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Abstract 

Agile hardware design enables designers to produce new 
design iterations efciently. Equivalence checking is critical 
in ensuring that a new design iteration conforms to its speci-
fcation. In this paper, we introduce an equivalence checking 
framework for hardware designs represented in HalideIR. 
HalideIR is a popular intermediate representation in soft-
ware domains such as deep learning and image processing, 
and it is increasingly utilized in agile hardware design. We 
have developed a fully automatic equivalence checking work-

fow seamlessly integrated with HalideIR and several opti-
mizations that leverage the incremental nature of agile hard-
ware design to scale equivalence checking. Evaluations of 
two deep learning accelerator designs show our automatic 
equivalence checking framework scales to hardware designs 
of practical sizes and detects inconsistencies that manually 
crafted tests have missed. 

CCS Concepts 

• Software and its engineering → Compilers; Software verifca-
tion; • Hardware → Equivalence checking. 
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1 Introduction 
While advances in software engineering have enabled developers 
to create new iterations of applications in a matter of weeks or 
months, designing hardware still takes large teams years of efort. 
Such lengthy and costly design cycles substantially limit hardware 
innovation. Agile hardware design is a promising approach that 
allows designers to efciently produce a new design without com-

promising quality [2, 14, 16]. It has two signifcant advantages: 

(1) Design agility: Designers can experiment at a high level of 
abstraction to explore design alternatives. 

This work is licensed under a Creative Commons Attribution International 4.0 License. 
ASPDAC ’23, January 16–19, 2023, Tokyo, Japan 
© 2023 Copyright held by the owner/author(s). 
ACM ISBN 978-1-4503-9783-4/23/01. 
https://doi.org/10.1145/3566097.3567843 

Zhenkun Yang, Pasquale Cocchini, and Jin Yang 
Strategic CAD Labs 
Intel Corporation 

Hillsboro, OR 97124, USA 

(2) Implementation agility: Various platform-specifc implemen-

tations can be easily generated from high-level designs. 

HalideIR [20] is a popular intermediate representation (IR) in soft-
ware domains such as deep-learning [11] and image processing [7]. 
It is gaining traction in agile hardware design [14, 15, 19]. HalideIR 
enables agile design because it separates the specifcation of an algo-
rithm from its execution schedule, i.e., code specifying loop nesting, 
loop unrolling, parallelization, vector operations, etc. Since chang-
ing the schedule does not require modifcation of the algorithm, 
designers can efciently experiment with various optimizations for 
the algorithm. HalideIR also enables agile implementation through 
its well-designed transformation pipelines that help lower designs 
on to various implementation platforms such as C/C++/SystemC 
and RTL. 

Central to the practical application of agile hardware designs is 
seamlessly integrated design verifcation that ensures uncompro-

mised design quality. Equivalence checking is a key design verifca-
tion method that checks if two designs exhibit the same behavior 
[12]. It plays a critical role in ensuring that new design iterations 
generated by agile hardware design are functionally equivalent to 
previous iterations and the original specifcation. 

In this paper, we introduce an equivalence checking framework 
for agile hardware design, particularly targeting designs repre-
sented in HalideIR. Given two iterations of the same design in 
HalideIR, our equivalence checking framework can symbolically 
execute them on the same set of symbolic inputs and compare if they 
produce equivalent outputs. A naïve input-output symbolic com-

parison may lead to path explosion and does not scale to hardware 
designs of practical sizes. To enable scalable equivalence checking, 
we have developed an incremental checking algorithm that lever-
ages the structural similarity of two design iterations. The algorithm 
analyzes the HalideIRs of the two design iterations to identify min-

imal design constructs that must be checked, and our equivalence 
checker is applied accordingly to discharge such localized checks. 
Since these design constructs may not be complete designs, test 
harnesses are required to wrap them into self-contained designs. 
We have developed an algorithm to automatically generate test har-
nesses, substantially reducing manual eforts. Practical hardware 
designs may contain many modules and complex computations, 
which can lead to path explosions. Hence, we have implemented 
an optimization using automatic uninterpreted function [9]. 

Our framework can support any HalideIR-based agile hardware 
design framework such as HeteroCL [14], HeteroHalide [15], and 
Halide-HLS [19]. In this paper, we use HeteroCL as an example. 
Our equivalence checking algorithms and optimizations are built 
on HalideIR and not tightly coupled with HeteroCL; therefore, 
the resulting automatic equivalence checking workfow can be 
seamlessly integrated with other HalideIR-based agile hardware 
design frameworks. We have applied our equivalence checking 
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framework to two HeteroCL implementations [4] of an open-source 
deep-learning accelerator, Versatile Tensor Accelerator (VTA) [18]. 
VTA represents hardware designs of modest but practical sizes. 
These two HeteroCL designs represent varying design iterations of 
VTA. Evaluations have shown that our approach can automatically 
check the equivalence of these two designs with the original VTA 
(also modeled in HeteroCL) with modest time and memory usage. 
Our framework has detected design inconsistencies that manually 
crafted equivalence test suites fail to identify. 

