
Portland State University Portland State University

PDXScholar PDXScholar

Computer Science Faculty Publications and
Presentations Computer Science

2023

An Equivalence Checking Framework for Agile An Equivalence Checking Framework for Agile

Hardware Design Hardware Design

Yanzhao Wang
Portland State University, wyanzhao@pdx.edu

Fei Xie
Portland State University, xie@pdx.edu

Zhenkun Yang
Intel

Pascuale Cocchini
Intel

Jin Yang
Intel

Follow this and additional works at: https://pdxscholar.library.pdx.edu/compsci_fac

 Part of the Computer Sciences Commons

Let us know how access to this document benefits you.

Citation Details Citation Details
Wang, Y., Xie, F., Yang, Z., Cocchini, P., & Yang, J. (2023, January). An Equivalence Checking Framework for
Agile Hardware Design. In Proceedings of the 28th Asia and South Pacific Design Automation Conference
(pp. 26-32).

This Conference Proceeding is brought to you for free and open access. It has been accepted for inclusion in
Computer Science Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please
contact us if we can make this document more accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/compsci_fac
https://pdxscholar.library.pdx.edu/compsci_fac
https://pdxscholar.library.pdx.edu/compsci
https://pdxscholar.library.pdx.edu/compsci_fac?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F310&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F310&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/compsci_fac/310
mailto:pdxscholar@pdx.edu

An Equivalence Checking Framework for Agile Hardware Design
Yanzhao Wang and Fei Xie
Department of Computer Science

Portland State University
Portland, OR 97229, USA

Abstract

Agile hardware design enables designers to produce new
design iterations efciently. Equivalence checking is critical
in ensuring that a new design iteration conforms to its speci-
fcation. In this paper, we introduce an equivalence checking
framework for hardware designs represented in HalideIR.
HalideIR is a popular intermediate representation in soft-
ware domains such as deep learning and image processing,
and it is increasingly utilized in agile hardware design. We
have developed a fully automatic equivalence checking work-

fow seamlessly integrated with HalideIR and several opti-
mizations that leverage the incremental nature of agile hard-
ware design to scale equivalence checking. Evaluations of
two deep learning accelerator designs show our automatic
equivalence checking framework scales to hardware designs
of practical sizes and detects inconsistencies that manually
crafted tests have missed.

CCS Concepts

• Software and its engineering → Compilers; Software verifca-
tion; • Hardware → Equivalence checking.

Keywords
Equivalence Checking, Halide, Agile Hardware, Formal Verifcation

ACM Reference Format:
Yanzhao Wang and Fei Xie and Zhenkun Yang, Pasquale Cocchini, and Jin
Yang. 2023. An Equivalence Checking Framework for Agile Hardware De-
sign. In 28th Asia and South Pacifc Design Automation Conference (ASPDAC
’23), January 16–19, 2023, Tokyo, Japan. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3566097.3567843

1 Introduction
While advances in software engineering have enabled developers
to create new iterations of applications in a matter of weeks or
months, designing hardware still takes large teams years of efort.
Such lengthy and costly design cycles substantially limit hardware
innovation. Agile hardware design is a promising approach that
allows designers to efciently produce a new design without com-

promising quality [2, 14, 16]. It has two signifcant advantages:

(1) Design agility: Designers can experiment at a high level of
abstraction to explore design alternatives.

This work is licensed under a Creative Commons Attribution International 4.0 License.
ASPDAC ’23, January 16–19, 2023, Tokyo, Japan
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9783-4/23/01.
https://doi.org/10.1145/3566097.3567843

Zhenkun Yang, Pasquale Cocchini, and Jin Yang
Strategic CAD Labs
Intel Corporation

Hillsboro, OR 97124, USA

(2) Implementation agility: Various platform-specifc implemen-

tations can be easily generated from high-level designs.

HalideIR [20] is a popular intermediate representation (IR) in soft-
ware domains such as deep-learning [11] and image processing [7].
It is gaining traction in agile hardware design [14, 15, 19]. HalideIR
enables agile design because it separates the specifcation of an algo-
rithm from its execution schedule, i.e., code specifying loop nesting,
loop unrolling, parallelization, vector operations, etc. Since chang-
ing the schedule does not require modifcation of the algorithm,
designers can efciently experiment with various optimizations for
the algorithm. HalideIR also enables agile implementation through
its well-designed transformation pipelines that help lower designs
on to various implementation platforms such as C/C++/SystemC
and RTL.

Central to the practical application of agile hardware designs is
seamlessly integrated design verifcation that ensures uncompro-

mised design quality. Equivalence checking is a key design verifca-
tion method that checks if two designs exhibit the same behavior
[12]. It plays a critical role in ensuring that new design iterations
generated by agile hardware design are functionally equivalent to
previous iterations and the original specifcation.

In this paper, we introduce an equivalence checking framework
for agile hardware design, particularly targeting designs repre-
sented in HalideIR. Given two iterations of the same design in
HalideIR, our equivalence checking framework can symbolically
execute them on the same set of symbolic inputs and compare if they
produce equivalent outputs. A naïve input-output symbolic com-

parison may lead to path explosion and does not scale to hardware
designs of practical sizes. To enable scalable equivalence checking,
we have developed an incremental checking algorithm that lever-
ages the structural similarity of two design iterations. The algorithm
analyzes the HalideIRs of the two design iterations to identify min-

imal design constructs that must be checked, and our equivalence
checker is applied accordingly to discharge such localized checks.
Since these design constructs may not be complete designs, test
harnesses are required to wrap them into self-contained designs.
We have developed an algorithm to automatically generate test har-
nesses, substantially reducing manual eforts. Practical hardware
designs may contain many modules and complex computations,
which can lead to path explosions. Hence, we have implemented
an optimization using automatic uninterpreted function [9].

