
Discrete Deep Learning for Fast Content-Aware
Recommendation

Yan Zhang, Hongzhi Yin†*, Zi Huang†, Xingzhong Du†, Guowu Yang, Defu Lian*

School of Computer Science and Engineering, University of Electronic Science and Technology of China
†School of Information Technology and Electrical Engineering, The University of Queensland

yixianqianzy@gmail.com,h.yin1@uq.edu.au,huang@itee.uq.edu.au,x.du@uq.edu.au,guowu@uestc.edu.cn,dove.
ustc@gmail.com

ABSTRACT

Cold-start problem and recommendation efficiency have been
regarded as two crucial challenges in the recommender sys-
tem. In this paper, we propose a hashing based deep learning
framework called Discrete Deep Learning (DDL), to map
users and items to Hamming space, where a user’s preference
for an item can be efficiently calculated by Hamming distance,
and this computation scheme significantly improves the effi-
ciency of online recommendation. Besides, DDL unifies the
user-item interaction information and the item content infor-
mation to overcome the issues of data sparsity and cold-start.
To be more specific, to integrate content information into our
DDL framework, a deep learning model, Deep Belief Network
(DBN), is applied to extract effective item representation
from the item content information. Besides, the framework
imposes balance and irrelevant constraints on binary codes to
derive compact but informative binary codes. Due to the dis-
crete constraints in DDL, we propose an efficient alternating
optimization method consisting of iteratively solving a series
of mixed-integer programming subproblems. Extensive ex-
periments have been conducted to evaluate the performance
of our DDL framework on two different Amazon datasets,
and the experimental results demonstrate the superiority
of DDL over the state-of-the-art methods regarding online
recommendation efficiency and cold-start recommendation
accuracy.

KEYWORDS

recommender system; Deep Learning; Hash code; Cold-start

ACM Reference Format:

Yan Zhang, Hongzhi Yin†[1], Zi Huang†, Xingzhong Du†, Guowu

Yang, Defu Lian[1]. 2018. Discrete Deep Learning for Fast Content-
Aware Recommendation. In WSDM 2018: 11th ACM International

Conference on Web Search and Data Mining, February 5–9, 2018,

*The corresponding authors

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

WSDM 2018, February 5–9, 2018, Marina Del Rey, CA, USA

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5581-0/18/02. . . $15.00
https://doi.org/10.1145/3159652.3159688

Marina Del Rey, CA, USA. ACM, New York, NY, USA, 9 pages.

https://doi.org/10.1145/3159652.3159688

1 INTRODUCTION

In the era of information explosion, information overload
becomes a challenging problem. Thus it is essential to sort out
valuable information for everyone. Personalized recommender
systems have been recognized as one of the most critical and
effective approaches for alleviating information overload. It
is a key factor for the success of many online e-commerce
websites such as Taobao, Amazon, Netflix, Yelp, etc.

Collaborative filtering (CF) based recommender systems
proven to be very successful. They produce top-𝑘 items that
users may be interested in by exploiting the historical interac-
tion data such as ratings, purchasing, clicking, and watching
records. Among all CF-based methods, the latent factor mod-
els (e.g., matrix factorization) have been demonstrated to
achieve great success in both academia and industry. Such CF
methods factorize an 𝑛×𝑚 user-item interaction matrix into
a low-dimensional latent vector (a.k.a. feature) space where
both users and items are represented by real-valued vectors.
Then the user’s preference scores for items were predicted by
inner products between their vector representations, and the
user’s top-𝑘 preferred items can be produced by ranking the
scores descendingly.

However, the growing scale of users and items has made on-
line recommendation much more challenging. Specifically, sup-
pose there are 𝑛 users and 𝑚 items in an online recommender
system, users and items are denoted as 𝑟-dimension real-
valued vectors, searching the top-k items that users may inter-
ested in is the task of online recommendation. The time com-
plexity of online recommendation is 𝒪(𝑛𝑚𝑟 + 𝑛𝑚 log 𝑘) [36],
and it is a critical efficiency bottleneck when the size of the
dataset is large. Hence a few recommendation frameworks [27–
33] were proposed to speed up the online recommendation.
However, the time complexity was not decreased markedly
since these recommendations are still based on real-valued
features.

Fortunately, hashing technique, encoding users and items
into binary codes in Hamming space, is a promising approach
to tackle the efficiency bottleneck. Since preference score, in
this case, can be efficiently computed by bit operations, i.e.,
Hamming distance. One can even use a fast and accurate
indexing method to find approximate top-k preferred items
with sublinear or logarithmic time complexity [25]. Besides,
each dimension of hash codes can be stored by only one

Technical Presentation WSDM’18, February 5-9, 2018, Marina Del Rey, CA, USA

709

https://doi.org/10.1145/3159652.3159688
https://doi.org/10.1145/3159652.3159688

bit instead of 32/64 bits that are used for storing one di-
mension in real-valued vectors, which significantly reduces
storage cost. However, many previous hashing-based recom-
mendation improves the recommendation efficiency at the
price of recommendation accuracy due to a large amount of
information loss caused by discretization.

Existing hashing-based recommender systems were pro-
posed to find some trade-off strategies between efficiency
and accuracy [35–39]. These strategies consist of two type-
s: two-stage hashing recommendation and hashing learning
recommendation. To learn hash codes, a discrete optimiza-
tion problem is formulated in hashing-based recommendation
frameworks. However, this discrete optimization problem
is NP-hard [6], but can be resorted to a two-stage proce-
dure, which consists of relaxed optimization via discarding
the discrete constraints, and subsequent binary quantization
stage. But these two-stage approaches oversimplify original
discrete optimization, so two principle hashing-based frame-
works called Discrete Collaborative Filtering (DCF) [35] and
Discrete Personalized Ranking (DPR) [36], were proposed to
solve the discrete optimization directly. However, hash codes
intuitively carry less information than real-valued vectors
since much fewer bits are utilized to store information, which
leads to poor recommendation performance. Besides, it is
widely recognized that CF-based methods suffer poor per-
formance when the interaction information is sparse, and an
extreme case is cold start [18], where there is no interaction
information between new users/items and other items/users.
Because the above hashing recommendation frameworks are
based on CF, data sparsity further aggravates the poor per-
formance, and they cannot work in the cold-start setting.

To alleviate the above issues, we propose a hashing-based
learning recommendation framework, Discrete Deep Learning
(DDL), which combines a deep learning framework, Deep
Belief Network (DBN), and CF framework to learn efficient
binary representations for users and items from rating and
content data. In order to obtain compact and informative
hash codes, we add balance and irrelevant constraints on
binary codes. Two steps solve the problem: initialize DDL
and optimize DDL. We first initialize DDL by the pre-train
procedure of DBN that will be introduced in Section 3.3.
We then apply an efficient alternating optimization method
to optimize our proposed DDL to obtain hash codes for
users and items from rating and content data. Finally, we
evaluate DDL on two different Amazon1 datasets and show
its consistent superiority to the competing baselines.

The main contributions of this paper are summarized as
follows:

(1) We propose a hashing-based hybrid recommendation
framework by combining hashing and hybrid recommen-
dation techniques, which effectively overcome sparse
and cold-start issues, and significantly speed up online
recommendation.

(2) We integrate a deep learning model into our hashing
based recommendation framework in a unified way,

1https://www.amazon.com/

which is helpful to extract efficient binary representa-
tions. Hence DDL provides a good trade-off between
recommendation efficiency and accuracy.