2 Background and Related Work 

2.1 Agile Hardware Design with HeteroCL 

Figure 1: Agile hardware design with HeteroCL 

Figure 1 depicts an agile hardware design workfow using Hete-
roCL. HeteroCL features a Python-based domain-specifc language 
(DSL) for specifying hardware designs on a high abstraction level. 
It utilizes HalideIR as its intermediate representation in the com-

pilation from this DSL to a lower-level design language such as 
C/C++/SystemC. In this example, the frst part of the specifcation 
defnes the computations: addition and multiplication. The second 
part creates an execution schedule for the computations and dic-
tates parallelism, data types, and memory layout. For compilation, 
this specifcation is frst transformed into HalideIR. Then, HeteroCL 
generates diferent target implementations (e.g., Intel HLS) from 
the HalideIR using diferent backends. 

2.2 Related Work 

There are commercial solutions for equivalence checking, such as 
Mentor’s SLEC [5] and Synopsys’s Hector [3], primarily targeting 
general-purpose RTL-RTL and RTL-C equivalence checking. 

There has been studies on equivalence checking between high-
level designs. Yang, et al. proposed a scalable equivalence checking 
framework to validate hardware designs in high-level description 
by comparing system states of designs through symbolic execu-
tion [23]. However, it does not scale well to HalideIR designs that 
often implement deep-learning and image processing algorithms 
which feature many loop structures. Previous research [8, 13, 21] 
also attempted to exploit structural similarities between designs to 
reduce complexities in equivalence checking. However, their ap-
proaches only work on RTL and do not apply to higher-level design 
representation, such as HalideIR. CoSA [17] implemented a formal 
verifcation framework for an agile hardware design framework, 

AHA [2]. CoSA carries out verifcation on CoreIR [1] and requires 
signifcant manual eforts. 

Our work targets HalideIR, a higher-level design representation, 
and leverages the incremental nature of agile hardware design to 
implement an automatic and scalable equivalence checking work-
fow. To the best of our knowledge, there is no other equivalence 
checking framework for hardware designs represented in HalideIR. 

3 Equivalence Checking Framework 

3.1 Overview 

Designers can efciently produce new design iterations by agile 
hardware design. To ensure design correctness, equivalence check-
ing must be conducted between these design iterations. We adopt 
the defnition of functional equivalence between designs as in [22]. 
In short, two designs are considered functionally equivalent if they 
generate equivalent outputs given the same symbolic inputs. 

Figure 2: Equivalence checking framework 

Figure 2 depicts the workfow for our equivalence checking 
framework, where a symbolic execution engine checks whether 
the synthesizable C++ generated from the HalideIRs of two de-
signs (referred to as �∗ and � ∗ ) produces the same outputs, given 
the same symbolic inputs. If the check succeeds, designs � and � 
are equivalent; otherwise, we attempt to fnd the reasons for the 
divergence in behavior. Our symbolic execution engine consists 
of KLEE [10] and an auxiliary C++ library supporting arbitrary 
data types, FIFO, etc. in synthesizable C++, which the standard C++ 
library does not support. Figure 3 shows an end-to-end example of 
equivalence checking for two designs. First, we lower the HalideIRs 
of two designs to synthesizable C++, then we use KLEE to verify 
whether given the same symbolic inputs, the � arrays, the outputs 
of the two designs, the �� ��� � arrays, are equivalent. If the check 
succeeds, the two designs are equivalent; otherwise, our framework 
fags an inconsistency. 

There are two major limitations in this straightforward approach 
to equivalence checking: 

(1) Checking the entire designs directly is not scalable: 
The approach of directly comparing the entire states of two 
designs does not scale up to complex designs, because it can 
easily lead to path explosions for any non-trivial designs. 
Another problem with this approach is that it is difcult to 
locate the points of divergence between the designs being 
compared, making debugging very challenging. 

(2) Creating test harnesses requires major manual eforts: 
Checking synthesizable C++ code with our symbolic execu-
tion engine requires time-consuming and error-prone work 
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Design S 
def simple_compute_s(a, A): 

Designs e = hcl.compute(A.shape, 
in HeteroCL lambda x, y: A[x, y] • a, "Multiply") 

returnB 

Synthesizable 
C++ 

void default_function(int a, Int A[10][10], int 
Multiply(101[10]) { 
Muttiply_x: for (int x = O; x < 1 O; ++X) 

Multiply_y: for {Int y = O; y < 1 O; ++y) 
Multiply(x]{y] = A[x](y] •a; 

DesignT 
def simple_compute_t(a, A): 

B = hcl.compute(A.shape, 
lambda x, y: A[x, y] • a• 20, "Multiply") 
retumB 

void default_function(int a, int A[1 0][1 OJ, int 
Multiply[101[1 01) { 
Multiply_x: for (int x = O; x < 1 O; ++X) 

Multiply_y: for (Int y = O; y < 10; ++Y) 
Multiply[x](y] = A[x][y] •a• 20; 
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Figure 3: An end-to-end equivalence checking example 

in creating test harnesses that include symbolic inputs, out-
puts, and wrapper code. This work needs to be repeated 
whenever there is a new design iteration to verify. 