Our framework can support any HalideIR-based agile hardware
design framework such as HeteroCL [14], HeteroHalide [15], and
Halide-HLS [19]. In this paper, we use HeteroCL as an example.
Our equivalence checking algorithms and optimizations are built
on HalideIR and not tightly coupled with HeteroCL; therefore,
the resulting automatic equivalence checking workfow can be
seamlessly integrated with other HalideIR-based agile hardware
design frameworks. We have applied our equivalence checking

26

https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3566097.3567843&domain=pdf&date_stamp=2023-01-31
https://doi.org/10.1145/3566097.3567843
https://doi.org/10.1145/3566097.3567843

HeteroCL DSL
A = hcl.placeholder((10,))

Hardware B = hcl.compute(A.shape, lambda x: A[xJ + 1)
Specification C = hcl.compute(A.shape, lambda x: B[x] • 3)

Customize
Data Type

Customize
Memory

S = hcl.create_scheduleO

S.downsize(B, lnt(8))

S[AJ.partition(A.axis[O])

•
Customized Halide IR

I Vivado HLS 11 Intel HLS I .._I __ L~_v_M_~

~~ l Symbolic
Execution Engine

Transformation -r (KLEE)

S ::T

ASPDAC ’23, January 16–19, 2023, Tokyo, Japan Yanzhao Wang and Fei Xie and Zhenkun Yang, Pasquale Cocchini, and Jin Yang

framework to two HeteroCL implementations [4] of an open-source
deep-learning accelerator, Versatile Tensor Accelerator (VTA) [18].
VTA represents hardware designs of modest but practical sizes.
These two HeteroCL designs represent varying design iterations of
VTA. Evaluations have shown that our approach can automatically
check the equivalence of these two designs with the original VTA
(also modeled in HeteroCL) with modest time and memory usage.
Our framework has detected design inconsistencies that manually
crafted equivalence test suites fail to identify.

2 Background and Related Work

2.1 Agile Hardware Design with HeteroCL

Figure 1: Agile hardware design with HeteroCL

Figure 1 depicts an agile hardware design workfow using Hete-
roCL. HeteroCL features a Python-based domain-specifc language
(DSL) for specifying hardware designs on a high abstraction level.
It utilizes HalideIR as its intermediate representation in the com-

pilation from this DSL to a lower-level design language such as
C/C++/SystemC. In this example, the frst part of the specifcation
defnes the computations: addition and multiplication. The second
part creates an execution schedule for the computations and dic-
tates parallelism, data types, and memory layout. For compilation,
this specifcation is frst transformed into HalideIR. Then, HeteroCL
generates diferent target implementations (e.g., Intel HLS) from
the HalideIR using diferent backends.

2.2 Related Work

There are commercial solutions for equivalence checking, such as
Mentor’s SLEC [5] and Synopsys’s Hector [3], primarily targeting
general-purpose RTL-RTL and RTL-C equivalence checking.

There has been studies on equivalence checking between high-
level designs. Yang, et al. proposed a scalable equivalence checking
framework to validate hardware designs in high-level description
by comparing system states of designs through symbolic execu-
tion [23]. However, it does not scale well to HalideIR designs that
often implement deep-learning and image processing algorithms
which feature many loop structures. Previous research [8, 13, 21]
also attempted to exploit structural similarities between designs to
reduce complexities in equivalence checking. However, their ap-
proaches only work on RTL and do not apply to higher-level design
representation, such as HalideIR. CoSA [17] implemented a formal
verifcation framework for an agile hardware design framework,

AHA [2]. CoSA carries out verifcation on CoreIR [1] and requires
signifcant manual eforts.

Our work targets HalideIR, a higher-level design representation,
and leverages the incremental nature of agile hardware design to
implement an automatic and scalable equivalence checking work-
fow. To the best of our knowledge, there is no other equivalence
checking framework for hardware designs represented in HalideIR.

3 Equivalence Checking Framework

3.1 Overview

Designers can efciently produce new design iterations by agile
hardware design. To ensure design correctness, equivalence check-
ing must be conducted between these design iterations. We adopt
the defnition of functional equivalence between designs as in [22].
In short, two designs are considered functionally equivalent if they
generate equivalent outputs given the same symbolic inputs.

Figure 2: Equivalence checking framework

Figure 2 depicts the workfow for our equivalence checking
framework, where a symbolic execution engine checks whether
the synthesizable C++ generated from the HalideIRs of two de-
signs (referred to as �∗ and � ∗) produces the same outputs, given
the same symbolic inputs. If the check succeeds, designs � and �
are equivalent; otherwise, we attempt to fnd the reasons for the
divergence in behavior. Our symbolic execution engine consists
of KLEE [10] and an auxiliary C++ library supporting arbitrary
data types, FIFO, etc. in synthesizable C++, which the standard C++
library does not support. Figure 3 shows an end-to-end example of
equivalence checking for two designs. First, we lower the HalideIRs
of two designs to synthesizable C++, then we use KLEE to verify
whether given the same symbolic inputs, the � arrays, the outputs
of the two designs, the �� ��� � arrays, are equivalent. If the check
succeeds, the two designs are equivalent; otherwise, our framework
fags an inconsistency.

