58 research outputs found

    VISIR : visual and semantic image label refinement

    Get PDF
    The social media explosion has populated the Internet with a wealth of images. There are two existing paradigms for image retrieval: 1) content-based image retrieval (CBIR), which has traditionally used visual features for similarity search (e.g., SIFT features), and 2) tag-based image retrieval (TBIR), which has relied on user tagging (e.g., Flickr tags). CBIR now gains semantic expressiveness by advances in deep-learning-based detection of visual labels. TBIR benefits from query-and-click logs to automatically infer more informative labels. However, learning-based tagging still yields noisy labels and is restricted to concrete objects, missing out on generalizations and abstractions. Click-based tagging is limited to terms that appear in the textual context of an image or in queries that lead to a click. This paper addresses the above limitations by semantically refining and expanding the labels suggested by learning-based object detection. We consider the semantic coherence between the labels for different objects, leverage lexical and commonsense knowledge, and cast the label assignment into a constrained optimization problem solved by an integer linear program. Experiments show that our method, called VISIR, improves the quality of the state-of-the-art visual labeling tools like LSDA and YOLO

    Discrete deep learning for fast content-aware recommendation

    Get PDF
    Cold-start problem and recommendation efficiency have been regarded as two crucial challenges in the recommender system. In this paper, we propose a hashing based deep learning framework called Discrete Deep Learning (DDL), to map users and items to Hamming space, where a user's preference for an item can be efficiently calculated by Hamming distance, and this computation scheme significantly improves the efficiency of online recommendation. Besides, DDL unifies the user-item interaction information and the item content information to overcome the issues of data sparsity and cold-start. To be more specific, to integrate content information into our DDL framework, a deep learning model, Deep Belief Network (DBN), is applied to extract effective item representation from the item content information. Besides, the framework imposes balance and irrelevant constraints on binary codes to derive compact but informative binary codes. Due to the discrete constraints in DDL, we propose an efficient alternating optimization method consisting of iteratively solving a series of mixed-integer programming subproblems. Extensive experiments have been conducted to evaluate the performance of our DDL framework on two different Amazon datasets, and the experimental results demonstrate the superiority of DDL over the state-of-the-art methods regarding online recommendation efficiency and cold-start recommendation accuracy

    Adversarial Domain Adaptation for Duplicate Question Detection

    Full text link
    We address the problem of detecting duplicate questions in forums, which is an important step towards automating the process of answering new questions. As finding and annotating such potential duplicates manually is very tedious and costly, automatic methods based on machine learning are a viable alternative. However, many forums do not have annotated data, i.e., questions labeled by experts as duplicates, and thus a promising solution is to use domain adaptation from another forum that has such annotations. Here we focus on adversarial domain adaptation, deriving important findings about when it performs well and what properties of the domains are important in this regard. Our experiments with StackExchange data show an average improvement of 5.6% over the best baseline across multiple pairs of domains.Comment: EMNLP 2018 short paper - camera ready. 8 page

    How to Perform Reproducible Experiments in the ELLIOT Recommendation Framework: Data Processing, Model Selection, and Performance Evaluation

    Full text link
    Recommender Systems have shown to be an efective way to alleviate the over-choice problem and provide accurate and tailored recommendations. However, the impressive number of proposed recommendation algorithms, splitting strategies, evaluation protocols, metrics, and tasks, has made rigorous experimental evaluation particularly challenging. ELLIOT is a comprehensive recommendation framework that aims to run and reproduce an entire experimental pipeline by processing a simple confguration fle. The framework loads, flters, and splits the data considering a vast set of strategies. Then, it optimizes hyperparameters for several recommendation algorithms, selects the best models, compares them with the baselines, computes metrics spanning from accuracy to beyond-accuracy, bias, and fairness, and conducts statistical analysis. The aim is to provide researchers a tool to ease all the experimental evaluation phases (and make them reproducible), from data reading to results collection. ELLIOT is freely available on GitHub at https://github.com/sisinflab/ellio

    A Survey on Cross-domain Recommendation: Taxonomies, Methods, and Future Directions

    Full text link
    Traditional recommendation systems are faced with two long-standing obstacles, namely, data sparsity and cold-start problems, which promote the emergence and development of Cross-Domain Recommendation (CDR). The core idea of CDR is to leverage information collected from other domains to alleviate the two problems in one domain. Over the last decade, many efforts have been engaged for cross-domain recommendation. Recently, with the development of deep learning and neural networks, a large number of methods have emerged. However, there is a limited number of systematic surveys on CDR, especially regarding the latest proposed methods as well as the recommendation scenarios and recommendation tasks they address. In this survey paper, we first proposed a two-level taxonomy of cross-domain recommendation which classifies different recommendation scenarios and recommendation tasks. We then introduce and summarize existing cross-domain recommendation approaches under different recommendation scenarios in a structured manner. We also organize datasets commonly used. We conclude this survey by providing several potential research directions about this field
    • …
    corecore