We have made three optimizations to address these limitations: 

(1) Identifcation of minimal check units: To avoid path 
explosions, it is necessary to decompose the problem into 
smaller, more manageable, and independent check units. In  
the agile hardware design workfow, adjacent iterations of 
designs typically have high structural similarities, we utilize 
this characteristic to fnd those check units. For this purpose, 
we have identifed the HalideIR stage, a group of operations 
that usually correspond to limited lines of code, as an appro-
priate minimal check unit. Thus, the process of checking the 
equivalence of an entire design can be reduced to checking 
individual minimal check units. And the use of a stage as the 
check unit also facilitates locating the specifc operations 
that cause divergences in design behavior. 

(2) Automatic uninterpreted function optimization: A Het-
eroCL design may contain thousands of stages and complex 
computations, all these complexities contribute to path ex-
plosions. To certify a high-level stage, e.g., the Top stage in 
Figure 4, its minimal check unit may contain thousands of 
sub-stages in practical designs. Thus, we employ the auto-
matic uninterpreted function optimization, i.e., if we have 
certifed sub-stages of a stage, we can replace those sub-stages 
with equivalent uninterpreted functions. 

(3) Automatic test harness generation: We implement an 
automatic test harness generator to reduce manual work. To 
automatically generate a test harness, we need to identify 
input and output variables to minimal check units, because 
each check unit may use variables defned outside of the unit 
or produce variables that will be used by other units. 

In the next sections, we explain how these optimizations enable 
automatic and scalable equivalence checking. 

3.2 Identifcation of Minimal Check Units 

A stage in HalideIR represents a group of operations while a design 
contains many stages. As shown in Figure 4, design S has two 
operations: vector addition � and vector subtraction � , for which 

Figure 4: Example of HalideIR stages and IR checker 

HeteroCL creates IR stages � and � respectively. Each stage node 
has two children: an operation node and an optional stage node. 

There are two main reasons for choosing a stage as the minimal 
check unit for equivalence checking: First, a stage is a fundamental 
computational unit in HalideIR. A design in HalideIR can be split 
into multiple stages. Lowering the checking from the design level 
to the stage level can reduce a complex design checking problem 
into multiple stage checking problems that are much easier to solve 
while guaranteeing the completeness of equivalence checking for 
the entire design. Second, since each stage represents a specifc 
computation in HeteroCL, we can isolate and map detected incon-
sistencies back to specifc operations as part of a stage. This makes 
it easier for designers to pinpoint the causes of inconsistencies. 

To identify minimal check units, we implement an IR checker 
which traverses the abstract syntax trees (AST) of the HalideIRs for 
two designs under check to fnd stages that may have structural 
and behavioral divergences. Figure 4 illustrates how the IR checker 
works. First we lower a HeteroCL design into the HalideIR. Then, 
starting from the root node (stage Top) in Figure 4, the checker 
traverses the AST in post-order algorithm while examining the 
attributes for each node, for instance, the Sub node in our example. 

1 bool IRChecker::visit(const Sub *nodeS, const Sub *nodeT) { 
2 if (!compare_expr(nodeS->left, nodeT->left)) 
3 return false; 
4 if (!compare_expr(nodeS->right, nodeT->right)) 
5 return false; 
6 return true; 
7 } 

The code above illustrates how the IR checker operates during 
the traversal, using the Sub node as an example. Upon visiting the 
Sub node, its left and right child nodes are checked for structural 
equivalence. If they are consistent in both designs, the Sub nodes 
are considered consistent; otherwise, the checker reports them as 
structural inconsistent nodes and fags their stages. In the example 
shown in Figure 4, while checking the Sub nodes, we detect a 
structural inconsistency: the right child nodes of the Sub nodes do 
not match. Accordingly, the checker would fag stage C with all its 
children as the minimal check unit. 

There are also cases where the structures of the IR ASTs difer 
signifcantly, and certain stages have no matching ones in other 
designs. For instance, as shown in Figure 5, the IR checker cannot 
fnd a matching stage in design S for stage Mul2 in the target design 
T. In such cases, the IR checker marks the parent stage of the un-
matched node as structurally inconsistent. For instance, in Figure 5, 
the IR checker marks stage Mul1 as the divergence point with the 
minimal check unit consisting of stage Mul1 and all its sub-stages. 
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Design S 
deldesign_S(a,A,B,opcode): 

withhcl.if_(opc:odeaaO): 
hcl.updete{B. lambda x: AM+ a, "Add") 

withhcl.el,..,_Q: 
c - hcl.compute(A.ahape, lambda it: Alx] • a, "MIA\ ") 
hclupd3tO{B.lambdax: C{x] " 3,"Mul2") 