There are two major limitations in this straightforward approach
to equivalence checking:

(1) Checking the entire designs directly is not scalable:
The approach of directly comparing the entire states of two
designs does not scale up to complex designs, because it can
easily lead to path explosions for any non-trivial designs.
Another problem with this approach is that it is difcult to
locate the points of divergence between the designs being
compared, making debugging very challenging.

(2) Creating test harnesses requires major manual eforts:
Checking synthesizable C++ code with our symbolic execu-
tion engine requires time-consuming and error-prone work

27

Design S
def simple_compute_s(a, A):

Designs e = hcl.compute(A.shape,
in HeteroCL lambda x, y: A[x, y] • a, "Multiply")

returnB

Synthesizable
C++

void default_function(int a, Int A[10][10], int
Multiply(101[10]) {
Muttiply_x: for (int x = O; x < 1 O; ++X)

Multiply_y: for {Int y = O; y < 1 O; ++y)
Multiply(x]{y] = A[x](y] •a;

DesignT
def simple_compute_t(a, A):

B = hcl.compute(A.shape,
lambda x, y: A[x, y] • a• 20, "Multiply")
retumB

void default_function(int a, int A[1 0][1 OJ, int
Multiply[101[1 01) {
Multiply_x: for (int x = O; x < 1 O; ++X)

Multiply_y: for (Int y = O; y < 10; ++Y)
Multiply[x](y] = A[x][y] •a• 20;

An Equivalence Checking Framework for Agile Hardware Design ASPDAC ’23, January 16–19, 2023, Tokyo, Japan

Figure 3: An end-to-end equivalence checking example

in creating test harnesses that include symbolic inputs, out-
puts, and wrapper code. This work needs to be repeated
whenever there is a new design iteration to verify.

We have made three optimizations to address these limitations:

(1) Identifcation of minimal check units: To avoid path
explosions, it is necessary to decompose the problem into
smaller, more manageable, and independent check units. In
the agile hardware design workfow, adjacent iterations of
designs typically have high structural similarities, we utilize
this characteristic to fnd those check units. For this purpose,
we have identifed the HalideIR stage, a group of operations
that usually correspond to limited lines of code, as an appro-
priate minimal check unit. Thus, the process of checking the
equivalence of an entire design can be reduced to checking
individual minimal check units. And the use of a stage as the
check unit also facilitates locating the specifc operations
that cause divergences in design behavior.

(2) Automatic uninterpreted function optimization: A Het-
eroCL design may contain thousands of stages and complex
computations, all these complexities contribute to path ex-
plosions. To certify a high-level stage, e.g., the Top stage in
Figure 4, its minimal check unit may contain thousands of
sub-stages in practical designs. Thus, we employ the auto-
matic uninterpreted function optimization, i.e., if we have
certifed sub-stages of a stage, we can replace those sub-stages
with equivalent uninterpreted functions.

(3) Automatic test harness generation: We implement an
automatic test harness generator to reduce manual work. To
automatically generate a test harness, we need to identify
input and output variables to minimal check units, because
each check unit may use variables defned outside of the unit
or produce variables that will be used by other units.

In the next sections, we explain how these optimizations enable
automatic and scalable equivalence checking.

3.2 Identifcation of Minimal Check Units

A stage in HalideIR represents a group of operations while a design
contains many stages. As shown in Figure 4, design S has two
operations: vector addition � and vector subtraction � , for which

Figure 4: Example of HalideIR stages and IR checker

HeteroCL creates IR stages � and � respectively. Each stage node
has two children: an operation node and an optional stage node.

There are two main reasons for choosing a stage as the minimal
check unit for equivalence checking: First, a stage is a fundamental
computational unit in HalideIR. A design in HalideIR can be split
into multiple stages. Lowering the checking from the design level
to the stage level can reduce a complex design checking problem
into multiple stage checking problems that are much easier to solve
while guaranteeing the completeness of equivalence checking for
the entire design. Second, since each stage represents a specifc
computation in HeteroCL, we can isolate and map detected incon-
sistencies back to specifc operations as part of a stage. This makes
it easier for designers to pinpoint the causes of inconsistencies.

To identify minimal check units, we implement an IR checker
which traverses the abstract syntax trees (AST) of the HalideIRs for
two designs under check to fnd stages that may have structural
and behavioral divergences. Figure 4 illustrates how the IR checker
works. First we lower a HeteroCL design into the HalideIR. Then,
starting from the root node (stage Top) in Figure 4, the checker
traverses the AST in post-order algorithm while examining the
attributes for each node, for instance, the Sub node in our example.

1 bool IRChecker::visit(const Sub *nodeS, const Sub *nodeT) {
2 if (!compare_expr(nodeS->left, nodeT->left))
3 return false;
4 if (!compare_expr(nodeS->right, nodeT->right))
5 return false;
6 return true;
7 }

The code above illustrates how the IR checker operates during
the traversal, using the Sub node as an example. Upon visiting the
Sub node, its left and right child nodes are checked for structural
equivalence. If they are consistent in both designs, the Sub nodes
are considered consistent; otherwise, the checker reports them as
structural inconsistent nodes and fags their stages. In the example
shown in Figure 4, while checking the Sub nodes, we detect a
structural inconsistency: the right child nodes of the Sub nodes do
not match. Accordingly, the checker would fag stage C with all its
children as the minimal check unit.