(3) We add balance and irrelevant constraints on hash
codes and develop an alternating optimization algo-
rithm to solve the proposed discrete mixed-integer
programming problem, which is helpful to extract com-
pact and informative hash codes and can improve the
recommendation performance.

The rest of this paper is organized as follows: Section 2 and
Section 3 introduce the related works and the preliminary,
respectively. Section 4 introduces the model proposed in this
paper in detail. Section 5 introduces the initialization and
the discrete optimization algorithm to solve the proposed
model. Section 6 introduces the experimental settings for
DDL and other comparison methods. Section 7 analyzes the
experimental results and Section 8 concludes the paper.

2 RELATED WORK

In this section, we review several major schemes closely rele-
vant to this paper. Firstly, we introduce several real-valued
hybrid recommender systems proposed to alleviate data s-
parsity by combining user-item interaction and content data.
We then present the latest two types of hashing-based rec-
ommendation frameworks.

2.1 Real-Valued Hybrid Recommendation

2.1.1 CTR. Collaborative topic regression [23] is a state-
of-the-art hybrid recommender system, which was proposed
by combining topic model, collaborative filtering, and prob-
abilistic matrix factorization (PMF) [17]. The authors de-
veloped a machine learning algorithm for recommending
scientific articles to users in an online scientific community.
CTR obtained real latent representations of users and items
by exploiting two types of data: user’s collection data and
article content data. It can be used to mitigate cold start
and data sparsity settings.

2.1.2 CDL. Collaborative deep learning [24] was proposed
as a probabilistic model by jointly learning a probabilistic
stacked denoising autoencoder (SDAE) [21] and CF. Simi-
lar to CTR, CDL exploits interaction and content data to
alleviate cold start and data sparsity problems. Differ from
CTR, CDL took advantage of deep learning framework to
learn effective real latent representations. Thus it can be
applied in cold-start and sparse settings. CDL is a tightly
coupled method for recommender systems by developing a
hierarchical Bayesian model.

2.1.3 CKE. Collaborative knowledge base embedding [34]
is an integrated framework composed of three components:
heterogeneous network embedding method, stacked denois-
ing auto-encoders, and stacked convolutional auto-encoders.
CKE extracted items semantic representations from struc-
tural content, textual content and visual content, and it was
proposed to deal with cold start and data sparsity settings.

2.1.4 VBPR. Visual Bayesian Personalized Ranking [7] is
a factorization model by incorporating visual features into
predictors of users’ preferences. By utilizing visual features

Technical Presentation WSDM’18, February 5-9, 2018, Marina Del Rey, CA, USA

710

extracted from product images by (pre-trained) deep net-
works, VBPR is also helpful to alleviate cold start and sparse
issues.

2.2 Hashing-based Recommendation

Below we mainly review recent advances of hashing-based
recommendation frameworks. For comprehensive review of
hashing techniques, please refer to [26].

2.2.1 Two-stage Hashing Recommendation. As discussed
in Section 1, the two-stage framework consists of relaxed
optimization stage and binary quantization stage. Real latent
representations can be obtained by the relaxed optimization,
and hash codes can be obtained by the quantization. A pi-
oneer work [3] was proposed to exploit Locality-Sensitive
Hashing [4] to generate hash codes for Google News readers
based on their click history. On this basis, A. Karatzoglou
et al. [10] randomly projected real latent representations
learned from regularized matrix factorization into hash codes.
Similar to this, K. Zhou et al.[39] followed the idea of Itera-
tive Quantization [5] to generate binary codes from rotated
real latent representations. To derive compact binary codes,
the uncorrelated constraints were imposed on the real latent
representations in regularized matrix factorization. However,
according to the analysis in [38], hashing essentially only
preserves similarity rather than preference based on inner
product, since the magnitudes of the representations for users
and items are discarded in the quantization stage. Thus, a
constant feature norm (CFN) constraint was imposed when
learning the real latent representations, and then the mag-
nitudes and similarity are respectively quantized in [37, 38].
But the two-stage approach still suffered large information
loss in the quantization procedure.

2.2.2 Hashing Learning Recommendation. Differ from two-
stage hashing frameworks, hashing learning frameworks can
obtain hash codes by directly solving the discrete optimiza-
tion problem. Thus more information is carried by hash codes
than two-stage frameworks. Zhang et al. proposed discrete
collaborative filtering (DCF) [35], which is a hashing learning
recommendation framework. By adding balance and uncor-
related constraints on hash codes, DCF obtained efficient
binary codes. DCF was evaluated using a similar way of the
conventional CF [16]. By directly optimizing a ranking eval-
uation metric – the Area Under ROC (Receiver Operating
Characteristics) Curve (AUC), discrete personalized ranking
(DPR) [36] was proposed to learn hash codes under the same
constraints with DCF, and it also obtained short and informa-
tive hash codes. Since the above hashing learning frameworks
are based on CF, thus they still suffer low recommendation
accuracy under sparse setting, and they cannot work when
new users or items present.

3 PRELIMINARY AND PROBLEM
STATEMENT

In this section, we first introduce some notations used in this
paper and then formulate the problem. After that, we briefly
introduce the deep learning framework, DBN, used in this
paper.

Table 1: Notations

Symbol Size Description

b𝑖 𝑟 × 1 hash code of user 𝑖

d𝑗 𝑟 × 1 hash code of user 𝑗
𝑉 𝒮 the index set of observed ratings

𝑉𝑖 𝒮𝑖 items set rated by user 𝑖

𝑉𝑗 𝒮𝑗 users set of item 𝑗
c𝑗 𝑃 × 1 bag-of-words of item 𝑗

Θ 1× 2 parameter of DBN

W 1× 𝑙 weight matrices of 𝑙-layer DBN
b 1× 𝑙 bias vectors of 𝑙-layer DBN

B 𝑟 × 𝑛 hash codes matrix of all users in 𝐼
D 𝑟 ×𝑚 hash codes matrix of all items in 𝐽

X 𝑟 × 𝑛 delegated real matrix of B

Y 𝑟 ×𝑚 delegated real matrix of D

3.1 Notations

Assume that there are 𝑛 users and 𝑚 items in a recommender
system. The users set is defined as 𝐼 and the items set is
indicated as 𝐽 . The observed rating 𝑠𝑖𝑗 ∈ 𝑆 represents the
preference of user 𝑖 for item 𝑗. The items content data is
denoted as C, which consists of bag-of-words vectors of all
items in 𝐽 . The other essential notations used in this paper
are listed in Table 1.

3.2 Problem Statement

The goal of recommender system is to provide items that
can match users’ preferences. Preference model is formulated
based on the representations of users and items, which is
dependent on the recommendation framework.

Cold-Start: Cold-start problem consists of cold-start us-
er and cold-start item. Specifically, cold-start item problem
is caused by new items which have no interaction informa-
tion [18]. Conducting recommendation under the two cold-
start settings is a challenge for recommender systems, and
hence it often suffers low accuracy.

Data Sparsity: As introduced in [14], data sparsity refers
to a situation where interaction data is insufficient for identi-
fying similar users/items, and it is a major factor that affects
the performance of recommendation.

Problem Definition(Discrete Deep Learning): Giv-
en a user-item rating dataset 𝑆, a content dataset C, and a
query user 𝑖, our goal is to recommend top-𝑘 items that user
𝑖 would be interested in. The problem becomes a cold-start
item recommendation if the predicted top-𝑘 items are not in
the rating dataset 𝑆, and meanwhile in the content data 𝐶.