Design T 
def deslgn_T(a,A,6,opcode): 

wlthhcl. lf_(opcode••Ol: 
Ba hcl.compute(A.shape, lambda x: Alx] + e, "Add") 

wlthhcl.else..(l: 
hcl.update{B,lambdax:A(x]"a"3,"MIA2") 

O s1ageNod11 

O s1mtNodll 

□ExprNode 
~--------.==-----~ ' ·""'""=' 

Setup 
Phase 

Generated Test Harness 

II Allocate memory for input and output variables 
int l\_$(10], I\_T(10], a...S, a...T, B_S(10], B_T (10]; 
II Symbolize input variables 
make_symbolic(A); 
make_symbolic(&a); 
a_S =a;a_T= a; 
memcpy(A_S, A. 40); memcpy(A_T, A, 40); 

II S (C++) II T (C++) 
for (int x = 0; x < 1 0; ++x) 

Execute C[x]: A_S[x] •a_S; for (Int x: 0; x < 1 0; ++X) 
Phase B_T[x]= A_T[x] *a_T * 3; 

Check 
Phase 

for (int x = 0; x < 1 0; ++x) 
B_S(x]• C(x] •3; 

for (Int x = 0; x < 10; ++x) 
assert(B_S[x] == B_T[x]) 

L .... .JCl'leckUn~ 

Making input variables 
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Figure 5: Example of designs with the same behavior but 
diferent IR structures 

At the HalideIR level, even with structural inconsistencies, we 
cannot assert that the designs are inequivalent since the corre-
sponding minimal check units in two designs could realize the 
same functionality even though they are structurally diferent, as 
in the case of Figure 5. Therefore, to certify the equivalence of the 
minimal check units, we will apply our symbolic execution engine 
as described in Figure 2 to them. 

However, to apply our symbolic execution engine, the minimal 
check units must be self-contained designs. Therefore, we need to 
provide test harnesses to wrap these minimal check units automat-

ically into self-contained designs, which we will discuss below. 

3.3 Automatic Test Harness Generation 

Figure 6 illustrates how a test harness wraps the synthesizable C++ 
generated from a pair of corresponding minimal check units in 
designs � and � into a self-contained design that can be checked by 
our symbolic execution engine. The test harness consists of three 

Figure 6: Generated test harness wrapping around synthe-
sized C++ code of minimal check units of designs � and � 

phases: setup, execute, and check. In the setup phrase, the input 
variables to the pair of corresponding minimal check units in � and 
� are assigned the same symbolic values accordingly. In the execute 
phase, the synthesizable C++ of � and � ’s minimal check units are 
invoked with the symbolic inputs, respectively. In the check phrase, 
the corresponding output variables of the minimal check units are 
checked for equivalence. 

In generating the test harness, a key challenge is to identify the 
input and output variables of the minimal check unit. For design-
level checking, identifying such variables are trivial since they can 
easily be extracted from the interface defnitions of the design. 
However, we cannot directly derive those variables from a minimal 
check unit, because it is not a complete design but simply a code 
segment. We must consider the context of a minimal check unit in 
the entire design to derive its input and output variables. 

We frst defne the input and output variables of a minimal check 
unit. HalideIR uses Allocate nodes to allocate variables and Store 
nodes to represent an operation that stores data into memory, which 
changes design states. Input variables are variables within the min-

imal check unit that is neither allocated nor written by the minimal 
check unit’s internal Allocate or internal Store nodes. Take the min-

imal check unit of stage Mul1 in design � in Figure 7 as an example. 
� in the minimal check unit is neither allocated nor written by any 
Allocate or Store nodes within the unit. Therefore, it is an input 
variable. In contrast, output variables are variables within the mini-

mal check unit that are written by the unit’s internal Store nodes, 
but not allocated by the unit’s internal Allocate nodes. For instance, 
� in the minimal check unit of stage Mul1 in design � from Figure 
7 is an output variable. 

We identify input and output variables of a minimal check unit 
by analyzing the variable dependency in HalideIR. First, we analyze 
the HalideIR of the design to fnd all variable nodes within the 
minimal check unit. For example, for stage Mul1 in design S from 
Figure 7, we have a variable set: �, �, and � . Then, we identify 
all variables that Allocate nodes allocate within the minimal check 
unit, in this case, � . Subsequently, we subtract the locally allocated 
variables from the variable set. Now we have identifed all variables 
not allocated by Allocate nodes within the minimal check unit: �, 
and �. Since � is written by a Store node, it is marked as an output 
variable for the minimal check unit in design � , while the remaining 
variable, �, is marked as input. We repeat this process for design � . 
Next, we check if stage Mul1 in � and � have the same input and 
output variables. If they mismatch, we record the inconsistencies 
as warnings. 