There are also cases where the structures of the IR ASTs difer
signifcantly, and certain stages have no matching ones in other
designs. For instance, as shown in Figure 5, the IR checker cannot
fnd a matching stage in design S for stage Mul2 in the target design
T. In such cases, the IR checker marks the parent stage of the un-
matched node as structurally inconsistent. For instance, in Figure 5,
the IR checker marks stage Mul1 as the divergence point with the
minimal check unit consisting of stage Mul1 and all its sub-stages.

28

https://units.In

Design S
deldesign_S(a,A,B,opcode):

withhcl.if_(opc:odeaaO):
hcl.updete{B. lambda x: AM+ a, "Add")

withhcl.el,..,_Q:
c - hcl.compute(A.ahape, lambda it: Alx] • a, "MIA\ ")
hclupd3tO{B.lambdax: C{x] " 3,"Mul2")

Design T
def deslgn_T(a,A,6,opcode):

wlthhcl. lf_(opcode••Ol:
Ba hcl.compute(A.shape, lambda x: Alx] + e, "Add")

wlthhcl.else..(l:
hcl.update{B,lambdax:A(x]"a"3,"MIA2")

O s1ageNod11

O s1mtNodll

□ExprNode
~--------.==-----~ ' ·""'""='

Setup
Phase

Generated Test Harness

II Allocate memory for input and output variables
int l_$(10], I_T(10], a...S, a...T, B_S(10], B_T (10];
II Symbolize input variables
make_symbolic(A);
make_symbolic(&a);
a_S =a;a_T= a;
memcpy(A_S, A. 40); memcpy(A_T, A, 40);

II S (C++) II T (C++)
for (int x = 0; x < 1 0; ++x)

Execute C[x]: A_S[x] •a_S; for (Int x: 0; x < 1 0; ++X)
Phase B_T[x]= A_T[x] *a_T * 3;

Check
Phase

for (int x = 0; x < 1 0; ++x)
B_S(x]• C(x] •3;

for (Int x = 0; x < 10; ++x)
assert(B_S[x] == B_T[x])

LJCl'leckUn~

Making input variables
symbolic

C++ Code from
Minimal Check Unit

Checking for
Output Variables

ASPDAC ’23, January 16–19, 2023, Tokyo, Japan Yanzhao Wang and Fei Xie and Zhenkun Yang, Pasquale Cocchini, and Jin Yang

Figure 5: Example of designs with the same behavior but
diferent IR structures

At the HalideIR level, even with structural inconsistencies, we
cannot assert that the designs are inequivalent since the corre-
sponding minimal check units in two designs could realize the
same functionality even though they are structurally diferent, as
in the case of Figure 5. Therefore, to certify the equivalence of the
minimal check units, we will apply our symbolic execution engine
as described in Figure 2 to them.

However, to apply our symbolic execution engine, the minimal
check units must be self-contained designs. Therefore, we need to
provide test harnesses to wrap these minimal check units automat-

ically into self-contained designs, which we will discuss below.

3.3 Automatic Test Harness Generation

Figure 6 illustrates how a test harness wraps the synthesizable C++
generated from a pair of corresponding minimal check units in
designs � and � into a self-contained design that can be checked by
our symbolic execution engine. The test harness consists of three

Figure 6: Generated test harness wrapping around synthe-
sized C++ code of minimal check units of designs � and �

phases: setup, execute, and check. In the setup phrase, the input
variables to the pair of corresponding minimal check units in � and
� are assigned the same symbolic values accordingly. In the execute
phase, the synthesizable C++ of � and � ’s minimal check units are
invoked with the symbolic inputs, respectively. In the check phrase,
the corresponding output variables of the minimal check units are
checked for equivalence.

In generating the test harness, a key challenge is to identify the
input and output variables of the minimal check unit. For design-
level checking, identifying such variables are trivial since they can
easily be extracted from the interface defnitions of the design.
However, we cannot directly derive those variables from a minimal
check unit, because it is not a complete design but simply a code
segment. We must consider the context of a minimal check unit in
the entire design to derive its input and output variables.

We frst defne the input and output variables of a minimal check
unit. HalideIR uses Allocate nodes to allocate variables and Store
nodes to represent an operation that stores data into memory, which
changes design states. Input variables are variables within the min-

imal check unit that is neither allocated nor written by the minimal
check unit’s internal Allocate or internal Store nodes. Take the min-

imal check unit of stage Mul1 in design � in Figure 7 as an example.
� in the minimal check unit is neither allocated nor written by any
Allocate or Store nodes within the unit. Therefore, it is an input
variable. In contrast, output variables are variables within the mini-

mal check unit that are written by the unit’s internal Store nodes,
but not allocated by the unit’s internal Allocate nodes. For instance,
� in the minimal check unit of stage Mul1 in design � from Figure
7 is an output variable.