3.3 Deep Belief Network

To obtain effective item representations, we use DBN to
extract deep hierarchical item representations from item
content data. DBN [8] is a generative probabilistic model
consists of one input layer and multiple hidden layers. Jointly
training all layers is computationally intractable. Hinton et
al. put forward an efficient algorithm to train DBN in a
greedy layerwise manner [8], in which the hidden layers are
trained once at a time in a bottom-up way, and the above
unsupervised procedure is called pre-train. After adding an
extra learning objective, the learned representation by pre-
train stage is converted into a supervised learning process,

Technical Presentation WSDM’18, February 5-9, 2018, Marina Del Rey, CA, USA

711

then fine-tune all the parameters of the DBN with respect to
concerning the additional learning objective (in this paper,
the objective in Section 5.4). The fine-tune process is usually
implemented by Back-Propagation (BP) algorithm [9].

4 DISCRETE DEEP LEARNING

In this section, we first model users’ preferences by hash
codes, then we introduce the proposed DDL.

4.1 Preference Model

The preference model is a key component to formulate a
recommender system. The traditional model is usually based
on Matrix Factorization [12] under a low-rank assumption.
Users and items are projected into a 𝑟-dimension real latent
space, and the preference of user 𝑖 for item 𝑗 is estimated
by the inner product of real-valued vectors. Similarly, the
proposed hashing-based framework in this paper maps users
and items into a 𝑟-dimension Hamming space, in which the
preference is estimated by the Hamming distance between
hash codes of users and items.

Suppose that hash codes of user 𝑖 and item 𝑗 are denoted
by b𝑖 ∈ {±1}𝑟 and d𝑗 ∈ {±1}𝑟, respectively. The preference
of user 𝑖 for item 𝑗 is defined as

̂︀𝑝𝑖𝑗 = 1− 1

𝑟

𝑟∑︁
𝑘=1

I (𝑏𝑖𝑘 ̸= 𝑑𝑗𝑘)

=
1

𝑟

𝑟∑︁
𝑘=1

I (𝑏𝑖𝑘 = 𝑑𝑗𝑘)

=
1

2
+

1

2𝑟
b𝑇
𝑖 d𝑗 (1)

where I(·) is an indicator function that returns 1 if the input
is true, otherwise it returns 0. ̂︀𝑝𝑖𝑗 is in the range of 0 to 1
and that represents the predicted preference of user 𝑖 over
item 𝑗. From the above preference model, it can be observed
that the preference model in 𝑟-dimension Hamming space is
consistent with that in 𝑟-dimension real latent space.

4.2 Discrete Deep Learning

Discrete Deep Learning (DDL) is a hashing-based hybrid
recommendation framework which adds hashing technique
into the hybrid recommender framwork, that consists of DBN
and CF by exploiting rating and item content data. Hence,
DDL can obtain effective hash codes by jointly optimizing
two objectives: DBN based objective and CF based objective.

For each item 𝑗, the real-valued representation f𝑗 can be
automatically learnt by the pre-train procedure of DBN from
the bag-of-words c𝑗 :

f𝑗 = DBN(c𝑗 ,Θ).

To address the issues of data sparsity and cold start item,
our DDL effectively exploits the content information of item-
s using the deep learning model DBN. Thus, one of our
objectives is to minimize the difference between the learnt
representation f𝑗 and the binary representation (hash code)
d𝑗 for each item 𝑗, and it is given by

argmin
D, Θ

𝑚∑︁
𝑗=1

‖d𝑗 −DBN(c𝑗 ,Θ)‖2𝐹 , (2)

where Θ = {W,b} is the parameters of a 𝑙-layer DBN that

contains weight matrices W = {W(1),W(2), · · · ,W(𝑙)} and

bias vectors b = {b(1),b(2), · · · ,b(𝑙)}, D is stacked by d𝑗 ,
where 𝑗 ∈ 𝐽 . Therefore, by minimizing the objective function
in Equation (2), we obtain effective items’ hash codes by the
deep hierarchical framework from content data.

The CF based objective is to minimize the difference be-
tween the observed rating 𝑠𝑖𝑗 and the predicted preferencê︀𝑝𝑖𝑗 . We assume that 𝑠𝑖𝑗 ∈ S is in the range of 0 to 1 denoting
the rating of user 𝑖 to item 𝑗, and get the following objective
from Equation (1):

argmin
B,D

∑︁
(𝑖,𝑗)∈𝑉

(︂
𝑠𝑖𝑗 −

1

2
−

1

2𝑟
b𝑇
𝑖 d𝑗

)︂2

, (3)

where 𝑉 is the index set of 𝑆, B,D respectively are the hash
codes of users and items, and 𝑟 is the hash code length. By
minimizing the above objective, we can obtain effective hash
codes of users and items from the observed rating data.

By combining the above two objectives of Equation (2)
and Equation (3), the objective function of the proposed
DDL is

argmin
B,D,Θ

∑︁
(𝑖,𝑗)∈𝑉

(︁
2𝑟𝑠𝑖𝑗 − 𝑟 − b𝑇

𝑖 d𝑗

)︁2

+
𝜆

2

𝑚∑︁
𝑗=1

‖d𝑗 −DBN(c𝑗 ,Θ)‖2𝐹

𝑠.𝑡. B ∈ {±1}𝑟×𝑛,D ∈ {±1}𝑟×𝑚, (4)

where 𝜆 > 0 is a tuning parameter that weights the impor-
tance of the two objectives. In order to maximize the entropy
of each binary bit, it is needed to add a balance constraint,
so that each bit carries as much information as possible [39].
In addition, to learn compact binary codes, irrelevant con-
straints also need to be imposed, that guarantees each bit is
independent of others. In other words, there is no redundant
information in the obtained hash codes. After adding the
above two additional constraints on both B and D, we can
reformulate the problem Equation (4) as

argmin
B,D,Θ

∑︁
(𝑖,𝑗)∈𝑉

(︁
2𝑟𝑠𝑖𝑗 − 𝑟 − b𝑇

𝑖 d𝑗

)︁2

+
𝜆

2

𝑚∑︁
𝑗=1

‖d𝑗 −DBN(c𝑗 ,Θ)‖2𝐹

𝑠.𝑡. B ∈ {±1}𝑟×𝑛,D ∈ {±1}𝑟×𝑚,

B1𝑛 = 0,D1𝑚 = 0,BB𝑇=𝑛I𝑟,DD𝑇=𝑚I𝑟, (5)

where 1𝑛 (1𝑚) present 𝑛-dimension (𝑚-dimension) vectors
that all elements are 1, and I𝑟 is a 𝑟 × 𝑟-dimension identity
matrix. As Equation (5) is a discrete optimization problem,
which is proven to be an intractable NP-hard problem [6],
we adopt a methodology like [35] to soften the balance and
irrelevant constraints. Specifically, we add delegated real
valued matrices X and Y to approximate hash codes B and
D, respectively. Thus Equation (5) can be rewritten as:

Technical Presentation WSDM’18, February 5-9, 2018, Marina Del Rey, CA, USA

712

argmin
B,D,Θ

∑︁
(𝑖,𝑗)∈𝑉

(︁
2𝑟𝑠𝑖𝑗 − 𝑟 − b𝑇

𝑖 d𝑗

)︁2

+ 𝛼 ‖B−X‖2𝐹

+
𝜆

2

𝑚∑︁
𝑗=1

‖d𝑗 −DBN(c𝑗 ,Θ)‖2𝐹 + 𝛽 ‖D−Y‖2𝐹 ,

𝑠.𝑡. B ∈ {±1}𝑟×𝑛,D ∈ {±1}𝑟×𝑚

X1𝑛 = 0,Y1𝑚 = 0,XX𝑇=𝑛I𝑟,YY𝑇=𝑚I𝑟, (6)

where 𝛼 and 𝛽 are tuning parameters so that the second
and last terms in Equation (6) allow certain discrepancy
between B and X, and between D and Y. Since tr(BB𝑇) =
tr(XX𝑇) = 𝑛𝑟 and tr(DD𝑇) = tr(YY𝑇) = 𝑚𝑟 are constant.
Thus the objective in Equation (6) can be equivalently trans-
formed as the following mixed integer optimization problem:

argmin
B,D,Θ,X,Y

∑︁
(𝑖,𝑗)∈𝑉

(︁
𝑎𝑖𝑗 − b𝑇

𝑖 d𝑗

)︁2

− 2𝛼𝑡𝑟(B𝑇X)

+
𝜆

2

𝑚∑︁
𝑗=1

‖d𝑗 −DBN(c𝑗 ,Θ)‖2𝐹 − 2𝛽𝑡𝑟(D𝑇Y)

𝑠.𝑡. B ∈ {±1}𝑟×𝑛,D ∈ {±1}𝑟×𝑚

X1𝑛 = 0,Y1𝑚 = 0,XX𝑇=𝑛I𝑟,YY𝑇=𝑚I𝑟, (7)

where 𝑎𝑖𝑗 = 2𝑟𝑠𝑖𝑗 − 𝑟. Differ from two-stage hashing-based
frameworks, we do not discard the binary constraints through
the objective transformations.

4.3 Advantage of DDL for Online
Recommendation

4.3.1 Time Complexity. Real-valued space: As discussed
in Section 1, suppose there are 𝑛 users and 𝑚 items in a
recommender system, after extracting real latent represen-
tations, predicting top-𝑘 items in real space has the time
complexity of 𝒪(𝑛𝑚𝑟 + 𝑛𝑚 log 𝑘). Hamming space: After
hash codes have been obtained, we can make a recommenda-
tion by ranking the predicted preferences by Equation (1).
For each user (denoted by hash code), ranking items by the
predicted preferences is equivalent to finding the top-𝑘 near-
est items (denoted by hash codes) in Hamming space. As
discussed in [38], searching nearest neighbors in Hamming
space is extremely fast. There are two methods to search the
top-𝑘 items: one is Hamming ranking, it can be conducted
by ranking Hamming distances with the query hash code
(user), it has the complexity of 𝒪(𝑚), which is linear with
the item data size. The other one is hashing lookup. Similar
hash codes are searched in a hamming ball centered at the
query hash code. The time complexity is independent of the
item data size. Therefore, Hashing based recommendation
has evident superiority over the real-valued recommendation.

4.3.2 Storage complexity. Real space: At least 64 bits are
needed to store a double real number. When the dimension
of real latent vectors becomes large, it will cost much more
space. Hamming space: Only one bit is needed to store a
binary code. Thus the storage cost is reduced significantly. If
we store 𝑚 items by 𝑟-dimension real latent vectors, it will

cost 64𝑚𝑟 bits, while it costs 𝑚𝑟 bits by 𝑟-dimension hash
codes. Moreover, if we store hash codes with sparse vectors,
the storage cost will be reduced further [1, 38].

5 MODEL OPTIMIZATION

In this section, an alternating optimization strategy is devel-
oped to solve the mixed integer optimization problem shown
in Equation (7). We first initialize all parameters of DDL in
Section 5.1. We then introduce how to update B, D, Θ, X,
and Y, respectively.

5.1 Initialization

We initialize DDL by the pre-train procedure of DBN. Specifi-
cally, we first learn the item representations f𝑗 by the pre-train
process of DBN. Then we initialize Θ as the result of the
pre-train, and initialize each d𝑗 as the sign of f𝑗 . Besides,
we randomly initialize X and Y by the standard normal
distribution and initialize B as the sign of X.

5.2 Update B given D, X, Y, and Θ

Since the objective function in Equation (7) sums over users
independently, we update B by updating b𝑖 in parallel by
minimizing the following objective function:

argmin
b𝑖∈{±1}𝑟

∑︁
𝑗∈𝑉𝑖

(d𝑇
𝑗 b𝑖)

2 − 2
∑︁
𝑗∈𝑉𝑖

𝑎𝑖𝑗d
𝑇
𝑗 b𝑖 − 2𝛼x𝑇

𝑖 b𝑖, (8)

where 𝑉𝑖 is the items set rated by user 𝑖. This discrete opti-
mization problem is NP-hard, and thus we adopt a bitwise
learning strategy named Discrete Coordinate Descent (D-
CD) [19] to update b𝑖. Particularly, let 𝑏𝑖𝑘 be the 𝑘-th bit of

b𝑖 and let b𝑖�̄� be the rest bits of b𝑖, i.e, b𝑖 = [b𝑇
𝑖�̄�, 𝑏𝑖𝑘]

𝑇
. Note

that DCD can update 𝑏𝑖𝑘 given b𝑖�̄�. Discarding the terms
independent of 𝑏𝑖𝑘, the objective function in Equation (8) is
rewritten as

argmin
𝑏𝑖𝑘∈{±1}

�̂�𝑖𝑘𝑏𝑖𝑘, (9)

where �̂�𝑖𝑘 =
∑︀

𝑗∈𝑉𝑖

d𝑇
𝑗�̄� b𝑖�̄�𝑑𝑗𝑘 −

∑︀
𝑗∈𝑉𝑖

𝑎𝑖𝑗𝑑𝑗𝑘 − 𝛼𝑥𝑖𝑘. Due to the

space limit, we omit the derivation details. The above objec-
tive function reaches the minimal only if 𝑏𝑖𝑘 had the opposite

sign of �̂�𝑖𝑘. However, if �̂�𝑖𝑘 was zero, 𝑏𝑖𝑘 would not be updated.
Therefore, the update rule of 𝑏𝑖𝑘 is

𝑏𝑖𝑘 = 𝑠𝑔𝑛
(︁
𝐾

(︁
−�̂�𝑖𝑘, 𝑏𝑖𝑘

)︁)︁
, (10)

where 𝐾(𝑡, 𝑟) = 𝑡 if 𝑡 ̸= 0, otherwise, 𝐾(𝑡, 𝑟) = 𝑟.