After we identify the input and output variables of minimal check 
units, then the test harness generator produces the synthesizable 
C++ code for the minimal check units of � and � . Lastly, it generates 
the checking code for output variables. Now, we have a complete 
executable program that contains the C++ code generated from 
minimal check units of � and � and the wrapping test harness. This 
program is readily consumable by the symbolic engine. 

3.4 Automatic Uninterpreted Function Optimization 

Figure 7 shows an example of replacing certifed sub-stages with 
uninterpreted functions. Design � , and � have two inconsistent 
stages, Mul1 and Mul2. Since Mul1 includes Mul2, if we have certi-
fed stage Mul2 equivalent in both designs, when certifying Mul1, 
we can replace Mul2 in both designs with the same uninterpreted 
functions to reduce verifcation complexities. Since KLEE does not 
readily support uninterpreted functions, we provide a workaround: 
For each pair of certifed minimal check units, we use KLEE to check 
their input variables’ equivalence, remove all nodes in the minimal 
check units, and replace the units with equivalent symbols in both 
designs. This process can be executed recursively. We can make the 
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Figure 7: An example of replacing certifed sub-stages with 
uninterpreted functions 

equivalence checking combinational with automatic uninterpreted 
function optimization, helping handle complicated designs. 

3.5 Optimized Equivalence Checking Framework 

Figure 8 illustrates our optimized equivalence checking framework. 
Design � is a newer design iteration produced by transformation 

Figure 8: Optimized equivalence checking of designs � and � , 
the input and output of design transformation � respectively 

� from design � , where � can be a manual or automated transfor-
mation, such as updating the hardware structures and algorithms 
or bringing new optimizations, such as adding new pipelines and 
unrolling loops. Instead of directly comparing the entire design 
� against design � symbolically, we frst use the IR checker to 
determine if the IRs (referred to as � ∗ and � ∗ ) of two designs are 
structurally equivalent. If yes, we can already report that � and 
� are equivalent. Otherwise, we send the pairs of minimal check 
units in the two IRs, as identifed by the IR checker, to the test 
harness generator. For each corresponding pair of minimal check 
units, the test harness generator produces a test harness that wraps 
the synthesized C++ code of this pair into a complete C++ program 
that the symbolic execution engine can consume. If all minimal 
check unit pairs are equivalent, the equivalence checking frame-

work reports the designs as equivalent; otherwise, it reports the 
detected inconsistencies. 

3.6 Integration with HalideIR-based Agile Hardware 
Design Frameworks 

Figure 9 shows the integration between our equivalence checking 
framework and HalideIR-based agile hardware design frameworks, 
such as HeteroHalide [15], Halide-HLS [19], and HeteroCL [14]. In-

Figure 9: Integration of our equivalence checking framework 
with HalideIR-based agile hardware design frameworks 

stead of applying to a specifc agile hardware design framework, our 
equivalence checking framework broadly applies to any HalideIR-
based agile hardware design framework. We frst lower the designs 
into HalideIR and send HalideIR ASTs to our IR checker. The IR 
checker will identify inconsistent stages as minimal check units 
and send them to the test harness generator. The test harness gen-
erator will generate the test harness and combines it with C++ code 
from the minimal check units generated by HalideIR’s backend. 
The symbolic execution engine then runs on the combined code to 
discharge the checks. Our approach can also be adapted to other ag-
ile hardware design frameworks, where we can identify structural 
similarities in their IRs. 

4 Evaluations 
We have evaluated the efectiveness and efciency of our equiva-
lence checking framework using two HeteroCL implementations [4] 
of an open-source deep-learning accelerator: VTA [18]. VTA is 
composed of four modules: fetch, load, compute, and store. The 
fetch module fetches instructions from the DRAM, the load mod-

ule loads data from DRAM to internal data bufers, the compute 
module includes an ALU (arithmetic logic unit) and a GEMM (gen-
eral matrix multiplication) and carries out the computations, and 
the store module moves the computed results back to DRAM. 

Researchers from Intel have implemented two versions of the 
VTA architecture using HeteroCL’s Python-like DSL [4]: one is a 
sequential model of the VTA that processes one instruction at a 
time, and the other breaks down each of the 128-bit instructions 
into smaller micro-ops for potential parallelization. We refer to 
them as sVTA and uVTA in this paper. For comparison purposes, 
we also implemented a HeteroCL version of the VTA architecture 
strictly following its original structure [18], referred to as hVTA. 
To make sure hVTA is equivalent to the original VTA in C++, we  
symbolically executed hVTA and VTA function by function to 
verify their equivalence manually. Thus hVTA can serve as the 
specifcation for verifcation of sVTA and uVTA. We conducted this 
evaluation by checking the equivalence between sVTA and hVTA 
(sVTA-hVTA) as well as between uVTA and hVTA (uVTA-hVTA). 
The evaluation is done on a workstation with a 12-core AMD Ryzen 
5900x CPU, 128 GB RAM, and Ubuntu 18.04 operating system. 

