

From (3.10) and (3.12), it can be shown that ω (t) ∈ L2 ∩ L∞ while b̃ (t) ∈ L∞. Given the

closed-loop velocity dynamics
Iω̇

β
= b̃ cos θ − k2ω

it is clear to see that ω̇ (t) ∈ L∞. Now, using Barbalat’s Lemma [37][38], it can be proved that

lim
t→∞

ω(t) = 0. It follows also from the above equation that lim
t→∞

b̃(t) = 0 for the rotational system

standing in isolation as long as θ ∈ (−π/2, π/2).

Switched Adaptive System

In order to reconcile the disparate designs of the gripper force Fa as given by (3.9) and (3.14)

above, we propose the unified switching control law

Fa = max (F v
a , F

ω
a ) (3.18)

which is motivated intuitively by the fact that the larger of the two forces would be enough to

immobilize both translational and rotational motions. To rigorously prove stability, we can now

consider the two cases, namely F v
a > Fw

a and F v
a < Fw

a by utilizing the following common Lya-
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punov function

V3 = V1 + V2

=
1

2
av2 +

1

2
γ−1
1 ã2 +

Iω2

2β
+

1

2
γ−1
2 b̃2

(3.19)

Case 1 (F v
a > Fw

a ): In this case, the system evolves along the following closed-loop dynamics

av̇ = ãg − k1v
.

ã = −γ1gv

Iω̇

β
= b cos θ − âg − k1v
.

b̃ = −γ2ω cos θ

(3.20)

The derivative of V3 (t) along the dynamics of (3.20) yields

V̇3 = −k1v
2 + b̂ω cos θ − F v

aω. (3.21)

After adding and subtracting the term k2ω
2 on the right hand side of (3.21) and rearranging the

terms, we can rewrite V̇3 (t) as follows

V̇3 = −k1v
2 − k2ω

2 − F v
aω +

(
b̂ cos θ + k2ω

)
ω

= −k1v
2 − k2ω

2 − (F v
a − Fw

a )ω
(3.22)

Sine the physical constraints of the problem restrict ω (t) ≥ 02, the last term on the right hand side

of the above expression is always negative as long as F v
a > Fw

a . Thus, it is clear to see that V̇3 (t)

can be upperbounded as follows

V̇3 ≤ −k1v
2 − k2ω

2 < 0. (3.23)

2By examining the system dynamics, it can be seen that the system is indeed symmetric with respect to clockwise
or anticlockwise rotation. The practical import of this is that if the system ends up at the other extreme during a
pendulum motion (at which point ω = 0), the angular velocity can be reset to be positive in the other direction which
effectively leaves the model and, hence, the controller unchanged.
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Case 2 (F v
a < Fw

a ): In this case, the system evolves along the following closed-loop dynamics

av̇ = ag − b̂cos(θ)− k2ω
.

ã = −γ1gv

Iω̇
β

= b̃ cos θ − k2ω
.

b̃ = −γ2ω cos θ

(3.24)

The derivative of V3 (t) along the dynamics of (3.24) yields

V̇3 = −k2ω
2 + âgv − F ω

a v. (3.25)

After adding and subtracting the term k1v
2 on the right hand side of (3.21) and rearranging the

terms, we can rewrite V̇3 (t) as follows

V̇3 = −k1v
2 − k2ω

2 − F ω
a v + (âg + k1v) v

= −k1v
2 − k2ω

2 − (F ω
a − F v

a ) v
(3.26)

Sine the physical constraints of the problem ensure that v (t) ≥ 0, the last term on the right hand

side of the above expression is always negative as long as F ω
a > F v

a . Thus, it is clear to see that

V̇3 (t) can be upperbounded in the same manner as indicated in (3.23).

From (3.19) and (3.23), it can be shown that v (t) , ω (t) ∈ L2 ∩ L∞ while ã (t) , b̃ (t) ∈ L∞

regardless of how the system switches between Case 1 and Case 2. Furthermore, from (3.20) and

(3.24), it can be seen that v̇ (t) , ω̇ (t) ∈ L∞. Now, using Barbalat’s Lemma [37][38], it can be

proved that lim
t→∞

v (t) , ω(t) = 0 for the switched adaptive system representing the outer loop. The
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overall inner and outer-loop switched adaptive control system design can be written as follows

F v
d = âg + k1v

.

â ≜ γ1gv

F ω
d = b̂cos(θ) + k2ω

.

b̂ ≜ γ2ωcos(θ)

Fd = max(F v
d , F

ω
d )

vg = −k3 (Fa − Fd)

(3.27)

where k3 > 0 is a control gain. As can be seen in the block diagram shown in Figure 3.2, the

slow outer loop stipulates the desired gripper force Fd using the switching adaptive controller that

selects the maximum between F v
d (t) and F ω

d (t). Furthermore, the fast inner loop converges Fa (t)

to Fd (t) by applying the appropriate gripper velocity command vg to achieve force tracking with

zero steady-state error.

Figure 3.2: Block diagram of adaptive grasping controller powered by a switched system for as-
signing the desired grippping force
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The Sensorized Gripper Prototype

To implement the proposed adaptive algorithm for slippage prevention, the two-finger gripper of

UCF-MANUS assistive robot [36] was modified by attaching 3-D printed frames as shown in Fig-

ure 3.3. Acrylonitrile Butadiene Styrene (ABS) plastic material was used for fabricating these

frames which were designed with cavities and channels with appropriate sizes to allow for embed-

ding the force and slip sensors needed for this research. While one force sensor has been mounted

in the left gripper finger frame, two laser-based slip sensors have been mounted 35mm apart in the

cavity of the right finger one as shown in Figure 3.3(a). The details of our sensor configuration are

described below.

Force Sensor

For measuring force, a FlexiForce A201 Force Sensing Resistor (FSR) with range of 0N − 111N

[42] was fixed between two metal plates of a hinge for freely conveying applied force and then

mounted on the gripper finger frame as shown in Figure 3.3(a) and 3.3(d). The FSR was covered

with a small plastic disc to direct the force from upper plate to the active sensing area (which is

a 0.375” diameter circle) and also to mitigate the nonlinear behavior of the FSR. A small round

anti-slip pad was mounted on the outer plate of the hinge as well as on the opposite finger frame

providing known contact areas. To calibrate the FSR, a set of known weights (0 − 1000g) was

applied to measure the corresponding voltages followed by curve fitting. For interfacing purpose,

Phidget Interface Kit 8/8/8 I/O Board featured with high-bandwidth data acquisition was utilized

with a FlexiForce Adapter to read force data from the FSR with a sampling rate of 62.5Hz.
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Figure 3.3: (a) Frames with sensors (b) sensorized gripper (c) Laser slip sensors with their mircro-
contoller boards and batteries (d) FSR sensor mounted on the gripper frame.