5.3 Update D given B, X, Y, and Θ

Provided B, X, Y, and Θ are fixed, discarding terms ir-
relevant to d𝑗 in Equation (7), we formulate the following
subproblem as:

argmin
d𝑗∈{±1}𝑟

∑︁
𝑖∈𝑉𝑗

(b𝑇
𝑖 d𝑗)

2 − 2
∑︁
𝑖∈𝑉𝑗

𝑎𝑖𝑗b
𝑇
𝑖 d𝑗

+
𝜆

2
‖d𝑗 −DBN(c𝑗 ,Θ)‖2𝐹 − 2𝛽y𝑇

𝑗 d𝑗 , (11)

where 𝑉𝑗 is the users set that rated item 𝑗. Similarly, we
optimize d𝑗 by the bitwise learning, and the objective is
rewritten as

argmin
𝑏𝑖𝑘∈{±1}

𝑑𝑗𝑘𝑑𝑗𝑘, (12)

Technical Presentation WSDM’18, February 5-9, 2018, Marina Del Rey, CA, USA

713

where 𝑑𝑗𝑘 =
∑︀

𝑖∈𝑉𝑗

b𝑇
𝑖�̄�d𝑗�̄�𝑏𝑖𝑘 −

∑︀
𝑖∈𝑉𝑗

𝑎𝑖𝑗𝑏𝑖𝑘 − 𝜆
2
DBN(v𝑗 ,Θ)𝑘 +

𝛽𝑦𝑗𝑘. As discussed in Section 5.3, the update rule of 𝑑𝑗𝑘 is:

𝑑𝑗𝑘 = 𝑠𝑔𝑛
(︁
𝐾

(︁
−𝑑𝑗𝑘, 𝑑𝑗𝑘

)︁)︁
. (13)

5.4 Update Θ given B, D, X, and Y

If B, D, X, and Y are fixed, the optimization problem
Equation (7) can be rewritten as

argmin
Θ

𝑚∑︁
𝑗=1

‖d𝑗 −DBN(c𝑗 ,Θ)‖2. (14)

Since D is fixed, Equation (14) is a supervised DBN learning
framework. As introduced in Section 3.3, after initialization,
all parameters need to be fine-tuned by using stochastic
gradient descent method, where the gradient descent part is
implemented by BP algorithm. As d𝑗 ∈ {±1}𝑟, we choose
tanh function as the output function of DBN since its output
is in the range of -1 to 1 that has the same range with hash
codes. We choose sigmoid function as the activation function
for hidden layers.

5.5 Update X given B, D, Y, and Θ

Given B, D, Y, and Θ, the Equation (7) is transformed as

argmax
X∈R𝑟×𝑛

𝑡𝑟(B𝑇X), 𝑠.𝑡. X1𝑛 = 0,XX𝑇=𝑛I𝑟. (15)

It can be solved with the help of SVD according to [35, 36].
Specifically, X is updated by

X =
√
𝑛[U𝑠

̂︀U𝑠][V𝑠
̂︀V𝑠]

𝑇
, (16)

where U𝑠 and V𝑠 are respectively stacked by the left and
right singular vectors of the row-centered matrix B̄ : �̄�𝑖𝑗 =

𝑏𝑖𝑗 − 1
𝑛

𝑛∑︀
𝑖=1

𝑏𝑖𝑗 . ̂︀U𝑠 is stacked by the left singular vectors and̂︀V𝑠 can be calculated by Gram-Schmidt orthogonalization,

and it satisfies [V𝑠 1]𝑇 ̂︀V𝑠 = 0.

5.6 Update Y with fixed B, D, X, and Θ

Given B, D, X, and Θ, the Equation (7) can be transformed
as

argmax
Y∈R𝑟×𝑚

𝑡𝑟(D𝑇Y), 𝑠.𝑡. Y1m = 0,YY𝑇=𝑚I𝑟. (17)

Similar to Section 5.5, Y can be updated by
Y =

√
𝑚[P𝑠

̂︀P𝑠][Q𝑠
̂︀Q𝑠]

𝑇
. (18)

Similarly, P𝑠, Q𝑠, ̂︀P𝑠, and ̂︀Q𝑠 can be determined by the
row-centered matrix of D.

6 EXPERIMENTAL SETTINGS

In this section, we first introduce datasets used in our exper-
iments. Then we introduce two evaluation methods and five
state-of-the-art comparison methods.

6.1 Datasets

We adopt the Amazon dataset2 in our experiments, which is
one of the biggest, most comprehensive, and publicly available
datasets for the study of recommendation. It covers user
interactions (such as ratings) on items as well as item content

2http://jmcauley.ucsd.edu/data/amazon/

Table 2: Statistics of datasets.

Dataset #User(𝑛) #Item(𝑚) #Rating(𝒮) Sparsity(%)

‘Cloth’ 39,387 23,033 278,653 99.97%

‘Cell’ 27,879 10,429 194,340 99.93%

(such as item metadata and descriptions) on 24 product
categories spanning May 1996 - July 2014, and each group
contains a sub-dataset. We adopt two of the largest product
categories Clothing, Shoes & Jewelry, and Cell Phones &
Accessories for experiments, and the two datasets are briefly
denoted as ‘Cloth’ and ‘Cell’ in the following. We use rating
and item content data in our experiments. The rating matrix
has a sparsity of 99.9%. Some statistics of the datasets are
shown in Table 2.

6.1.1 Data Pre-processing. For rating data, we normalize
each rating into the interval of [0,1] to keep consistent with the
predicted preference defined in this paper. For content data,
we first remove punctuations, numbers, stop words, and words
with the length smaller than two since these words usually
have no discriminative meanings, we then conduct stemming
on the remaining words by the Porter Stemmer [15]. Finally,
similar to [23], by ranking the TF-IDF values we choose the
top 8000 discriminative words from the two datasets to form
dictionaries separately, then we get the bag-of-words C for
all items.

6.1.2 Data Spliting. To simulate sparse settings, similar
to [13], we take different proportions (10%, 20%) of ratings
as training set 𝐷𝑡𝑟𝑎𝑖𝑛 and the remaining positive ratings (i.e.,
original ratings ≥ 4 stars) 𝐷𝑡𝑒𝑠𝑡 are used for testing. Taking
20% as an example, we randomly select 20% ratings for each
item as the training data, and the remaining positive ratings
are chosen for testing. The random selection is carried out 5
times independently, and we report the experimental results
as the average values.

6.2 Evaluation Methods

As introduced in Section 3.2, the goal of recommendation is to
find out the top-𝑘 items that users may be interested in. We
adopt two common ranking evaluation methods: Accuracy@𝑘
and Mean Reciprocal Rank (MRR), to evaluate the quality
of the ranking list. Accuracy@𝑘 was widely adopted by many
previous ranking based recommender systems [2, 11], and
MRR was also widely used as a metric for ranking tasks [20,
22].

The basic idea of Accuracy@𝑘 is to test whether a user’s
favorite item appears in the predicted top-𝑘 items list, we
define the user’s favorite (positive) items as the ones rated
4-stars or 5-stars (0.8 or 1 rating in this paper), and the
positive ratings refer to ratings 0.8 or 1. For each positive
rating 𝑠𝑖𝑗 ∈ 𝐷𝑡𝑒𝑠𝑡: (1) we randomly choose 1000 negative
items and compute predicted rating scores for the ground-
truth item 𝑗 as well as the 1000 negative items; (2) we
form a ranked list by ordering these items according to their
predicted ratings; (3) if the ground-truth item 𝑗 appears in
the top-𝑘 ranked list, we have a hit; otherwise, we have a
miss.

6.2.1 Accuracy@k. Accuracy@𝑘 has been widely used in
evaluating recommendation accuracy by assessing the quality

Technical Presentation WSDM’18, February 5-9, 2018, Marina Del Rey, CA, USA

714

of the obtained top-𝑘 items list. Accuracy@𝑘 is formulated
as:

Accuracy@k =
#ℎ𝑖𝑡@𝑘

|𝐷𝑡𝑒𝑠𝑡|
,

where |𝐷𝑡𝑒𝑠𝑡| is the size of the test set, and #ℎ𝑖𝑡@𝑘 denotes
the number of hits in the test set.