Table 1 shows our evaluation results. We frst run equivalence 
checking on the entire synthesizable C++ code generated from 
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Table 1: Evaluation of our framework without/with minimal check unit & uninterpreted function optimizations 

Design 
LoC 
Python 

LoC 
C++ 

Minimal check unit 
& uninterpreted func-
tion optimizations 

Time 
(s) 

Memory 
(MB) 

# of stages 
# of struc-

tural incon-
sistencies 

# of behav-
ioral incon-
sistencies 

sVTA-hVTA 296 560 
No timeout 6781.73 no data no data no data 
Yes 65.39 128.37 211 8 2 

uVTA-hVTA 195 1224 
No timeout 7384.34 no data no data no data 
Yes 1238.38 2384.98 301 84 3 

sVTA-hVTA and uVTA-hVTA, respectively. The symbolic execu-
tion engine timed out after 24 hours with more than 6 GB of memory 
consumption. With our optimization that breaks the checking prob-
lem into much smaller chunks at the stage level, the equivalence 
checking is completed in 65 seconds for sVTA-hVTA with 128.37 
MB of memory, and 1238.38 seconds for uVTA-hVTA with 2384 MB 
of memory. We broke sVTA into 211 stages and detected 8 struc-
tural inconsistencies between sVTA and hVTA. After sending them 
to the symbolic execution engine, two behavioral inconsistencies 
are detected, which are fagged as bugs. For uVTA, we broke it 
into 301 stages and detected 84 structural inconsistencies between 
uVTA and hVTA; three of them caused behavioral inconsistencies. 
The results demonstrated that by checking the design at the stage 
level and lowering the complexity, we could tackle the equivalence 
checking problem for entire deep-learning accelerator designs, that 
are modest-size, and structurally distinct but functionally equiv-
alent. The execution time of uVTA-hVTA is much longer than 
sVTA-hVTA because uVTA has signifcant structural diferences 
from hVTA though they are functionally equivalent. uVTA still 
reuses many low-level functions in the original VTA as specifed in 
hVTA, such as memory copy and computations, whose checking 
can be optimized with uninterpreted functions. 

In our experiments, we detected one inconsistency in sVTA’s 
load module and another one in ALU module. For uVTA, we de-
tected two inconsistencies in load module and one in ALU module. 
Additionally, we found one bug in the HeteroCL framework. We 
have reported all detected inconsistencies and the bug to the devel-
opers. HeteroCL has marked the bug as high-priority 1. 

The inconsistency in ALU module of uVTA and the one in ALU 
module of sVTA share the same cause, so do one of inconsisten-
cies in uVTA’s load module and the one in sVTA’s load module. 
Therefore, in the following subsections, we will elaborate on incon-
sistencies in the ALU module of sVTA and load module of uVTA. 

4.1 sVTA Inconsistency with hVTA in ALU 

Our framework found one inconsistency in the ALU module of sVTA. 
The code fragment below is excerpted from this module. 

1 ALU_OPCODE = hcl.scalar(instr[111:108], name="ALU_OPCODE") 
2 # extend OPCODE to 3 bits 
3 USE_IMM = hcl.scalar(instr[112:111], name="USE_IMM", 
4 dtype=hcl.UInt(1)) 
5 IMM = hcl.scalar(instr[128:112], name="IMM") 
6 src = hcl.select(USE_IMM.v == 1, hcl.cast(hcl.Int(16), IMM), 
7 hcl.cast(hcl.Int(32), src_tensor[x][y])) 
8 dst = hcl.cast(hcl.Int(32), dst_tensor[x][y]) 
9 with hcl.if_(ALU_OPCODE.v == VTA_ALU_OPCODE_MIN): 
10 dst_tensor[x][y] = hcl.select(dst <= src, dst_tensor[x][y], src) 

1https://github.com/cornell-zhang/heterocl/issues/258 

At line 1, the ALU_CODE variable has 3 bits, while the corresponding 
variable in hVTA only has 2 bits [6]. The left-hand side in Figure 10 

Figure 10: sVTA ALU instruction inconsistency / uVTA Load 
instruction inconsistency 

shows the ALU instruction of hVTA and sVTA, and we can see that 
extending the ALU_OPCODE bits to 3 bits in sVTA causes USE_IMM 
and IMM felds to shift 1 bit, which is inconsistent with the original 
VTA instruction. 

4.2 First uVTA-hVTA Inconsistency in load 

Our framework found two inconsistencies in the load module of 
uVTA. Hereby we elaborate on the frst one. As shown in the right-
hand side of Figure 10, uVTA uses an extra bit pad_value that is 
not present in the original VTA instruction. 