We identify input and output variables of a minimal check unit
by analyzing the variable dependency in HalideIR. First, we analyze
the HalideIR of the design to fnd all variable nodes within the
minimal check unit. For example, for stage Mul1 in design S from
Figure 7, we have a variable set: �, �, and � . Then, we identify
all variables that Allocate nodes allocate within the minimal check
unit, in this case, � . Subsequently, we subtract the locally allocated
variables from the variable set. Now we have identifed all variables
not allocated by Allocate nodes within the minimal check unit: �,
and �. Since � is written by a Store node, it is marked as an output
variable for the minimal check unit in design � , while the remaining
variable, �, is marked as input. We repeat this process for design � .
Next, we check if stage Mul1 in � and � have the same input and
output variables. If they mismatch, we record the inconsistencies
as warnings.

After we identify the input and output variables of minimal check
units, then the test harness generator produces the synthesizable
C++ code for the minimal check units of � and � . Lastly, it generates
the checking code for output variables. Now, we have a complete
executable program that contains the C++ code generated from
minimal check units of � and � and the wrapping test harness. This
program is readily consumable by the symbolic engine.

3.4 Automatic Uninterpreted Function Optimization

Figure 7 shows an example of replacing certifed sub-stages with
uninterpreted functions. Design � , and � have two inconsistent
stages, Mul1 and Mul2. Since Mul1 includes Mul2, if we have certi-
fed stage Mul2 equivalent in both designs, when certifying Mul1,
we can replace Mul2 in both designs with the same uninterpreted
functions to reduce verifcation complexities. Since KLEE does not
readily support uninterpreted functions, we provide a workaround:
For each pair of certifed minimal check units, we use KLEE to check
their input variables’ equivalence, remove all nodes in the minimal
check units, and replace the units with equivalent symbols in both
designs. This process can be executed recursively. We can make the

29

Design S
def design_S(a, A, B, opcode):

C" hcl.computa(A.shapa,
lambdax:A[x]•2, "Mul1")

hcl.updata(B, lambda x: C[x] • 2, "Mul21

DesignX

Lower

HalldelR x ·

No
s=r -

unit

Transformation T

IA Checker

Test Harness
Generator

Testharness&C++!

C++withtest
harness

Design T
defdesigri__T(a, A, B, opcode):

C:hcl.compute!A.shape,
lambda x: A[)(j + A[x), "Mul1 1

hcl.update(B, lambda)(; C[)(] + C()(j , "Mu12")

O stageNode

O stmtNode

□ExprNode
'-------,==;------' jTheMinimal

DesignY

Lowoc

HalidelR y-

f-E_''°- "" _ _,. Symbolic Execution
Engine

Check Unit

; ; Certif~Minimal
! ' Check Unit

D lnput Variables

□ OutputVmiables

Inconsistent

~t
'------~-----~

HalidelR

LLVM

IR Checker J
! Mlnimalchockurnit ____ ~

Test Harness - Symbolic
Generator Test Execution Engine

harness&

An Equivalence Checking Framework for Agile Hardware Design ASPDAC ’23, January 16–19, 2023, Tokyo, Japan

Figure 7: An example of replacing certifed sub-stages with
uninterpreted functions

equivalence checking combinational with automatic uninterpreted
function optimization, helping handle complicated designs.

3.5 Optimized Equivalence Checking Framework

Figure 8 illustrates our optimized equivalence checking framework.
Design � is a newer design iteration produced by transformation

Figure 8: Optimized equivalence checking of designs � and � ,
the input and output of design transformation � respectively

� from design � , where � can be a manual or automated transfor-
mation, such as updating the hardware structures and algorithms
or bringing new optimizations, such as adding new pipelines and
unrolling loops. Instead of directly comparing the entire design
� against design � symbolically, we frst use the IR checker to
determine if the IRs (referred to as � ∗ and � ∗) of two designs are
structurally equivalent. If yes, we can already report that � and
� are equivalent. Otherwise, we send the pairs of minimal check
units in the two IRs, as identifed by the IR checker, to the test
harness generator. For each corresponding pair of minimal check
units, the test harness generator produces a test harness that wraps
the synthesized C++ code of this pair into a complete C++ program
that the symbolic execution engine can consume. If all minimal
check unit pairs are equivalent, the equivalence checking frame-

work reports the designs as equivalent; otherwise, it reports the
detected inconsistencies.

3.6 Integration with HalideIR-based Agile Hardware
Design Frameworks

Figure 9 shows the integration between our equivalence checking
framework and HalideIR-based agile hardware design frameworks,
such as HeteroHalide [15], Halide-HLS [19], and HeteroCL [14]. In-

Figure 9: Integration of our equivalence checking framework
with HalideIR-based agile hardware design frameworks

stead of applying to a specifc agile hardware design framework, our
equivalence checking framework broadly applies to any HalideIR-
based agile hardware design framework. We frst lower the designs
into HalideIR and send HalideIR ASTs to our IR checker. The IR
checker will identify inconsistent stages as minimal check units
and send them to the test harness generator. The test harness gen-
erator will generate the test harness and combines it with C++ code
from the minimal check units generated by HalideIR’s backend.
The symbolic execution engine then runs on the combined code to
discharge the checks. Our approach can also be adapted to other ag-
ile hardware design frameworks, where we can identify structural
similarities in their IRs.