Slip Sensors

We decided to use a non-contact type of slip sensor, specifically the darkfield high-precision laser

sensor, for slip detection of grasped objects. The darkfield sensor and its microcontroller interface

board were extracted from a Logitech MX Anywhere 2S Mouse device and the two darkfield

sensors were reconnected to their respective interface board with longer extension wires as shown
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in Fig.3.3(c). These sensors create a micro-road map of the surface and detect position changes that

allows them to track those changes accurately on virtually any surface including very glossy and

transparent objects [40]. The laser sensor is supported by a polycarbonate round lens for directing

illumination and optical imaging necessary for proper operation of the sensor. The board interface

has a rechargeable 500 [mAh] battery and can connect to the computer port wirelessly.

The laser sensors can be programmed to have a maximum resolution of 4000 [DPI] (or 6.35×10−3

[mm/pixel]) with a 1000 [Hz] polling rate which is sufficient for our slippage detection algorithm.

As the control algorithm was run in a Microsoft WINDOWS environment, WM INPUT message

was utilized along with the GetRawInputData function to retrieve raw data from the human inter-

facing device (HID) stack which in our case are the two laser sensors. WM INPUT message can

distinguish between similar type of devices, e.g., mouse-like devices, connected to the computer

which allowed us to use two laser sensors running simultaneously. After position data from both

slip sensors was received, it was processed to obtain the respective slipping velocities as follows.

First, an exponential smoothing function was utilized to smooth the position data. Then, a time

derivative of the smoothed output was filtered using a third order low-pass Butterworth filter with

a 45 [Hz] cutoff frequency to obtain slipping velocity signal with low noise [19]. The two laser

mouse sensors were used to measure the linear y-direction slip velocities v1 and v2 of the grasped

object from which the common mode (translational) and differential mode (angular) slip velocities

of the object were estimated as

v =
v1 + v2

2
(3.28)

and

ω =
v2 − v1

d
(3.29)

where d is the distance between the two laser sensors which is 35 [mm] for our prototype.
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Implementation

Experimental Setup and Procedure

The UCF-MANUS platform [36] together with our new sensorized robotic gripper was used as the

experimental environment. For testing the implementation of our proposed algorithm, we picked

a variety of objects within the lifting range of the UCF-MANUS gripper. The comprehensive ex-

perimental studies examined different weights, textures, geometries, and orientations of objects

with respect to the contact point by the gripper fingers. This allowed us to verify the robust perfor-

mance of the algorithm in meeting the goals extensively discussed in the introduction and problem

statement section of the paper. As shown in Figure 3.4, the objects included cereal boxes with

different weights (68 [g], 113 [g], and 380 [g]) as well as three plastic bottles of weights (113 [g]

, 275 [g], and 284[g]) with different contents (water and sand) to capture the effect of change in

moment of inertia of objects during slippage. The minimal (ground truth) grasping force, Fgt, for

each object was found by repeatedly setting an increasing amount of desired force Fd manually in

the controller and applying gripper velocity vg = −k3 (Fa − Fd) to convergence until reaching the

minimum force Fd that immobilized an object in its particular configuration. Having found Fgt in

this manner, it can be compared with the automated final applied grasping force for each object

obtained via application of the proposed closed-loop adaptive algorithm as implemented through

(3.27). We also observed the degree of deformation of the objects after the algorithm had been

executed successfully. The controller gains and adaptive estimation parameter initial conditions

used for all experiments are shown as follows

k1 = 400, k2 = 20, k3 = 0.95

γ1 = 35, γ2 = 16

â (0) = 2.5/g, b̂(0) = 2.5

(3.30)
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To test the proposed closed-loop adaptive algorithm, a two-step grasping process was implemented

consisting of initial grasping and adaptive regrasping as described below.

Figure 3.4: Objects grasped using the proposed algorithm. From left to right: Box 1: 340 [g] filled
with sand, Box 2: 68 [g], Box 3: 113 [g], Sand Bottle: 113 and 284 [g], Water Bottle: 113 [g], and
Water Bottle(cylindrical): 275 [g].

Initial Grasping

The target object initially is static and resting on a base. Since our sensorized two-finger gripper

exhibits asymmetry in the type of sensors used (i.e., a force sensor on the left finger and slip

sensors on the right finger), we require valid measurements from both the slip and force sensors to

establish initial object contact with both fingers. We determined experimentally that an initial force

measurement of greater than 1.5 [N] coupled with a detected slip velocity magnitude of at least

0.1 [mm·s−1] satisfies the initial contact condition. Meeting these contact conditions concludes

the initial grasping phase with the gripper exerting a minimal grasping force on the object. At the

end of this phase, the resting base of the object is removed so it is only under gravity and gripper

forces.
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Adaptive Regrasping

If translational and/or rotational slippage is detected upon removing the object base (i.e., the initial

grasping force was less than the minimal forced needed for immobilization), the proposed closed-

loop adaptive regrasping as described by (3.27) is carried out until slippage ceases (i.e.,v, ω → 0)

and the force error (Fe ≜ Fa − Fd) converges to near zero. At the conclusion of this phase, we

measure the force deviation Fdev ≜ Fa − Fgt as the difference between the final gripper applied

force Fa and the requisite minimal ground truth force Fgt as computed earlier with the open-loop

process described above. We also observe the corresponding degree of deformation of the object.

Experimental Results

Overall, six experiments were conducted. In the first two experiments, Box 1 (340 [g]) and the

Sand Bottle (284 [g]) were placed with their center of gravity (CG) within the gripper fingers such

that the resulting motion was predominantly translational. In the remaining four experiments, the

objects were placed with their CG outside the extent of the fingers such that the slipping motion was

mainly rotational. During all experiments, the amount of force applied during the initial grasping

phase was lower than minimal such that rotational/ translational slip was observed between the

gripper fingers and the objects during the adaptive regrasping phase.

Before and after pictures with predominantly translational slipping seen in the first two experiments

are shown in Figure 3.5. The force and motion data from these experiments plotted in Figures 3.6

and 3.7 show that closed-loop adaptive regrasping was activated successfully to ensure convergence

of the translational slip velocity to zero within 2.5 [s] following initiation of slipping. As expected,

the objects show no rotational slippage during the course of these two experiments. Similarly, the

error between the desired and actual forces converged to near zero as well. Table 3.1 shows that the
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force deviation Fdev was 5.49% and 3.8%, for the box and the water bottle, respectively. This small

force deviation is reflected in the lack of object deformation observed during both experiments.

Figure 3.5: A side-by-side view of the grasped objects before and after closed-loop adaptive re-
grasping algorithm has been executed for translational slippage.