1 is_min_pad_value = hcl.scalar(instr[58:57]) 
2 pad_val = hcl.select(is_min_pad_value.v == 1, 
3 hcl.cast(hcl.Int(16), 
4 1 << (sram_bits - 1)), 0) 
5 sram_idx = sram_base + x_tot * y + x  
6 def clear(row, col): 
7 sram[sram_idx][row][col] = pad_val 
8 hcl.mutate((nrows, ncols), clear, name='pad_clear') 

The code above is excerpted from the load module of uVTA. At 
line 1, the load module reads the extra bit from instructions. At line 
2, the pad_value variable is assigned diferent values, according to 
the extra bit. And at line 6, the load module resets the sram with 
pad_value. However, according to the code below excerpted from 
the load module of hVTA, at line 3, sram is always reset with zeros. 

1 for (int i = 0; i < range; i++) 
2 for (int j = 0; j < MAT_AXI_RATIO; j++) 
3 mem[sram_idx++][j] = 0; 

Manually written unit tests failed to detect this inconsistency 
because those unit tests use VTA runtime to generate instructions. 
VTA runtime resets the instruction memory to zero before writing 
instructions. As a result, the pad_value bit in the uVTA instruction 
is always set to zero, which hides this inconsistency. This underlines 
the importance of applying formal equivalence checking. 

31 

https://1https://github.com/cornell-zhang/heterocl/issues/258


An Equivalence Checking Framework for Agile Hardware Design 

4.3 Second uVTA-hVTA Inconsistency 

Our experiments found another inconsistency in the load module 
of uVTA, which is caused by the following code fragment. 

1 with hcl.if_(memtype == VTA_MEM_ID_WGT): 
2 sram = wgt_mem 
3 with hcl.else_(): 
4 sram = acc_mem 
5 def fmutate_out(x,y,z): 
6 sram[x][y][z] = 0 
7 hcl.mutate(sram.shape, fmutate_out) 

As the code above illustrates, the sram variable is assigned a 
diferent cache type according to the memtype condition. We expect 
that wgt_mem, and acc_mem should be set to zero according to the 
diferent memtype. However, in the synthesizable C++ generated 
by HeteroCL, only acc_mem was set to zero (See the code below). 

1 for (int x = 0; x < range; ++x) 
2 for (int y = 0; y < 1;  ++y) 
3 for (int z = 0; z < 16; ++z) 
4 acc_mem[(y+x)][0][z] = 0U; 

After we reported this inconsistency to the developers, they 
confrmed that it was caused by misuse of HeteroCL API. At line 2 
of the above code, the developers used the assignment from Python 
to set the sram; instead, hcl.update should have been used. 

4.4 Bug Analysis 

The above examples represent two typical kinds of bugs that design-
ers will encounter when conducting agile hardware design using 
HeteroCL. The frst one is a violation of specifcations, such as 
the bugs reported in Section 4.1 and Section 4.2. Developers may 
change their design implementations, such as updating algorithms, 
or apply new optimizations, such as adding new pipelines. Those 
changes may violate specifcations. All those transformations will 
change the ASTs of the HalideIRs. Our approach uses an IR checker 
to detect AST changes, generate corresponding test harnesses, and 
check the equivalence of minimal check units. The second kind of 
bugs is API misuse, as in Section 4.3. HeteroCL provides similar 
APIs as Python’s, and there are no compiler warnings in the design 
process. Therefore, developers may easily misuse Python’s APIs in 
HeteroCL designs, causing implementation inconsistencies. 

4.5 Discussions 

When two designs have no similar structures, our equivalence 
checking framework will resort back to the basic approach of di-
rectly comparing the states of the two designs. However, in practice, 
the design agility of existing agile hardware design frameworks 
necessarily makes the adjacent iterations of the designs highly sim-

ilar, which permits our framework’s optimizations to function. Our 
structural decomposition following the AST of HalideIR ensures 
that our optimizations do not result in false positives or negatives. 

5 Conclusions 
In this paper, we have presented a scalable equivalence checking 
framework for HalideIR. It can automatically decompose design-
level equivalence checking into stage-level checking and precisely 
identify inconsistencies between two hardware design iterations. 
We have demonstrated its efectiveness by performing equivalence 
checking on two practical deep-learning accelerator designs, sVTA 
and uVTA. Results show that our framework can check equiva-
lence for designs of practical sizes and detect inconsistencies that 
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manually written unit tests failed to detect. In future work, we will 
extend our framework to more domain-specifc languages based 
on HalideIR, e.g., TVM [11], a popular deep-learning framework. 

6 Acknowledgment 
This research is partially supported by Semiconductor Research 
Corporation Contract: 2932.001 and a gift from Intel Corporation. 

References 
[1] Coreir. URL github.com/rdaly525/coreir. 
[2] Aha agile hardware project. URL aha.stanford.edu. 
[3] Vc formal datapath validation. URL synopsys.com/verifcation/static-and-formal-

verifcation/vc-formal.html. 
[4] Vta implementations in heterocl. URL github.com/pasqoc/incubator-tvm/tree/ 

bsim_fpga. 
[5] Questa sequential logic equivalence check. URL eda.sw.siemens.com/en-US/ic/ 

questa/formal-verifcation/slec/. 
[6] Vta hardware specifcation. URL github.com/apache/tvm/blob/v0.6/vta/include/ 

vta/hw_spec.h. 
[7] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom, U.-M. O’Reilly, 

and S. Amarasinghe. Opentuner: An extensible framework for program autotun-
ing. In Proceedings of the 23rd international conference on Parallel architectures 
and compilation, pages 303–316, 2014. 