4 Evaluations
We have evaluated the efectiveness and efciency of our equiva-
lence checking framework using two HeteroCL implementations [4]
of an open-source deep-learning accelerator: VTA [18]. VTA is
composed of four modules: fetch, load, compute, and store. The
fetch module fetches instructions from the DRAM, the load mod-

ule loads data from DRAM to internal data bufers, the compute
module includes an ALU (arithmetic logic unit) and a GEMM (gen-
eral matrix multiplication) and carries out the computations, and
the store module moves the computed results back to DRAM.

Researchers from Intel have implemented two versions of the
VTA architecture using HeteroCL’s Python-like DSL [4]: one is a
sequential model of the VTA that processes one instruction at a
time, and the other breaks down each of the 128-bit instructions
into smaller micro-ops for potential parallelization. We refer to
them as sVTA and uVTA in this paper. For comparison purposes,
we also implemented a HeteroCL version of the VTA architecture
strictly following its original structure [18], referred to as hVTA.
To make sure hVTA is equivalent to the original VTA in C++, we
symbolically executed hVTA and VTA function by function to
verify their equivalence manually. Thus hVTA can serve as the
specifcation for verifcation of sVTA and uVTA. We conducted this
evaluation by checking the equivalence between sVTA and hVTA
(sVTA-hVTA) as well as between uVTA and hVTA (uVTA-hVTA).
The evaluation is done on a workstation with a 12-core AMD Ryzen
5900x CPU, 128 GB RAM, and Ubuntu 18.04 operating system.

Table 1 shows our evaluation results. We frst run equivalence
checking on the entire synthesizable C++ code generated from

30

VTA ALU Instruction

loPCODE1F~s1AESET1~-1~-1 EndO l ero1 lunu&ed l
0 •

VTA Store/Load Instruction

I ,g~ I ,g~~ I 1:~ I ,~ IL"ltli,:t !ii Unu.00 1
64 108 110 111 126 127

sVTA ALU Instruction uVTA Store/Load Instruction

1~~1.·~1=1~.1~-1 .. ,. 1, .. ,. 1,,1 1-1 ~~. 1 ~,~ 1---•·" l """-•"" 1■ 1-1
57 58 63

ASPDAC ’23, January 16–19, 2023, Tokyo, Japan Yanzhao Wang and Fei Xie and Zhenkun Yang, Pasquale Cocchini, and Jin Yang

Table 1: Evaluation of our framework without/with minimal check unit & uninterpreted function optimizations

Design
LoC
Python

LoC
C++

Minimal check unit
& uninterpreted func-
tion optimizations

Time
(s)

Memory
(MB)

of stages
of struc-

tural incon-
sistencies

of behav-
ioral incon-
sistencies

sVTA-hVTA 296 560
No timeout 6781.73 no data no data no data
Yes 65.39 128.37 211 8 2

uVTA-hVTA 195 1224
No timeout 7384.34 no data no data no data
Yes 1238.38 2384.98 301 84 3

sVTA-hVTA and uVTA-hVTA, respectively. The symbolic execu-
tion engine timed out after 24 hours with more than 6 GB of memory
consumption. With our optimization that breaks the checking prob-
lem into much smaller chunks at the stage level, the equivalence
checking is completed in 65 seconds for sVTA-hVTA with 128.37
MB of memory, and 1238.38 seconds for uVTA-hVTA with 2384 MB
of memory. We broke sVTA into 211 stages and detected 8 struc-
tural inconsistencies between sVTA and hVTA. After sending them
to the symbolic execution engine, two behavioral inconsistencies
are detected, which are fagged as bugs. For uVTA, we broke it
into 301 stages and detected 84 structural inconsistencies between
uVTA and hVTA; three of them caused behavioral inconsistencies.
The results demonstrated that by checking the design at the stage
level and lowering the complexity, we could tackle the equivalence
checking problem for entire deep-learning accelerator designs, that
are modest-size, and structurally distinct but functionally equiv-
alent. The execution time of uVTA-hVTA is much longer than
sVTA-hVTA because uVTA has signifcant structural diferences
from hVTA though they are functionally equivalent. uVTA still
reuses many low-level functions in the original VTA as specifed in
hVTA, such as memory copy and computations, whose checking
can be optimized with uninterpreted functions.

In our experiments, we detected one inconsistency in sVTA’s
load module and another one in ALU module. For uVTA, we de-
tected two inconsistencies in load module and one in ALU module.
Additionally, we found one bug in the HeteroCL framework. We
have reported all detected inconsistencies and the bug to the devel-
opers. HeteroCL has marked the bug as high-priority 1.

The inconsistency in ALU module of uVTA and the one in ALU
module of sVTA share the same cause, so do one of inconsisten-
cies in uVTA’s load module and the one in sVTA’s load module.
Therefore, in the following subsections, we will elaborate on incon-
sistencies in the ALU module of sVTA and load module of uVTA.

4.1 sVTA Inconsistency with hVTA in ALU

Our framework found one inconsistency in the ALU module of sVTA.
The code fragment below is excerpted from this module.