6.2.2 MRR. The Mean Reciprocal Rank (MRR) [22] is to
evaluate a ranking task that produces a list of responses to a
query, ordered by probability of correctness. The reciprocal
rank of a query response is the multiplicative inverse of the
rank of the first correct answer. The mean reciprocal rank
is the average of the reciprocal ranks of results for a query,
MRR is defined as:

MRR =
1

|𝐷𝑡𝑒𝑠𝑡|
∑︁

𝑠𝑖𝑗∈𝐷𝑡𝑒𝑠𝑡

1

𝑟𝑎𝑛𝑘(𝑖, 𝑗)
,

where 𝑟𝑎𝑛𝑘(𝑖, 𝑗) is the position of item 𝑗 in the obtained
top-𝑘 items list for user 𝑖.

6.3 Comparison Methods and Settings

As introduced in Section 2.2, we choose two types of com-
parison methods that consist of three real-valued hybrid
recommender systems (CTR, CDL, and VBPR) and two
latest competing hashing-based recommender systems (DCF
and DPR).

In our experiments, we use 5-fold cross validation method
on randomly splits of training data, to tune the optimal
hyper-parameters for our algorithm and all the compared
algorithms: CTR, CDL, VBPR, DCF, and DPR. We perform
grid search to find the optimal hyper-parameters.

For CTR, we set 𝜆𝑢 = 0.1, 𝜆𝑣 = 10, 𝑎 = 1, 𝑏 = 0.01 and
𝐾 = 50 since it can achieve good performance. For CDL, it
can achieve good performance when we set 𝜆𝑢 = 1, 𝜆𝑣 = 10,
𝜆𝑛 = 1𝑒4, 𝜆𝑤 = 1𝑒−4, 𝑎 = 1 and 𝑏 = 0.01. For aligning with
the dimension of other methods, we set 𝐾 = 30, and the
layer structure of SDAE is set as [8000, 200, 30]. For VBPR,
we set 𝜆Θ = 10.

For DCF, we search 𝛼 and 𝛽 from {1𝑒−4, 1𝑒−3, · · · , 1𝑒2},
and the optimal parameters are 𝛼 = 1𝑒−3 and 𝛽 = 1𝑒−3.
For DPR, we find the optimal parameters respectively are
𝛼 = 1𝑒−4 and 𝛽 = 1𝑒−3.

For DDL proposed in this paper, we search 𝛼, 𝛽 from
{1𝑒−4, 1𝑒−3, · · · , 1𝑒2} and 𝜆 from {1𝑒−1, 1, · · · , 1𝑒2} by grid
search. As a result, we set the layer structure of DBN as
[8000, 800, 30], and set 𝛼 = 1𝑒−3, 𝛽 = 1𝑒−3 and 𝜆 = 10.

7 EXPERIMENTAL RESULTS

In this section, we first display the efficiency of hashing-based
recommendation compared with real-valued hybrid recom-
mendation frameworks on ‘Cloth’ and ‘Cell’ datasets. Then,
we verify the effectiveness of our proposed DDL from three
aspects: Firstly, we evaluate the accuracy in recommending
cold-start items; Secondly, we explore the accuracy effective-
ness in two sparse settings; Thirdly, we present the accuracy
effectiveness compared with the competing hashing baselines.

Item Size
80000 320000 1280000

Ti
m

e
C

os
t(s

ec
on

ds
)

0

100

200

300

400

500

600

700
Time Cost vs Item Size

Hamming Rank
Real-valued Rank

Item size
1M 10M 50M

St
or

ag
e

co
st

(k
b)

×107

0

0.5

1

1.5

2

2.5

3

3.5

4
Storage Cost vs Item Size

Hash code
Real-valued

Figure 1: Efficiency comparison on artificial data.
Left: Time cost comparison. Right: Storage cost com-
parison

Position k
5 10 15 20 25 30

Ac
cu

ra
cy

@
k

0

0.01

0.02

0.03

0.04
Clothing Shoes &Jewelry (Cold-Start)

DDL
CTR
CDL
VBPR

Position k
5 10 15 20 25 30

Ac
cu

ra
cy

@
k

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Cell Phones & Accessory (Cold-Start)

DDL
CTR
CDL
VBPR

Figure 2: Accuracy@k in cold-start item setting

7.1 Efficiency Comparison

As analyzed in Section 4.3, the significant advantage of hash-
ing recommendation over the real-valued recommendation is
the efficiency of online recommendation. We separately eval-
uate the efficiency in terms of time and storage on synthetic
data.

7.1.1 Time Complexity. We investigate the time cost of
preference ranking when the item number varies. We use
standard gaussian distribution to generate items’ real-valued
features randomly. Items hash codes are obtained from real-
valued vectors by the sign function. We set different sizes
of items sets in the experiment: 5000, 20000, 80000, 320000,
128000, to test the time cost variation of online recommen-
dation. The variation is shown in the left of Figure 1. We
conclude that the time cost of real-valued features grows fast
with item number, in comparison, the time cost of hash codes
increase much slower than real-valued features. The experi-
mental results show that hashing based recommendation has
evident advantage over the real-valued recommendation for
online recommendation.

7.1.2 Storage Complexity. We test the storage costs of
hash codes and real-valued features on 3 different sizes of
item sets: 1 million, 10 million, and 50 million. From the right
of Figure 1, hash codes cost much less memory to store the
same number of items, which is consistent with the analysis
in Section 4.3.

7.2 Accuracy Comparison
7.2.1 Accuracy on Cold-Start Item Recommendation. This

experiment studies the accuracy comparison between the
existing real-valued hybrid recommender systems and DDL
under the same cold-start item setting. We test the perfor-
mance on the 𝐷𝑡𝑒𝑠𝑡 (10%) introduced in Section6.1. Specifi-
cally, we first choose items with less than 5 positive ratings
as cold-start items and then select users with at least one
positive rating as test users. For each test user, we first choose
his/her ratings related to cold-start items as the test set, and

Technical Presentation WSDM’18, February 5-9, 2018, Marina Del Rey, CA, USA

715

Position k
5 10 15 20 25 30

Ac
cu

ra
cy

@
k

0

0.02

0.04

0.06

0.08

0.1

0.12
Clothing Shoes &Jewelry (10% for Training)

DDL
CTR
CDL
VBPR

Position k
5 10 15 20 25 30

Ac
cu

ra
cy

@
k

0

0.05

0.1

0.15

0.2
Clothing Shoes &Jewelry (20% for Training)

DDL
CTR
CDL
VBPR

Position k
5 10 15 20 25 30

Ac
cu

ra
cy

@
k

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
Cell Phones & Accessory (10% for Training)

DDL
CTR
CDL
VBPR

Position k
5 10 15 20 25 30

Ac
cu

ra
cy

@
k

0

0.05

0.1

0.15

0.2
Cell Phones & Accessory (20% for Training)

DDL
CTR
CDL
VBPR

Figure 3: Comparison with Real-valued methods on ‘Cloth’ and ‘Cell’ datasets w.r.t two sparse settings.