[8] D. Brand. Verifcation of large synthesized designs. In Proceedings of 1993 
International Conference on Computer Aided Design (ICCAD), pages 534–537. 
IEEE, 1993. 

[9] R. E. Bryant, S. German, and M. N. Velev. Processor verifcation using efcient 
reductions of the logic of uninterpreted functions to propositional logic. ACM 
Transactions on Computational Logic (TOCL), 2(1):93–134, 2001. 

[10] C. Cadar, D. Dunbar, D. R. Engler, et al. Klee: unassisted and automatic generation 
of high-coverage tests for complex systems programs. In USENIX Symposium on 
Operating Systems Design and Implementation (OSDI), pages 209–224, 2008. 

[11] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan, L. Wang, 
Y. Hu, L. Ceze, et al. {TVM}: An automated {End-to-End} optimizing compiler 
for deep learning. In 13th USENIX Symposium on Operating Systems Design and 
Implementation (OSDI 18), pages 578–594, 2018. 

[12] J.-H. Jiang and R. K. Brayton. On the verifcation of sequential equivalence. IEEE 
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 22(6): 
686–697, 2003. 

[13] A. Kuehlmann and F. Krohm. Equivalence checking using cuts and heaps. In 
Proceedings of the 34th annual Design Automation Conference, pages 263–268, 
1997. 

[14] Y.-H. Lai, Y. Chi, Y. Hu, J. Wang, C. H. Yu, Y. Zhou, J. Cong, and Z. Zhang. 
Heterocl: A multi-paradigm programming infrastructure for software-defned 
reconfgurable computing. In Proceedings of the 2019 ACM/SIGDA International 
Symposium on Field-Programmable Gate Arrays, pages 242–251, 2019. 

[15] J. Li, Y. Chi, and J. Cong. Heterohalide: From image processing dsl to efcient 
fpga acceleration. In Proceedings of the 2020 ACM/SIGDA International Symposium 
on Field-Programmable Gate Arrays, pages 51–57, 2020. 

[16] P. Mantovani, D. Giri, G. Di Guglielmo, L. Piccolboni, J. Zuckerman, E. G. Cota, 
M. Petracca, C. Pilato, and L. P. Carloni. Agile soc development with open esp. 
In 2020 IEEE/ACM International Conference On Computer Aided Design (ICCAD), 
pages 1–9. IEEE, 2020. 

[17] C. Mattarei, M. Mann, C. Barrett, R. G. Daly, D. Huf, and P. Hanrahan. Cosa: 
Integrated verifcation for agile hardware design. In 2018 Formal Methods in 
Computer Aided Design (FMCAD), pages 1–5. IEEE. 

[18] T. Moreau, T. Chen, Z. Jiang, L. Ceze, C. Guestrin, and A. Krishnamurthy. Vta: an 
open hardware-software stack for deep learning. arXiv preprint arXiv:1807.04188, 
2018. 

[19] J. Pu, S. Bell, X. Yang, J. Setter, S. Richardson, J. Ragan-Kelley, and M. Horowitz. 
Programming heterogeneous systems from an image processing dsl. ACM Trans-
actions on Architecture and Code Optimization (TACO), 14(3):1–25, 2017. 

[20] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. Amarasinghe. 
Halide: a language and compiler for optimizing parallelism, locality, and recom-
putation in image processing pipelines. Acm Sigplan Notices, 48(6):519–530, 
2013. 

[21] C. Van Eijk. Sequential equivalence checking based on structural similarities. 
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 
19(7):814–819, 2000. 

[22] Z. Yang, K. Hao, K. Cong, S. Ray, and F. Xie. Equivalence checking for compiler 
transformations in behavioral synthesis. In 2013 IEEE 31st International Conference 
on Computer Design (ICCD), pages 491–494. IEEE, 2013. 

[23] Z. Yang, K. Hao, K. Cong, L. Lei, S. Ray, and F. Xie. Scalable certifcation framework 
for behavioral synthesis front-end. In Proceedings of the 51st Annual Design 
Automation Conference, pages 1–6, 2014. 

32 

https://github.com/apache/tvm/blob/v0.6/vta/include
https://eda.sw.siemens.com/en-US/ic
https://github.com/pasqoc/incubator-tvm/tree
https://synopsys.com/verification/static-and-formal
https://aha.stanford.edu
https://github.com/rdaly525/coreir

	An Equivalence Checking Framework for Agile Hardware Design
	Let us know how access to this document benefits you.
	Citation Details

	An Equivalence Checking Framework for Agile Hardware Design