Before and after pictures with predominantly rotational slipping along with some translational

slipping from the next four experiments are shown in Figure 3.8. Force and motion data from these

experiments can be seen in Figures 3.9-3.12 from which it is clearly seen that closed-loop adaptive

regrasping was activated successfully to ensure convergence of the rotational and translational slip

velocities to zero within 3.5 [s] following initiation of slipping. Due to the object configuration,

data clearly shows that the rotational velocity was the dominant part of the motion even as the

translational velocity was clearly present. Data also shows the close convergence of the actual

applied actuator force Fa to the maximum of the desired rotational (F ω
d ) and translation (F v

d )
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Figure 3.6: Slip detection and Adaptive re-grasping of a 340 [g] box containing sand. Initial
grasping stage lasts between t = 0 [s] and t = 3.48 [s] using an initial grasp force of 1.7 [N]. Robot
starts lifting the bottle at t = 3.48 [s] and the algorithm detects translational slipping at which time
the proposed closed-loop adaptive algorithm executes to stop slipping using final grasping force of
5.38 [N].

forces. Table 3.2 shows that the force deviation Fdev was between 2.78% (for Box 3) and 7.75%

(for Water bottle). Low to no deformation was observed for all objects tested.

Further Experimental Results

Two more experiments were conducted to show that the proposed algorithm was able successfully

to prevent slippage (a) for an object with a non-flat surface (cylindrical in this case), and (b) with

a different gripper orientation (rolled in this case). A cylindrical water bottle ( 275 [g]) was tested

for predominantly translational slipping as shown in Figure 3.13 (top). The force and motion data

from this experiment plotted in Figure 3.14 show that the closed-loop adaptive regrasping was

activated successfully to ensure convergence of the translational slip velocity to zero within 1.7 [s]
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Figure 3.7: Slip detection and Adaptive re-grasping of a 284 [g] bottle containing sand. Initial
grasping stage lasts between t = 0 [s] and t = 3.28 [s] using an initial grasp force of 1.7 [N]. Robot
starts lifting the bottle at t = 3.28 [s] and the algorithm detects translational slipping at which time
the proposed closed-loop adaptive algorithm executes to stop slipping using final grasping force of
4.36 [N].

following initiation of slipping with zero error between the desired and actual forces. Table 3.3

shows that the force deviation Fdev was 6.1% for cylindrical water bottle resulting in no observed

object deformation during the experiment. In Figure 3.13 (bottom), the Box 3 ( 113 [g]) was tilted

with respect to the gravity axis so that the gripper would need to grasp it with a 30 [degree] roll

angle (ϕ). In this case, the acceleration of gravity (g) component in the direction of the gripper

plane (i.e. g cos(ϕ)) was considered in the control algorithm equations of (3.27). This is easily

implementable since the complete 3-DOF attitude of the robot gripper is available in real-time

from the robot kinematics3. The experimental results for this case seen in Figure 3.15 show clearly

that rotational velocity was the dominant motion along with some amount of translational velocity.

3We note here that another simplification would be to consider g cosϕ to be an unknown parameter and subsume
it into the parameter adaptation for a resulting in an even simpler formulation for the implementation given in (3.27).
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Table 3.1: Desired Force, Applied Force, Ground Truth Grasping Force, and Deformation Degree
Data for Translational slipping case

Box 1(340 [g]) Sand Btl.(284 [g])
Fd 5.55 4.59
Fa 5.38 4.36
Fgt 5.10 4.20
Fdev 0.28 0.16

%Fdev 5.49 3.80
Deformation none none

Table 3.2: Desired Force, Applied Force, Ground Truth Grasping Force, and Deformation Degree
Data for Rotational slipping case

Box 2 Box 3 Sand Btl. Water Btl.
Fd 4.05 5.98 6.79 8.49
Fa 3.54 5.55 7.03 8.62
Fgt 3.30 5.40 6.80 8.00
Fdev 0.24 0.15 0.23 0.62

%Fdev 7.27 2.78 3.38 7.75
Deformation none low none low

It can be clearly seen that the closed-loop adaptive regrasping was activated successfully to ensure

convergence of the translational slip velocity to zero within 2 [s] following initiation of slipping.

Furthermore, data shows that the actual applied actuator force Fa converged to the maximum of

the desired rotational force (F ω
d ). Table 3.3 shows that the force deviation Fdev was 3.5% with no

visual deformation of the object.

Practical Application

For practical applications such as object retrieval (or pick-and-place), the algorithm is embedded

in an overall grasping scheme as shown in Figure 3.16 which includes upper bounds on time and
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Figure 3.8: A side-by-side view of the grasped objects before and after closed-loop adaptive re-
grasping algorithm has been executed for predominantly rotational slippage.

maximum amount of slip allowed. For example, to allow for user intervention, we set a time-out

condition of 10 [s] for completion of the gripping process. If the object continues to slip beyond

a limit, we continue to regress to a series of other suboptimal regrasping schemes including open-

loop adaptive regrasping (where the gripper is allowed to close till it detects force flatness [18]) and

hardware-limited (available by default in the gripper) regrasping if further slip is detected. Online
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Figure 3.9: Slip detection and Adaptive re-grasping of 68 [g] box. Initial grasping stage lasts
between t = 0 [s] and t = 3.26 [s] using an initial grasp force of 1.85 [N]. Robot starts lifting
the bottle at t = 3.26 [s] and the algorithm detects rotational slipping at which time the proposed
closed-loop adaptive algorithm executes to stop slipping using final grasping force of 3.54 [N].

video demonstrations [43] performed in the Assistive Robotics Laboratory with the UCF-MANUS

are available which show the application of the proposed adaptive algorithm. The Table 3.4 shows

a comparison of our algorithm illustrated in this chapter with state-of-the-art work in [7].
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Figure 3.10: Slip detection and Adaptive re-grasping of 113 [g] box. Initial grasping stage lasts
between t = 0s and t = 3.44s using an initial grasp force of 2N. Robot starts lifting the bottle at t =
3.44s and the algorithm detects rotational slipping at which time the proposed closed-loop adaptive
algorithm executes to stop slipping using final grasping force of 5.55 N.

Table 3.3: Desired Force, Applied Force, Ground Truth Grasping Force, and Deformation Degree
Data for Transaltional slipping ( cylindrical object) case, and Rotational slipping with Rolling
Gripper case

Water Btl.(cyl) Box 3
Fd 4.36 4.57
Fa 4.35 4.14
Fgt 4.10 4.0
Fdev 0.25 0.14

%Fdev 6.1 3.5
Deformation none none
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Figure 3.11: Slip detection and Adaptive re-grasping of a 113 [g] bottle containing sand. Initial
grasping stage lasts between t = 0 [s] and t = 3.24 [s] using an initial grasp force of 1.8 [N]. Robot
starts lifting the bottle at t = 3.24 [s] and the algorithm detects rotational slipping at which time
the proposed closed-loop adaptive algorithm executes to stop slipping using final grasping force of
7.03 [N].
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Figure 3.12: Slip detection and Adaptive re-grasping of a 113 [g] bottle containing water. Initial
grasping stage lasts between t = 0 [s] and t = 4 [s] using an initial grasp force of 1.84 [N]. Robot
starts lifting the bottle at t = 4 [s] and the algorithm detects rotational slipping at which time the
proposed closed-loop adaptive algorithm executes to stop slipping using final grasping force of
8.62 [N].
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Figure 3.13: A side-by-side view of the grasped objects before and after closed-loop adaptive re-
grasping algorithm has been executed for translational slippage with cylindrical object (top), and
rotational slippage with rolling gripper of 30◦ (bottom).
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Figure 3.14: Slip detection and Adaptive re-grasping of a 275 [g] cylindrical bottle containing
water. Initial grasping stage lasts between t = 0 [s] and t = 2.4 [s] using an initial grasp force of
2.17 [N]. Robot starts lifting the bottle at t = 2.4 [s] and the algorithm detects translational slipping
at which time the proposed closed-loop adaptive algorithm executes to stop slipping using final
grasping force of 4.35 [N].