1 ALU_OPCODE = hcl.scalar(instr[111:108], name="ALU_OPCODE")
2 # extend OPCODE to 3 bits
3 USE_IMM = hcl.scalar(instr[112:111], name="USE_IMM",
4 dtype=hcl.UInt(1))
5 IMM = hcl.scalar(instr[128:112], name="IMM")
6 src = hcl.select(USE_IMM.v == 1, hcl.cast(hcl.Int(16), IMM),
7 hcl.cast(hcl.Int(32), src_tensor[x][y]))
8 dst = hcl.cast(hcl.Int(32), dst_tensor[x][y])
9 with hcl.if_(ALU_OPCODE.v == VTA_ALU_OPCODE_MIN):
10 dst_tensor[x][y] = hcl.select(dst <= src, dst_tensor[x][y], src)

1https://github.com/cornell-zhang/heterocl/issues/258

At line 1, the ALU_CODE variable has 3 bits, while the corresponding
variable in hVTA only has 2 bits [6]. The left-hand side in Figure 10

Figure 10: sVTA ALU instruction inconsistency / uVTA Load
instruction inconsistency

shows the ALU instruction of hVTA and sVTA, and we can see that
extending the ALU_OPCODE bits to 3 bits in sVTA causes USE_IMM
and IMM felds to shift 1 bit, which is inconsistent with the original
VTA instruction.

4.2 First uVTA-hVTA Inconsistency in load

Our framework found two inconsistencies in the load module of
uVTA. Hereby we elaborate on the frst one. As shown in the right-
hand side of Figure 10, uVTA uses an extra bit pad_value that is
not present in the original VTA instruction.

1 is_min_pad_value = hcl.scalar(instr[58:57])
2 pad_val = hcl.select(is_min_pad_value.v == 1,
3 hcl.cast(hcl.Int(16),
4 1 << (sram_bits - 1)), 0)
5 sram_idx = sram_base + x_tot * y + x
6 def clear(row, col):
7 sram[sram_idx][row][col] = pad_val
8 hcl.mutate((nrows, ncols), clear, name='pad_clear')

The code above is excerpted from the load module of uVTA. At
line 1, the load module reads the extra bit from instructions. At line
2, the pad_value variable is assigned diferent values, according to
the extra bit. And at line 6, the load module resets the sram with
pad_value. However, according to the code below excerpted from
the load module of hVTA, at line 3, sram is always reset with zeros.

1 for (int i = 0; i < range; i++)
2 for (int j = 0; j < MAT_AXI_RATIO; j++)
3 mem[sram_idx++][j] = 0;

Manually written unit tests failed to detect this inconsistency
because those unit tests use VTA runtime to generate instructions.
VTA runtime resets the instruction memory to zero before writing
instructions. As a result, the pad_value bit in the uVTA instruction
is always set to zero, which hides this inconsistency. This underlines
the importance of applying formal equivalence checking.

31

https://1https://github.com/cornell-zhang/heterocl/issues/258

An Equivalence Checking Framework for Agile Hardware Design

4.3 Second uVTA-hVTA Inconsistency

Our experiments found another inconsistency in the load module
of uVTA, which is caused by the following code fragment.

1 with hcl.if_(memtype == VTA_MEM_ID_WGT):
2 sram = wgt_mem
3 with hcl.else_():
4 sram = acc_mem
5 def fmutate_out(x,y,z):
6 sram[x][y][z] = 0
7 hcl.mutate(sram.shape, fmutate_out)

As the code above illustrates, the sram variable is assigned a
diferent cache type according to the memtype condition. We expect
that wgt_mem, and acc_mem should be set to zero according to the
diferent memtype. However, in the synthesizable C++ generated
by HeteroCL, only acc_mem was set to zero (See the code below).

1 for (int x = 0; x < range; ++x)
2 for (int y = 0; y < 1; ++y)
3 for (int z = 0; z < 16; ++z)
4 acc_mem[(y+x)][0][z] = 0U;

After we reported this inconsistency to the developers, they
confrmed that it was caused by misuse of HeteroCL API. At line 2
of the above code, the developers used the assignment from Python
to set the sram; instead, hcl.update should have been used.

4.4 Bug Analysis

The above examples represent two typical kinds of bugs that design-
ers will encounter when conducting agile hardware design using
HeteroCL. The frst one is a violation of specifcations, such as
the bugs reported in Section 4.1 and Section 4.2. Developers may
change their design implementations, such as updating algorithms,
or apply new optimizations, such as adding new pipelines. Those
changes may violate specifcations. All those transformations will
change the ASTs of the HalideIRs. Our approach uses an IR checker
to detect AST changes, generate corresponding test harnesses, and
check the equivalence of minimal check units. The second kind of
bugs is API misuse, as in Section 4.3. HeteroCL provides similar
APIs as Python’s, and there are no compiler warnings in the design
process. Therefore, developers may easily misuse Python’s APIs in
HeteroCL designs, causing implementation inconsistencies.

4.5 Discussions

When two designs have no similar structures, our equivalence
checking framework will resort back to the basic approach of di-
rectly comparing the states of the two designs. However, in practice,
the design agility of existing agile hardware design frameworks
necessarily makes the adjacent iterations of the designs highly sim-

ilar, which permits our framework’s optimizations to function. Our
structural decomposition following the AST of HalideIR ensures
that our optimizations do not result in false positives or negatives.

5 Conclusions
In this paper, we have presented a scalable equivalence checking
framework for HalideIR. It can automatically decompose design-
level equivalence checking into stage-level checking and precisely
identify inconsistencies between two hardware design iterations.
We have demonstrated its efectiveness by performing equivalence
checking on two practical deep-learning accelerator designs, sVTA
and uVTA. Results show that our framework can check equiva-
lence for designs of practical sizes and detect inconsistencies that

ASPDAC ’23, January 16–19, 2023, Tokyo, Japan

manually written unit tests failed to detect. In future work, we will
extend our framework to more domain-specifc languages based
on HalideIR, e.g., TVM [11], a popular deep-learning framework.

