92 research outputs found

    Extracting Behaviour from an Executable Instruction Set Model

    Get PDF

    An Equivalence Checking Framework for Agile Hardware Design

    Get PDF
    Agile hardware design enables designers to produce new design iterations efficiently. Equivalence checking is critical in ensuring that a new design iteration conforms to its specification. In this paper, we introduce an equivalence checking framework for hardware designs represented in HalideIR. HalideIR is a popular intermediate representation in software domains such as deep learning and image processing, and it is increasingly utilized in agile hardware design.We have developed a fully automatic equivalence checking workflow seamlessly integrated with HalideIR and several optimizations that leverage the incremental nature of agile hardware design to scale equivalence checking. Evaluations of two deep learning accelerator designs show our automatic equivalence checking framework scales to hardware designs of practical sizes and detects inconsistencies that manually crafted tests have missed

    Controlled and effective interpolation

    Get PDF
    Model checking is a well established technique to verify systems, exhaustively and automatically. The state space explosion, known as the main difficulty in model checking scalability, has been successfully approached by symbolic model checking which represents programs using logic, usually at the propositional or first order theories level. Craig interpolation is one of the most successful abstraction techniques used in symbolic methods. Interpolants can be efficiently generated from proofs of unsatisfiability, and have been used as means of over-approximation to generate inductive invariants, refinement predicates, and function summaries. However, interpolation is still not fully understood. For several theories it is only possible to generate one interpolant, giving the interpolation-based application no chance of further optimization via interpolation. For the theories that have interpolation systems that are able to generate different interpolants, it is not understood what makes one interpolant better than another, and how to generate the most suitable ones for a particular verification task. The goal of this thesis is to address the problems of how to generate multiple interpolants for theories that still lack this flexibility in their interpolation algorithms, and how to aim at good interpolants. This thesis extends the state-of-the-art by introducing novel interpolation frameworks for different theories. For propositional logic, this work provides a thorough theoretical analysis showing which properties are desirable in a labeling function for the Labeled Interpolation Systems framework (LIS). The Proof-Sensitive labeling function is presented, and we prove that it generates interpolants with the smallest number of Boolean connectives in the entire LIS framework. Two variants that aim at controlling the logical strength of propositional interpolants while maintaining a small size are given. The new interpolation algorithms are compared to previous ones from the literature in different model checking settings, showing that they consistently lead to a better overall verification performance. The Equalities and Uninterpreted Functions (EUF)-interpolation system, presented in this thesis, is a duality-based interpolation framework capable of generating multiple interpolants for a single proof of unsatisfiability, and provides control over the logical strength of the interpolants it generates using labeling functions. The labeling functions can be theoretically compared with respect to their strength, and we prove that two of them generate the interpolants with the smallest number of equalities. Our experiments follow the theory, showing that the generated interpolants indeed have different logical strength. We combine propositional and EUF interpolation in a model checking setting, and show that the strength of the interpolation algorithms for different theories has to be aligned in order to generate smaller interpolants. This work also introduces the Linear Real Arithmetic (LRA)-interpolation system, an interpolation framework for LRA. The framework is able to generate infinitely many interpolants of different logical strength using the duality of interpolants. The strength of the LRA interpolants can be controlled by a normalized strength factor, which makes it straightforward for an interpolationbased application to choose the level of strength it wants for the interpolants. Our experiments with the LRA-interpolation system and a model checker show that it is very important for the application to be able to fine tune the strength of the LRA interpolants in order to achieve optimal performance. The interpolation frameworks were implemented and form the interpolation module in OpenSMT2, an open source efficient SMT solver. OpenSMT2 has been integrated to the propositional interpolation-based model checkers FunFrog and eVolCheck, and to the first order interpolation-based model checkerHiFrog. This thesis presents real life model checking experiments using the novel interpolation frameworks and the tools aforementioned, showing the viability and strengths of the techniques

    Verified lifting of stencil computations

    Get PDF
    This paper demonstrates a novel combination of program synthesis and verification to lift stencil computations from low-level Fortran code to a high-level summary expressed using a predicate language. The technique is sound and mostly automated, and leverages counter-example guided inductive synthesis (CEGIS) to find provably correct translations. Lifting existing code to a high-performance description language has a number of benefits, including maintainability and performance portability. For example, our experiments show that the lifted summaries can enable domain specific compilers to do a better job of parallelization as compared to an off-the-shelf compiler working on the original code, and can even support fully automatic migration to hardware accelerators such as GPUs. We have implemented verified lifting in a system called STNG and have evaluated it using microbenchmarks, mini-apps, and real-world applications. We demonstrate the benefits of verified lifting by first automatically summarizing Fortran source code into a high-level predicate language, and subsequently translating the lifted summaries into Halide, with the translated code achieving median performance speedups of 4.1X and up to 24X for non-trivial stencils as compared to the original implementation.United States. Department of Energy. Office of Science (Award DE-SC0008923)United States. Department of Energy. Office of Science (Award DE-SC0005288

    Quantum Algorithm for Variant Maximum Satisfiability

    Get PDF
    In this paper, we proposed a novel quantum algorithm for the maximum satisfiability problem. Satisfiability (SAT) is to find the set of assignment values of input variables for the given Boolean function that evaluates this function as TRUE or prove that such satisfying values do not exist. For a POS SAT problem, we proposed a novel quantum algorithm for the maximum satisfiability (MAX-SAT), which returns the maximum number of OR terms that are satisfied for the SAT-unsatisfiable function, providing us with information on how far the given Boolean function is from the SAT satisfaction. We used Grover’s algorithm with a new block called quantum counter in the oracle circuit. The proposed circuit can be adapted for various forms of satisfiability expressions and several satisfiability-like problems. Using the quantum counter and mirrors for SAT terms reduces the need for ancilla qubits and realizes a large Toffoli gate that is then not needed. Our circuit reduces the number of ancilla qubits for the terms T of the Boolean function from T of ancilla qubits to ≈⌈log2⁡T⌉+1. We analyzed and compared the quantum cost of the traditional oracle design with our design which gives a low quantum cost

    Reliable State Machines: A Framework for Programming Reliable Cloud Services

    Get PDF
    Building reliable applications for the cloud is challenging because of unpredictable failures during a program\u27s execution. This paper presents a programming framework, called Reliable State Machines (RSMs), that offers fault-tolerance by construction. In our framework, an application comprises several (possibly distributed) RSMs that communicate with each other via messages, much in the style of actor-based programming. Each RSM is fault-tolerant by design, thereby offering the illusion of being "always-alive". An RSM is guaranteed to process each input request exactly once, as one would expect in a failure-free environment. The RSM runtime automatically takes care of persisting state and rehydrating it on a failover. We present the core syntax and semantics of RSMs, along with a formal proof of failure-transparency. We provide a .NET implementation of the RSM framework for deploying services to Microsoft Azure. We carry out an extensive performance evaluation on micro-benchmarks to show that one can build high-throughput applications with RSMs. We also present a case study where we rewrite a significant part of a production cloud service using RSMs. The resulting service has simpler code and exhibits production-grade performance
    corecore