Table 3.4: Comparison of the Algorithm with State-of-the-Art

Engeberg et al.’s work[7] Our proposed work
Controller approach Adaptive sliding mode Switched adaptive controller

Measurement sensors
Strain gauges: normal
Force and shear force

FSR:force,
Two Laser slip sensors

Slip detection
Indirectly from high frequency
vibration of shear force

Directly from slip sensor
(slipping velocities)

Stability asymptotically stable
asymptotically stable /
Lyapunov based analysis

Slippage prevention type Translational only
translational and
rotational

Settling time Not reported 2.5 - 3.5 sec

Object type
Instrumental object (manipulandum)
with adjustable
stiffness and disturbance weights

real objects
with various shapes and weights

Deformation Low (2.5-5mm) None – low (0-5mm)

46



Figure 3.15: Slip detection and Adaptive re-grasping of 113 [g] box with rolling gripper 30◦. Initial
grasping stage lasts between t = 0s and t = 2.5 [s] using an initial grasp force of 1.6 [N]. Robot
starts lifting the bottle at t = 2.5 [s] and the algorithm detects rotational slipping at which time
the proposed closed-loop adaptive algorithm executes to stop slipping using final grasping force of
4.14 [N].
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Figure 3.16: Flowchart of the proposed adaptive grasping algorithm
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CHAPTER 4: A PUTATIVE MODEL FOR JOINT PROBABILITY

DISTRIBUTION OF HUMAN FACTORS RELATED TO

HUMAN-ROBOT INTERACTION (HRI)

Experimental Methodology

Here we utilized data generated by the experiments conducted by Paperno et al. [29] to analyze

the human factors and find a model for the joint probability distribution of them.

Participants

In this research study, 93 able-bodied individuals (46 Male and 47 Female) between the ages of

18 and 63 were recruited from UCF and the surrounding metropolitan areas. According to the

Internal Review Board (IRB), some population :prisoners, disabled, cognitively impaired, elderly

(over 65), or juvenile (under 18) were excluded from participation in this study.

Materials and Apparatus

Robotic Platform Setup

A 6 degrees-of-freedom (6DOF) assistive robotic arm (called UCF-MANUS ARM) developed by

Exact Dynamics Inc. was utilized in this study. It can reach an object with a maximum distance of

80cm from the center of the base frame and it has ability to lift 4.5 Ibs (2.041kg) object as a max-

imum wight. A comprehensive interface and automated grasping algorithms have been designed
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and added to the robotic arm [44]-[46]. A graphical user interface (GUI) comprised of a view from

a camera attached to the robot gripper, a feedback panel, and various buttons for manipulating the

robot’s arm and hand motions allowed participants to control the robot.The software operated on

a Windows machine and the GUI was displayed on a 12 x 9 inch color desktop monitor. All of

the participants used a mouse to click on desired functions on the screen to control the robotic ma-

nipulator manually. To keep the robot moving in the direction indicated by the clicked functional

button on the screen, the system needed that the mouse button be held down continuously. The

experimental configuration was created to resemble the positioning of a WMRA on the side of a

wheelchair for a user. In order to attain this, Near the user, a table and a bookcase were installed.

The table was put in front of the robotic arm, while the bookcase was placed next to the table on

the participants’ right side. The entire setup is depicted in the Figure 4.1

Figure 4.1: Setup of experiment with the UCF-MANUS was located to the right of the user, who
controlled it with the mouse and the GUI displayed on the screen.[29]
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Measurement of Human Factors

- Reaction Time (RT): It was measured using Simple Reaction Time test [47]. There is just one

visual stimuli, and when it appears, an individual needs to respond by pressing a keyboard button.

It measures how long it takes to perceive a stimulus, retrieve data from memory, and produce a

muscular response. Response times may thus be used to determine the length of time required

for basic thinking processes.The age and overall intellect of a person affect their response speed.

Many other factors come into play, such as the circumstances in which people accomplish the task

(are they fatigued, hungry, etc.). In addition, the speed is determined by how precise a person want

to be. If a person does not want to make mistakes, he or she will slow down. This is known as

the speed-accuracy trade off [48]-[49]. In our robot task experiments, an individual is involved in

controlling the robotic manipulator manually to perform different tasks including Find and Fetch

tasks and Pick and Place tasks. The main feedback to the user is the visual signal through direct

viewing or through viewing the environment via the robot mounted camera. After perceiving

visual stimuli, the user will process them mentally to interpret them, and then respond by moving

the mouse to click on a desired command button on the screen and hold it depressed to control the

arm and the hand of the robot. Therefore, if one or more of the processes (perception, processing,

and response) are delayed, the reaction time will increase, and the user’s performance will decline

as consequence especially the time-on-task (ToT). The user may respond to a known stimulus that

he or she has previously responded to. In this situation, the reaction time will be shorter since there

would be less information to analyze.

- Spatial Ability: It consists of two different factors [50]. First is the spatial visualization (SpV)

measured by using Paper Folding test [51]. This factor measures the ability to mentally manipulate

and transform 2D and 3D image into other arrangements. The second factor is spatial orientation

(SpO) measuring the ability to perceive spatial patterns or to maintain orientation with respect
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to objects in space. The Cube Comparison test is used to measure spatial orientation [51]. For

our robot experiments, individuals need to utilize their spatial orientation abilities to compare the

current position and direction of the robot hand with their owns, and then adjust mentally for any

differences so they can move the robot toward the desired position. This will help them to plan the

trajectory of the robot hand movements as quickly and accurately as possible to reach and grasp

the desired object and move it to another position. This factor will be more relevant when users

move the robot hand toward them to bring the object (from tabletop; in front of them, and from

bookshelf ; on the right side of them) as they will need to rotate their egocentric reference frame

with respect to camera frame. Therefore, any lack on this ability will lead the participants to use

longest path and cause some confusion in adjusting their orientations which in turn adds more

delay and number of moves in completing task. On the other hand, the participants will use their

spatial visualization abilities during grasping the desired object as they need to imagine how the

orientation of the gripper should be, so they can rotate it to coincide with the object’s one. This is

also true when they are utilizing the camera view via screen. They need to manipulate 2D images

and transform them into 3D space so they can orient the robot hand to grasp the object. It would be

expected that individuals with high spatial visualization abilities would do these rotations without

difficulties resulting in fast response and less commands. Therefore, the spatial abilities play an

important role in successful performance.