6 Acknowledgment
This research is partially supported by Semiconductor Research
Corporation Contract: 2932.001 and a gift from Intel Corporation.

References
[1] Coreir. URL github.com/rdaly525/coreir.
[2] Aha agile hardware project. URL aha.stanford.edu.
[3] Vc formal datapath validation. URL synopsys.com/verifcation/static-and-formal-

verifcation/vc-formal.html.
[4] Vta implementations in heterocl. URL github.com/pasqoc/incubator-tvm/tree/

bsim_fpga.
[5] Questa sequential logic equivalence check. URL eda.sw.siemens.com/en-US/ic/

questa/formal-verifcation/slec/.
[6] Vta hardware specifcation. URL github.com/apache/tvm/blob/v0.6/vta/include/

vta/hw_spec.h.
[7] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom, U.-M. O’Reilly,

and S. Amarasinghe. Opentuner: An extensible framework for program autotun-
ing. In Proceedings of the 23rd international conference on Parallel architectures
and compilation, pages 303–316, 2014.

[8] D. Brand. Verifcation of large synthesized designs. In Proceedings of 1993
International Conference on Computer Aided Design (ICCAD), pages 534–537.
IEEE, 1993.

[9] R. E. Bryant, S. German, and M. N. Velev. Processor verifcation using efcient
reductions of the logic of uninterpreted functions to propositional logic. ACM
Transactions on Computational Logic (TOCL), 2(1):93–134, 2001.

[10] C. Cadar, D. Dunbar, D. R. Engler, et al. Klee: unassisted and automatic generation
of high-coverage tests for complex systems programs. In USENIX Symposium on
Operating Systems Design and Implementation (OSDI), pages 209–224, 2008.

[11] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan, L. Wang,
Y. Hu, L. Ceze, et al. {TVM}: An automated {End-to-End} optimizing compiler
for deep learning. In 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18), pages 578–594, 2018.

[12] J.-H. Jiang and R. K. Brayton. On the verifcation of sequential equivalence. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 22(6):
686–697, 2003.

[13] A. Kuehlmann and F. Krohm. Equivalence checking using cuts and heaps. In
Proceedings of the 34th annual Design Automation Conference, pages 263–268,
1997.

[14] Y.-H. Lai, Y. Chi, Y. Hu, J. Wang, C. H. Yu, Y. Zhou, J. Cong, and Z. Zhang.
Heterocl: A multi-paradigm programming infrastructure for software-defned
reconfgurable computing. In Proceedings of the 2019 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, pages 242–251, 2019.

[15] J. Li, Y. Chi, and J. Cong. Heterohalide: From image processing dsl to efcient
fpga acceleration. In Proceedings of the 2020 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, pages 51–57, 2020.

[16] P. Mantovani, D. Giri, G. Di Guglielmo, L. Piccolboni, J. Zuckerman, E. G. Cota,
M. Petracca, C. Pilato, and L. P. Carloni. Agile soc development with open esp.
In 2020 IEEE/ACM International Conference On Computer Aided Design (ICCAD),
pages 1–9. IEEE, 2020.

[17] C. Mattarei, M. Mann, C. Barrett, R. G. Daly, D. Huf, and P. Hanrahan. Cosa:
Integrated verifcation for agile hardware design. In 2018 Formal Methods in
Computer Aided Design (FMCAD), pages 1–5. IEEE.

[18] T. Moreau, T. Chen, Z. Jiang, L. Ceze, C. Guestrin, and A. Krishnamurthy. Vta: an
open hardware-software stack for deep learning. arXiv preprint arXiv:1807.04188,
2018.

[19] J. Pu, S. Bell, X. Yang, J. Setter, S. Richardson, J. Ragan-Kelley, and M. Horowitz.
Programming heterogeneous systems from an image processing dsl. ACM Trans-
actions on Architecture and Code Optimization (TACO), 14(3):1–25, 2017.

[20] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. Amarasinghe.
Halide: a language and compiler for optimizing parallelism, locality, and recom-
putation in image processing pipelines. Acm Sigplan Notices, 48(6):519–530,
2013.

[21] C. Van Eijk. Sequential equivalence checking based on structural similarities.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
19(7):814–819, 2000.

[22] Z. Yang, K. Hao, K. Cong, S. Ray, and F. Xie. Equivalence checking for compiler
transformations in behavioral synthesis. In 2013 IEEE 31st International Conference
on Computer Design (ICCD), pages 491–494. IEEE, 2013.

[23] Z. Yang, K. Hao, K. Cong, L. Lei, S. Ray, and F. Xie. Scalable certifcation framework
for behavioral synthesis front-end. In Proceedings of the 51st Annual Design
Automation Conference, pages 1–6, 2014.

32

https://github.com/apache/tvm/blob/v0.6/vta/include
https://eda.sw.siemens.com/en-US/ic
https://github.com/pasqoc/incubator-tvm/tree
https://synopsys.com/verification/static-and-formal
https://aha.stanford.edu
https://github.com/rdaly525/coreir

	An Equivalence Checking Framework for Agile Hardware Design
	Let us know how access to this document benefits you.
	Citation Details

	An Equivalence Checking Framework for Agile Hardware Design