Position k
5 10 15 20 25 30

Ac
cu

ra
cy

@
k

0

0.02

0.04

0.06

0.08

0.1

0.12
Clothing Shoes &Jewelry (10% for Training)

DDL
DCF
DPR

Position k
5 10 15 20 25 30

Ac
cu

ra
cy

@
k

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
Clothing Shoes &Jewelry (20% for Training)

DDL
DCF
DPR

Position k
5 10 15 20 25 30

Ac
cu

ra
cy

@
k

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
Cell Phones & Accessory (10% for Training)

DDL
DCF
DPR

Position k
5 10 15 20 25 30

Ac
cu

ra
cy

@
k

0

0.05

0.1

0.15
Cell Phones & Accessory (20% for Training)

DDL
DCF
DPR

Figure 4: Comparison with Hashing methods on ‘Cloth’ and ‘Cell’ datasets w.r.t two sparse settings.

Table 3: MRR in cold-start item setting

Method CTR CDL VBPR DDL

‘Cloth’ 0.0082⋆ 0.0071 0.0042 0.0077𝑜

‘Cell’ 0.0117⋆ 0.0072 0.0053 0.0099𝑜

the remaining ratings as the training set. Our goal is to test
whether the marked-off cold-start items can be accurately
recommended to the right user.

We adopt Accuracy@k and MRR to respectively evaluate
recommendation accuracy. The accuracy@k comparison of
two Amazon datasets is shown in Figure 2. Our proposed
DDL performs almost as well as the best result of the real-
valued hybrid recommender systems. Table 3 summarizes
MRR results for the four algorithms, the best result is marked
as ‘⋆’ and the second best is marked as ‘𝑜’ . We can find that
the performance of DDL is very close to the best result, that
is consistent with the outcome of Accuracy@𝑘.

The real-valued hybrid recommender systems implement a
recommendation by real-valued features, while DDL produces
a recommendation by hash codes. As evaluated in Section 7.1,
DDL has superiority in the efficiency of online recommenda-
tion over real-valued hybrid recommender systems. Due to
real latent vectors intuitively carried more information than
hash codes. Thus it is acceptable and reasonable to have
small gaps between real-valued hybrid recommendation and
hashing based DDL.

7.2.2 Accuracy on Sparse Recommendation. Our task in
this section is to assess the accuracy effectiveness of DDL
compared with real-valued hybrid recommendation on two
sparse settings (10%, 20%) introduced in Section 6.1. The
results of Accuracy@k and MRR are respectively presented
in Figure 3 and Table 4. We can find that DDL performs
best when the rating data is very sparse (10%). With the
observed ratings becoming dense (20%), CDL performs best
under Accuracy@𝑘, and DDL performs best under MRR.
In a word, the two metrics have consistent performance in
sparse settings. The results indicate that DDL provides a

Table 4: MRR on ‘Cloth’ and ‘Cell’ datasets with
two spare settings (10%, 20%)

‘Cloth’ ‘Cell’

10% 20% 10% 20%

CTR 0.0102 0.0168 0.0113 0.0245

CDL 0.0311𝑜 0.0481𝑜 0.0300𝑜 0.0526𝑜

VBPR 0.0176 0.0158 0.0130 0.0123

DDL 0.0490⋆ 0.0669⋆ 0.0584⋆ 0.0605⋆

good trade-off between efficiency and accuracy, and DDL can
also make effective recommendation by hash codes in sparse
settings.

7.2.3 Accuracy Compared with Hashing Frameworks. In
this section, we evaluate the effectiveness of DDL compared
with two competing hashing baselines. Figure 4 shows the
results of Accuracy@k on two datasets in two sparse settings,
respectively. We see that DDL outperforms DCF and DPR.
DCF and DPR can not work very well in sparse settings since
they are based on CF.

8 CONCLUSION

In this paper, a content-aware hashing approach called Dis-
crete Deep Learning (DDL) is proposed to alleviate data
sparsity and cold-start item problem. First, we formulate
a preference model based on hash codes. Second, based on
the preference model, we present the DDL recommendation
framework by adding a binary constraint on the combination
objective of the supervised DBN and CF-based objectives.
By imposing uncorrelated and independent constraints on
hash codes, compact and informative hash codes are directly
learned by an alternating optimization method. Third, we
evaluate the effectiveness of DDL regarding Accuracy@k and
MRR on two Amazon datasets. Experiments show that DDL
has an obvious advantage over the competing baselines in
cold-start item and sparse settings. DDL provides a good
trade-off between recommendation efficiency and accuracy.

Technical Presentation WSDM’18, February 5-9, 2018, Marina Del Rey, CA, USA

716

9 ACKNOWLEDGEMENT

This work was supported by ARC Discovery Early Career Re-
searcher Award (Grant No. DE160100308), ARC Discovery
Project (Grant No. DP170103954) and New Staff Research
Grant of The University of Queensland (Grant No.613134).
It was also supported by National Natural Science Foun-
dation of China (Grant No. 61572335, 61572109, 61502077,
61631005) and the Fundamental Research Funds for the Cen-
tral Universities (Grant No. ZYGX2016J087).

REFERENCES
[1] Wenlin Chen, James Wilson, Stephen Tyree, Kilian Weinberger,

and Yixin Chen. 2015. Compressing neural networks with the
hashing trick. In International Conference on Machine Learning.
2285–2294.

[2] Wen-Yen Chen, Jon-Chyuan Chu, Junyi Luan, Hongjie Bai, Yi
Wang, and Edward Y Chang. 2009. Collaborative filtering for
orkut communities: discovery of user latent behavior. In Proceed-
ings of the 18th international conference on World wide web.
ACM, 681–690.

[3] Abhinandan S Das, Mayur Datar, Ashutosh Garg, and Shyam
Rajaram. 2007. Google news personalization: scalable online
collaborative filtering. In Proc. of WWW. ACM, 271–280.

[4] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mir-
rokni. 2004. Locality-sensitive hashing scheme based on p-stable
distributions. In Proceedings of the twentieth annual symposium
on Computational geometry. ACM, 253–262.

[5] Yunchao Gong, Svetlana Lazebnik, Albert Gordo, and Florent
Perronnin. 2013. Iterative quantization: A procrustean approach
to learning binary codes for large-scale image retrieval. IEEE
Transactions on Pattern Analysis and Machine Intelligence 35,
12 (2013), 2916–2929.

[6] Johan H̊astad. 2001. Some optimal inapproximability results. J.
ACM 48, 4 (2001), 798–859.

[7] Ruining He and Julian McAuley. 2016. VBPR: visual bayesian
personalized ranking from implicit feedback. In Thirtieth AAAI
Conference on Artificial Intelligence.

[8] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. 2006. A
fast learning algorithm for deep belief nets. Neural computation
18, 7 (2006), 1527–1554.

[9] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. 1989.
Multilayer feedforward networks are universal approximators.
Neural networks 2, 5 (1989), 359–366.

[10] Alexandros Karatzoglou, Markus Weimer, and Alex J Smola. 2010.
Collaborative filtering on a budget. In International Conference
on Artificial Intelligence and Statistics. 389–396.

[11] Yehuda Koren. 2008. Factorization meets the neighborhood: a
multifaceted collaborative filtering model. In Proceedings of the
14th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 426–434.

[12] Yehuda Koren and Robert Bell. 2011. Advances in collaborative
filtering. In Recommender systems handbook. Springer, 145–186.