- Visual Perception (VP): The Motor-Free Visual Perception Test (MVPT) was used to evaluate

participants’ visual perception regardless of their motor ability.[52]. Visual perception is a measure

of the brain’s capability to receive, interpret, and respond on visual inputs. As a result, it is critical

for users to be able to identify the names and locations of command buttons in the GUI. It will

assist them in distinguishing the targeted object among the other objects and the table/bookshelf

that contains those objects. Also, during object grasping, they need to match the width of the object

with the distance between the two fingers of the gripper accurately so they can open those fingers
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in continuous movement without pausing.

- Working Memory (WM): This factor was measured by using NAB backward digit span test [53].

It assesses how long an individual can retain pieces of information in a short-term memory. Its

capacity is limited and it is thought to be roughly 7-9 items at a time [54]. During controlling the

robot, Working memory is required to remember which object has to be grasped so they can plan

the movement trajectory with minimum distance and to reduce the time to reach the target. It is

also needed for remembering the function of each command and its position on the screen so they

can select the correct one quickly without keep trying other commands and as a result, the task will

take longer to accomplish, and the number of movements will rise.

- Gross and Fine Dexterity: By using Purdue Pegboard Test, the dexterity of an individual was

measured [55]. This test measure two abilities: 1) gross dexterity (GD) in moving arms, hands,

and fingers 2) fine dexterity (FD) in coordinating small muscles in movements which involving

the synchronization of hands and fingers and usually with eyes. As the individuals control the

movement of the robot by moving the mouse device and then choosing and pressing a desired

command button among others on the GUI , they need to use their fine motor skills to do so more

than using gross dexterity. Therefore, the fine dexterity will play an important role in the user

performance and if there is any lack in this dexterity, it will increase the Time-on-Task (ToT).

- Visual Acuity: A standard Snellen visual acuity chart was used to measure the clarity or sharpness

of vision[56]. It relates to the spatial resolution of the visual processing system. As mentioned

before, the visual feedback is the main signal that the individual will use to control the robot,

therefore the clarity of this signal is important especially when reaching the object. While grasping

the desired object, the details of its edges are needed so the user can avoid hitting the object and

close the two fingers of the gripper properly. Thus, the user performance will be influenced if the

participant’s vision has defected. It may have less effect if the user depends on the screen to view
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the object during the reaching and grasping. The strongest vision (SV) was assigned to the eye

with higher score and weakest vision (WV) to the eye with worse performance.

- Depth Perception: Randot Stereotest was used to measure individuals’ ability to perceive depth

perception [57]. It measures their ability to binocularly discern the distance of an object and see

things in three dimensions. The depth perception is important for the users to see the relative

position of the robot gripper, desired object, and other objects and also to conceive their sizes.

Any deficiency in this ability will lead to low performance as the user cannot estimate the distance

between the end-effector of the robot and the target.

Measurement of Performance Metrics

Three criteria were used to assess performance: average Time on Task (ToT), Number of Moves

(NoM), and Number of Moves per minute (NoM/min). Both ToT and NoM measures have been

used in other works [22] [23] [58], whereas NoM/min is a statistic that is meant to be constant

across all tasks, independent of their type or length. The time from the participant’s start movement

to the conclusion of the activity was recorded as ToT, while The number of instructions the user

used to accomplish the task was utilized to calculate NoM.The NoM/min is calculated by dividing

the number of moves by the time(in minutes) spent on the task.The final value for each metric for

a specific user was calculated by averaging the data for that metric across all of the tasks that the

user completed.

Procedure

The participants completed an informed consent form as well as a preliminary demographic ques-

tionnaire when they arrived at the lab, then followed by an evaluation of all human variables in-
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dicated above.To avoid order effects and tiredness, all tests were delivered in a randomized order

except for the reaction time test which was always done first to avoid fatigue impacting the results.

As mentioned in the experiment setup, the robot was placed on the right side of user’s chair. Partic-

ipants were then seated in a chair in front of the computer that controlled the robotic manipulator.

After that, a brief introduction of the robot given to them. The interface was demonstrated by

explaining how each of the commands functioned. After the demonstration, the participants were

given up to ten minutes to operate the robot as they wished to ensure that they understood how to

control it. They got the opportunity to ask any questions they had about the robot and its operation

during this time. Before the ten minutes were over, participants might say that they were satisfied

with their abilities, and the experiment would proceed to the next step. Only one of the 93 partici-

pants took all ten minutes before going on to the next step. A user took 90 minutes approximately

to complete the entire experiment.

Simulated ADL Tasks

Participants were given a total of six tasks to complete using the robotic manipulator. Pick-and-

place (PNP) and find-and-fetch (FNF) tasks were used to simulate a collection of typical Activities

of Daily Living (ADLs) carried out by a robot [59]. PNP activities needed users to pick up an object

and place it in a different spot in the workspace, whereas FNF ones required users to pick up an

object and bring it to them. Users were instructed to pick up a standardized object (.81 oz (23g)

travel-sized cereal box) and place it at predetermined places marked by blue tape. To complete

the tasks, each participant was instructed to control the robot manually using the white command

buttons in the GUI shown in Figure 4.1. The robot was reset to a predetermined start position for

the user at the beginning of each task. The specific six tasks assigned to the participants can be

found in the Table 4.1.
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Table 4.1: Simulated ADL Tasks

Task# Descriptions Type

T1 Retrieve an object from a tabletop and bring it the participant Find and Fetch

T2 Move object from one side of the table to the other Pick and Place

T3 Take object and move it from the top of the table to the bottom of the table Pick and Place

T4
Retrieve an object from the middle shelf on the bookcase and bring it

to the participant
Find and Fetch

T5 Take an object from the top of the bookshelf and move it to the middle shelf Pick and Place

T6 Take an object from the top of the bookshelf and move it to the tabletop Pick and Place

Data Analysis

Dependency Analyzing of the Human Factors

Pearson Correlation Test

To study the relationship and dependency between the human factors, the covariance matrix was

constructed first to determine the direction of the linear relationship between each pair of factors. In

the Table 4.2, the off-diagonal elements of the covariance matrix show the covariance coefficients

between each two variables. The positive coefficient indicates that both variables are increasing at

the same time. The negative one, on the other hand, indicates that both variables move in opposing

directions. [60]. As the human factors were measured in different scales, It is difficult to evaluate

the strength of the relationship just on the magnitude of the covariance coefficients. A standardized
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form of the covariance matrix, i.e. the correlation matrix, was used to measure the strength of the

dependency between the human factors. The correlation coefficient of two variables was calculated

by dividing the covariance of these variables by the product of the their standard deviations. This

converts the scale of the covariance values to [−1, 1]. The correlation (or what is called Pearson

correlation) coefficients are shown in the Table 4.3 . The r is the Pearson correlation coefficient

for each pair of the factors. The closer the coefficient is to +1 or −1, the stronger the relationship

between the two variables. If it is 0 or close to, there is no linear relationship between the two

factors. Cohen’s standard was used to evaluate the correlation coefficient to determine the strength

of the relationship. The absolute values of r between 0.10 and 0.29 represent a small relationship,

between 0.30 and 0.49 represent a medium relationship, and a large relationship is explained by

0.50 and above [61].

Interpretation: From the Table 4.3, one can conclude that: the Spatial Orientation (SpO) is highly

correlated with each of the Spatial Visualization (SpV) (r = 0.67) and Visual Perception (VP)

(r = 0.60) significantly with p-value < 0.001. Also, it is noticed that SpV is highly correlated with

the VP (r = 0.61) significantly with p-value < 0.001. For the dexterity, the Gross Dexterity (GD)

and Fine Dexterity (FD) are highly correlated (r = 0.65) significantly with p-value < 0.001. The

Weakest Vision (WV) and Strongest Vision (SV) are highly correlated (r = 0.67) significantly with

p-value < 0.001. Some of other human factors show moderate correlation as seen in the Reaction

Time (RT) with each of SpO (r = −0.44) , SpV (r = −0.46), VP (r = −0.39), WV (r = −0.41)

significantly (p-value < 0.001) and with the Working Memory (WM) (r = −0.32) significantly

(p-value< 0.01). Also, SpO is moderately correlated with WM (r = 0.30) and FD (r = 0.32)

significantly (p-value < 0.01) and with Depth Perception (DP) (r = −0.35) significantly (p-

value< 0.001). It can be seen also that the SpV and WM are correlated with moderate coefficient

(r = 0.35) significantly (p-value < 0.001). The VP is moderately correlated with each of GD (r =

0.31) significantly (p-value < 0.01) and FD (r = 0.36) significantly (p-value < 0.001). Lastly, the
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Table 4.2: The Covariance Matrix of the Human Factors

HF RT SpO SpV VP WM GD FD WV SV DP
RT 8660.56 -464.70 -324.30 -775.41 -54.76 -101.02 -184.68 -8.82 -4.41 6.54

SpO -464.70 130.70 58.63 144.95 6.44 16.35 27.71 0.34 0.04 -1.61
SpV -324.30 58.63 58.42 98.60 4.97 4.45 15.83 0.09 0.04 -0.50
VP -775.41 144.95 98.59 451.86 11.46 32.53 58.62 0.61 0.59 -1.69

WM -54.76 6.44 4.97 11.46 3.43 0.36 3.60 0.004 0.02 -0.06
GD -101.02 16.35 4.45 32.53 0.36 24.90 24.79 -0.001 -0.01 -0.36
FD -184.68 27.71 15.83 58.62 3.60 24.79 58.91 0.12 0.14 -0.37
WV -8.82 0.34 0.09 0.61 0.004 -0.001 0.12 0.05 0.03 -0.026
SV -4.41 0.04 0.04 0.59 0.02 -0.01 0.14 0.03 0.04 -0.01
DP 6.54 -1.61 -0.50 -1.69 -0.08 -0.36 -0.37 -0.03 -0.01 0.16

rest of Pearson correlation coefficients in the Table4.3 are small which indicate that it could there

exist nonlinear relationships between the human factors. Therefore, Spearman correlation (rank

based) can be used to evaluate the monotonic relationship between two variables.

Spearman Correlation Test

To determine if there is a monotonic relationship between two variables of human factors, the

Spearman correlation was utilized, and the results are shown in the Table 4.3. The range of the

correlation coefficient (ρ) can be from −1 to 1. The ρ = 1 implies a perfect positive relationship

and ρ = −1 implies a perfect negative relationship [62]. The same Cohen’s standard was used

here to evaluate the correlation coefficients. The Table 4.3 shows the Spearman rank correlation

coefficients with p-values. It is obvious that there is no high monotonic relationship except for the

same human factors that are highly correlated in terms of the Pearson correlation. Some variables

have more monotonic relationships than linear relationships as seen between RT and each of GD,

FD, and SV with negative moderate ρ and (p-value < 0.01).

58



Joint Probability Distribution of Human Factors

Joint Probability distributions can be used for the pairs of human factors that have large correlations

shown in the previous section. A joint probability density function (joint PDF) will characterize

the Joint Probability distribution of those two variables. Using R software, the histogram and PDF

of the human factors are shown in the Figure 4.2. By considering highly correlated human factor

from the Table 4.3, possible combinations with k-dependent variables can be written as

C1 = (SpO, SpV, V P ), C2 = (GD,FD), C3 = (WV, SV )

and the other variables, RT, WM, and DP are uncorrelated with each of the combination C1, C2,

and C3. The human factors can be rewritten in subsets as:

HF = {S1, S2, S3, RT,WM,DP}

where

S1= { SpO,SpV,VP }, S2={GD,FD}, S3={WV,SV}

and all these subsets are independent, so the joint probability distribution of HF will be:

P (HF ) = P (SpO, SpV, V P )P (GD,FD)P (WV, SV )P (RT )P (WM)P (DP )

Table 4.3: Pearson and Spearman Correlation Tests

HF HF
Pearson corr. Spearman corr.

r p-value strength ρ p-value strength

SpO SpV 0.67 6.31e-13 large 0.71 3.83e-15 large

SpO VP 0.60 6.93e-10 large 0.64 1.14e-11 large

SpV VP 0.61 4.64e-10 large 0.59 1.20e-09 large

GD FD 0.65 7.21e-12 large 0.62 9.08e-11 large

WV SV 0.67 5.46e-13 large 0.73 5.73e-16 large
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Table 4.3 continued from previous page

HF HF
Pearson corr. Spearman corr.