[13] Hao Ma, Haixuan Yang, Michael R Lyu, and Irwin King. 2008.
Sorec: social recommendation using probabilistic matrix factoriza-
tion. In Proceedings of the 17th ACM conference on Information
and knowledge management. ACM, 931–940.

[14] Manos Papagelis, Dimitris Plexousakis, and Themistoklis Kut-
suras. 2005. Alleviating the sparsity problem of collaborative
filtering using trust inferences. In International Conference on
Trust Management. Springer, 224–239.

[15] Martin F Porter. 1980. An algorithm for suffix stripping. Program
14, 3 (1980), 130–137.

[16] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars
Schmidt-Thieme. 2009. BPR: Bayesian personalized ranking from
implicit feedback. In Proceedings of the twenty-fifth conference
on uncertainty in artificial intelligence. AUAI Press, 452–461.

[17] Ruslan Salakhutdinov and Andriy Mnih. 2007. Probabilistic
Matrix Factorization.. In Nips, Vol. 1. 2–1.

[18] Andrew I Schein, Alexandrin Popescul, Lyle H Ungar, and
David M Pennock. 2002. Methods and metrics for cold-start
recommendations. In Proceedings of the 25th annual interna-
tional ACM SIGIR conference on Research and development in
information retrieval. ACM, 253–260.

[19] Fumin Shen, Chunhua Shen, Wei Liu, and Heng Tao Shen. 2015.
Supervised Discrete Hashing. In CVPR. 37–45.

[20] Yue Shi, Alexandros Karatzoglou, Linas Baltrunas, Martha Lar-
son, Nuria Oliver, and Alan Hanjalic. 2012. CLiMF: learning to
maximize reciprocal rank with collaborative less-is-more filtering.
In Proceedings of the sixth ACM conference on Recommender
systems. ACM, 139–146.

[21] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio,
and Pierre-Antoine Manzagol. 2010. Stacked denoising autoen-
coders: Learning useful representations in a deep network with a
local denoising criterion. Journal of Machine Learning Research
11, Dec (2010), 3371–3408.

[22] Ellen M Voorhees et al. 1999. The TREC-8 Question Answering
Track Report. In Trec, Vol. 99. 77–82.

[23] Chong Wang and David M Blei. 2011. Collaborative topic mod-
eling for recommending scientific articles. In Proceedings of the
17th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 448–456.

[24] Hao Wang, Naiyan Wang, and Dit-Yan Yeung. 2015. Collaborative
deep learning for recommender systems. In Proceedings of the
21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 1235–1244.

[25] Jun Wang, Sanjiv Kumar, and Shih-Fu Chang. 2012. Semi-
supervised hashing for large-scale search. IEEE TPAMI 34,
12 (2012), 2393–2406.

[26] Jun Wang, Wei Liu, Sanjiv Kumar, and Shih-Fu Chang. 2016.
Learning to hash for indexing big dataA survey. Proc. of the
IEEE 104, 1 (2016), 34–57.

[27] Weiqing Wang, Hongzhi Yin, Shazia Sadiq, Ling Chen, Min Xie,
and Xiaofang Zhou. 2016. Spore: A sequential personalized spatial
item recommender system. In Data Engineering (ICDE), 2016
IEEE 32nd International Conference on. IEEE, 954–965.

[28] Hongzhi Yin, Bin Cui, Ling Chen, Zhiting Hu, and Xiaofang Zhou.
2015. Dynamic user modeling in social media systems. ACM
Transactions on Information Systems (TOIS) 33, 3 (2015), 10.

[29] Hongzhi Yin, Bin Cui, Yizhou Sun, Zhiting Hu, and Ling Chen.
2014. Lcars: A spatial item recommender system. ACM Transac-
tions on Information Systems (TOIS) 32, 3 (2014), 11.

[30] Hongzhi Yin, Bin Cui, Xiaofang Zhou, Weiqing Wang, Zi Huang,
and Shazia Sadiq. 2016. Joint modeling of user check-in behaviors
for real-time point-of-interest recommendation. ACM Transac-
tions on Information Systems (TOIS) 35, 2 (2016), 11.

[31] Hongzhi Yin, Yizhou Sun, Bin Cui, Zhiting Hu, and Ling Chen.
2013. Lcars: a location-content-aware recommender system. In
Proceedings of the 19th ACM SIGKDD international conference
on Knowledge discovery and data mining. ACM, 221–229.

[32] Hongzhi Yin, Weiqing Wang, Hao Wang, Ling Chen, and Xiaofang
Zhou. 2017. Spatial-Aware Hierarchical Collaborative Deep Learn-
ing for POI Recommendation. IEEE Transactions on Knowledge
and Data Engineering 29, 11 (2017), 2537–2551.

[33] Hongzhi Yin, Xiaofang Zhou, Bin Cui, Hao Wang, Kai Zheng,
and Quoc Viet Hung Nguyen. 2016. Adapting to user interest
drift for poi recommendation. IEEE Transactions on Knowledge
and Data Engineering 28, 10 (2016), 2566–2581.

[34] Fuzheng Zhang, Nicholas Jing Yuan, Defu Lian, Xing Xie, and
Wei-Ying Ma. 2016. Collaborative knowledge base embedding for
recommender systems. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining. ACM, 353–362.

[35] Hanwang Zhang, Fumin Shen, Wei Liu, Xiangnan He, Huanbo
Luan, and Tat-Seng Chua. 2016. Discrete collaborative filtering.
In Proceedings of the 39th International ACM SIGIR conference
on Research and Development in Information Retrieval. ACM,
325–334.

[36] Yan Zhang, Defu Lian, and Guowu Yang. 2017. Discrete Per-
sonalized Ranking for Fast Collaborative Filtering from Implicit
Feedback. (2017).

[37] Yan Zhang, Guowu Yang, Lin Hu, Hong Wen, and Jinsong Wu.
2017. Dot-product based preference preserved hashing for fast
collaborative filtering. In Communications (ICC), 2017 IEEE
International Conference on. IEEE, 1–6.

[38] Zhiwei Zhang, Qifan Wang, Lingyun Ruan, and Luo Si. 2014.
Preference preserving hashing for efficient recommendation. In
Proc. of SIGIR. ACM, 183–192.

[39] Ke Zhou and Hongyuan Zha. 2012. Learning binary codes for
collaborative filtering. In Proc. of ACM SIGKDD. ACM, 498–
506.

Technical Presentation WSDM’18, February 5-9, 2018, Marina Del Rey, CA, USA

717

	Abstract
	1 Introduction
	2 Related Work
	2.1 Real-Valued Hybrid Recommendation
	2.2 Hashing-based Recommendation

	3 Preliminary and Problem Statement
	3.1 Notations
	3.2 Problem Statement
	3.3 Deep Belief Network

	4 Discrete Deep Learning
	4.1 Preference Model
	4.2 Discrete Deep Learning
	4.3 Advantage of DDL for Online Recommendation

	5 Model Optimization
	5.1 Initialization
	5.2 Update B given D, X, Y, and
	5.3 Update D given B, X, Y, and
	5.4 Update given B, D, X, and Y
	5.5 Update X given B, D, Y, and
	5.6 Update Y with fixed B, D, X, and

	6 Experimental Settings
	6.1 Datasets
	6.2 Evaluation Methods
	6.3 Comparison Methods and Settings

	7 Experimental Results
	7.1 Efficiency Comparison
	7.2 Accuracy Comparison

	8 Conclusion
	9 Acknowledgement
	References