r p-value strength ρ p-value strength

RT SpO -0.44 1.87e-05 medium -0.46 5.4e-6 medium

RT SpV -0.46 7.12e-06 medium -0.40 1.1e-4 medium

RT VP -0.39 1.45e-04 medium -0.32 0.003 medium

RT WM -0.32 8.17e-05 medium -0.36 0.001 medium

RT WV -0.41 1.77e-02 medium -0.33 0.002 medium

SpO WM 0.30 0.004 medium 0.33 0.001 medium

SpO FD 0.32 2.57e-03 medium 0.32 0.003 medium

SpO DP -0.35 0.0006 medium -0.43 2.6e-5 medium

SpV WM 0.35 0.0007 medium 0.40 9.9e-5 medium

VP GD 0.31 3.46e-03 medium 0.31 0.003 medium

VP FD 0.36 5.44e-04 medium 0.33 0.002 medium

RT GD -0.22 0.0405 Small -0.34 0.001 medium

RT FD -0.26 0.0144 Small -0.30 0.004 medium

RT SV -0.25 0.0177 Small -0.30 0.004 medium

RT DP 0.18 0.096 Small 0.24 0.022 Small

SpO GD 0.29 6.47e-03 Small 0.34 0.001 medium

SpO WV 0.13 0.23 Small 0.12 0.26 Small

SpO SV 0.02 0.86 Small 0.05 0.62 Small

SpV GD 0.12 0.276 Small 0.19 0.08 Small

SpV FD 0.27 0.0105 Small 0.27 0.01 Small

SpV WV 0.05 0.64 Small 0.04 0.71 Small

SpV SV 0.03 0.780 Small 0.04 0.68 Small
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Table 4.3 continued from previous page

HF HF
Pearson corr. Spearman corr.

r p-value strength ρ p-value strength

SpV DP -0.17 0.120 Small -0.29 0.006 Small

VP WM 0.29 0.0056 Small 0.29 0.006 Small

VP WV 0.12 0.253 Small 0.10 0.36 Small

VP SV 0.15 0.171 Small 0.12 0.25 Small

VP DP -0.20 0.06 Small -0.29 0.006 Small

WM GD 0.04 0.71 Small 0.08 0.43 Small

WM FD 0.25 0.164 Small 0.28 0.007 Small

WM WV 0.01 0.92 Small 0.04 0.72 Small

WM SV 0.07 0.532 Small 0.08 0.53 Small

WM DP -0.10 0.34 Small -0.11 0.28 Small

GD WV -0.9e-3 0.993 Small 0.04 0.68 Small

GD SV -0.01 0.90 Small -0.008 0.98 Small

GD DP -0.18 0.085 Small -0.15 0.15 Small

FD WV 0.07 0.544 Small 0.13 0.21 Small

FD SV 0.10 0.351 Small 0.15 0.17 Small

FD DP -0.12 0.26 Small -0.10 0.34 Small

WV DP -0.29 0.005 Small -0.25 0.02 Small

SV DP -0.07 0.48 Small -0.11 0.29 Small
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Figure 4.2: Histogram and PDF of the Human Factors
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Principal Components Analysis of Human Factors

Principal Component Analysis (PCA) is an approach for reducing the dimensionality of big data

sets by converting a large collection of variables into a smaller one that maintains the majority of

the information in the large set [63]. For our analysis here, the principal components are linear

combinations (without intercepts) of human factor variables, and the coefficients of these com-

ponents are the eigenvectors of the covariance matrix of the human factors. The first principal

component has the largest eigenvalue and corresponding eigenvector and is the linear combina-

tion of human factors with the greatest variance of all linear combinations. For as much of the

remaining variance as possible, the second principal component is a linear combination of human

factors, and so on for the other principal components as the eigenvalues are sorted descendingly.

The details of finding the principal components of the human factors are in the following steps:

Step 1: Choosing a subset of principal components.

First, as human factors have different scales,for each variable, the data has been standardized by

subtracting the mean first and then dividing by the standard deviation. In this case, the covariance

matrix of the standardized data is identical to the correlation matrix of the unstandardized data.

Following standardization, each human factor has a variance of one, and the overall variation is

the sum of these variations, which in this case is 10. The eigenvalues of the correlation matrix are

shown in the second column in the Table 4.4. The percentage of variance described by each of

the principal components, as well as the total percentage of variation explained, are also reported

in the Table 4.4. The first principal component explains 34.43% of the variation and second one

explains 17.3% of the variation. The first five principal components explain 81.9% , while the first

six principal components explain 87.9% of the variation. Therefore, we can select only the first six

principal components to explain about 88% of the variation.
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Table 4.4: Eigenvalues and the proportion of variation explained by the principal components.

Principal Component Eigenvalue Proportion % Cumulative %
1 3.43 34.3 34.3
2 1.73 17.3 51.6
3 1.28 12.8 64.4
4 0.97 9.7 74.1
5 0.78 7.8 81.9
6 0.60 6.0 87.9
7 0.39 3.9 91.8
8 0.32 3.2 95.0
9 0.27 2.7 97.7

10 0.23 2.3 100

Step 2: Computing the scores of the principal component.

The principal component scores can be computed by using the eigenvectors shown in the Table

4.5. For the first principal component, it will be :

Y1 = 0.374RT − 0.427SpO − 0.398SpV − 0.413V P − 0.261WM − 0.260GD − 0.320FD −

0.192WV − 0.151SV + 0.225DP

Step 3: Interpretation of the principal components:

Interpretation of the principal components is based on finding which human factors are most

strongly (|r| > 0.5) correlated with each component. These larger correlations are in boldface

in the Table 4.6.

PC1: the first principal component is strongly correlated with RT, SpO, SpV, VP, and FD. This

suggests that these five variables vary together and therefore they are correlated.

PC2: is a measure of WV and SV as they are related positively to this component.
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Table 4.5: Coefficients of Principal Components (Eigenvectors).

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10
RT 0.374 -0.183 0.106 -0.165 0.024 -0.793 0.209 -0.144 0.087 0.294

SpO -0.427 -0.146 -0.191 -0.242 -0.157 -0.027 0.315 -0.659 0.238 -0.291
SpV -0.398 -0.163 -0.368 0.023 -0.255 -0.052 0.416 0.327 -0.400 0.414
VP -0.413 -0.111 -0.110 0.026 -0.323 -0.394 -0.674 0.184 0.237 -0.029

WM -0.261 -0.095 -0.279 0.383 0.781 -0.132 -0.115 -0.177 0.003 0.164
GD -0.260 -0.223 0.652 -0.017 -0.040 0.129 -0.206 -0.355 -0.358 0.377
FD -0.320 -0.182 0.526 0.244 0.124 -0.117 0.396 0.406 0.327 -0.266
WV -0.192 0.649 0.088 -0.058 -0.024 0.068 0.099 -0.040 0.475 0.538
SV -0.151 0.614 0.111 0.257 -0.075 -0.392 0.060 -0.127 -0.478 -0.337
DP 0.225 -0.129 -0.064 0.798 -0.416 0.075 0.066 -0.254 0.174 0.119

Table 4.6: Correlation Coefficients between the Principal Component Scores and Human Factors

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10
RT 0.69 -0.24 0.12 -0.16 0.02 -0.61 0.13 -0.08 0.05 0.14

SpO -0.79 -0.19 -0.22 -0.24 -0.14 -0.02 0.20 -0.37 0.12 -0.14
SpV -0.74 -0.21 -0.42 0.02 -0.23 -0.04 0.26 0.19 -0.21 0.20
VP -0.77 -0.15 -0.12 0.03 -0.28 -0.30 -0.42 0.10 0.12 -0.01

WM -0.48 -0.13 -0.32 0.38 0.69 -0.10 -0.07 -0.10 0.00 0.08
GD -0.48 -0.29 0.74 -0.02 -0.03 0.10 -0.13 -0.20 -0.19 0.18
FD -0.59 -0.24 0.60 0.24 0.11 -0.09 0.25 0.23 0.17 -0.13
WV -0.36 0.85 0.10 -0.06 -0.02 0.05 0.06 -0.02 0.25 0.26
SV -0.28 0.81 0.13 0.25 -0.07 -0.30 0.04 -0.07 -0.25 -0.16
DP 0.42 -0.17 -0.07 0.79 -0.37 0.06 0.04 -0.14 0.09 0.06

PC3: is strongly correlated with the dexterity measures (FD and FD) .

PC4: is strongly correlated with DP.

PC5: is strongly correlated with WM.

Step4: Using Varimax Rotation to rotate selected PCs of the Human Factors:

To get clear interpretations of the principal components, a varimax rotation can be utilized to

65



transform the selected principal components to other orthogonal subsets. Because the data are

standardized to have a variance of one, the relative magnitude of each coefficient of the PC can

be directly assessed to give a measure of how each variable contribute to that PC. The Table 4.7

shows the rotated PCs and that :

PC1 is associated with SpO, SpV, and VP and this component is a measure of these variables.

PC2 is associated with WV and SV.

PC3 is associated with GD and FD.

PC4 is associated with DP.

PC5 is associated with WM.

PC6 is associated with RT.

Therefore, these principal components represent orthogonal subspaces of human factors and they

can be written as:

HF = {{SpO, SpV, V P}, {WV, SV }, {GD,FD}, RT,WM,DP}

The correlations between the scores of rotated principal components and the human factors were

tested as shown in the Table 4.8. The results coincide with the contributions of the coefficients of

the human factors to the PCs shown in the Table 4.7
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Table 4.7: Coefficients of rotated Principal Components PC1-PC6

PC1 PC2 PC3 PC4 PC5 PC6
RT 0.050 0.034 -0.030 0.056 0.028 0.913
SpO -0.515 0.074 0.011 0.208 0.039 -0.093
SpV -0.595 0.059 -0.106 -0.084 -0.047 -0.105
VP -0.610 -0.136 0.105 -0.083 0.024 0.216
WM 0.012 0.017 0.009 0.030 -0.963 -0.028
GD 0.035 0.078 0.717 0.075 0.166 -0.087
FD -0.020 -0.061 0.679 -0.069 -0.165 0.063
WV 0.060 -0.609 -0.043 0.175 0.091 -0.243
SV -0.027 -0.768 0.026 -0.127 -0.065 0.161
DP 0.015 0.026 -0.002 -0.939 0.032 -0.055

Table 4.8: Correlation Coefficients between the Human Factors and the Scores of Rotated Principal
Components.

PC1 PC2 PC3 PC4 PC5 PC6
RT 0.26 0.36 -0.27 -0.17 0.31 0.97
SpO -0.86 -0.06 0.33 0.42 -0.28 -0.45
SpV -0.88 -0.04 0.19 0.14 -0.38 -0.45
VP -0.86 -0.20 0.40 0.16 -0.28 -0.27
WM -0.37 -0.05 0.17 0.09 -0.99 -0.29
GD -0.26 0.02 0.91 0.21 0.02 -0.21
FD -0.37 -0.11 0.90 0.09 -0.30 -0.21
WV -0.10 -0.89 0.03 0.33 0.01 -0.47
SV -0.08 -0.93 0.06 0.03 -0.09 -0.19
DP 0.27 0.19 -0.17 -0.98 0.09 0.18
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CHAPTER 5: CONCLUSION AND FUTURE WORK

In Chapter Two, an intelligent adaptive grasping algorithm for novel objects has been implemented

relying on slip velocity and gripper force measurements. A two-finger robot gripper prototype was

embedded with a laser sensor extracted from a Mouse device for slippage measurement. Also, it

was embedded with FSR sensor for force measurement. Analysis shows that the adaptive con-

troller can estimate the exact minimal grasping force for the fully filled bottle and with 0.2 N force

error for the half-filled bottle. Simulation and experimental results both show that this method can

immobilize a novel object within the fingers of the gripper with minimal deformation. Compared

with a previously designed adaptive grasping algorithm in [19], this algorithm design reduces con-

troller complexity; however, it yields similar performance.

To generalize our work for both translational and rotational slipping avoidance, a novel real-time

switching-control based adaptive grasping algorithm to control grasping force application by a

standard robotic gripper was presented in Chapter Three. In addition, we presented the design

and a prototype of a two-finger sensorized robotic gripper embedded with force sensor (FSR) and

two slip sensors for translational and rotational slip velocity measurements. Experimental data

collected from using objects with different sizes and shapes show that the algorithm applies close

to the minimal force needed to safely grasp objects by preventing both linear and angular slippage

with force deviation percentage (3.80% − 5.49%) for predominantly translational slipping case,

and (2.27% − 7.50%) for predominantly rotational slipping case without excessive deformation

seen. Also, the experimental results show that the controller prevents successfully the translational

and rotational slippage for non-flat objects and for hand configurations not aligned with the axis

of gravity. Furthermore, experimental results using the UCF-MANUS robotic system illustrate

that the algorithm is robust, safe, and computationally efficient. It is easy to see that the prototype

and algorithm are simple and low-cost (about $150 for FSR, two slip sensors, and adapter) to add
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intelligent and adaptive force application ability to any standard gripper.

In Chapter Four, using experiment data collected from recruiting 93 participants, dependency anal-

ysis of human factors was presented utilizing the Pearson and Spearman correlation tests to cap-

ture the joint probability distribution of human factors. The results have shown that the following

human factors were jointly distributed within the same set: (spatial visualization (SpV), spatial

orientation (SpO), and visual perception (VP) ), ( gross dexterity (GD) and fine dexterity (FD))

and ( visual acuity WV and SV). On the other hand, it was found weak correlations (i.e. no joint

distribution) between the Reaction Time (RT), working memory (WM), depth perception (DP)

and between these variables and those in groups above. Also, the Principal Components Analysis

(PCA) of human factors reported the same observations regarding the dependencies between the

human factors. Based on this model of joint probability distribution, one can build a probabilistic

model to infer user parameters and then compensate for any deficit in human factors during operat-

ing an assistive robot which in turn can improve the grasping activities and reduce object slippage

possibilities.

Our future work will indeed focus on a sensorless formulation by utilizing a gripper embedded

pressure sensor grid in lieu of the combination of two slip sensors and an FSR used here. It can be

extended for three- or four- finger gripper robotic arm. Also, the algorithm can be developed to fit

in-hand manipulation tasks especially those needed controlled rotational sliding of objects.
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