72 research outputs found

    Remarks on MOBS and cryptosystems using semidirect products

    Get PDF
    Recently, several cryptosystems have been proposed based semidirect products of various algebraic structures. Efficient attacks against several of them have already been given, including one very general attack which, unfortunately, does not apply to the MOBS system. The purpose of this note is to provide an observation that can be used as a point-of-attack for similar systems, and show how it can be used to efficiently cryptanalyze the MOBS system

    Benchmarking ZK-Circuits in Circom

    Get PDF
    Zero-knowledge proofs and arithmetic circuits are essential building blocks in modern cryptography, but comparing their efficiency across different implementations can be challenging. In this paper, we address this issue by presenting comprehensive benchmarking results for a range of signature schemes and hash functions implemented in Circom, a popular circuit language that has not been extensively benchmarked before. Our benchmarking statistics include prover time, verifier time, and proof size, and cover a diverse set of schemes including Poseidon, Pedersen, MiMC, SHA-256, ECDSA, EdDSA, Sparse Merkle Tree, and Keccak-256. We also introduce a new Circom circuit and a full JavaScript test suite for the Schnorr signature scheme. Our results offer valuable insights into the relative strengths and weaknesses of different schemes and frameworks, and confirm the theoretical predictions with precise real-world data. Our findings can guide researchers and practitioners in selecting the most appropriate scheme for their specific applications, and can serve as a benchmark for future research in this area

    Secure Computations in Opportunistic Networks: An Edgelet Demonstration with a Medical Use-Case

    Get PDF
    International audienceIn this demonstration paper, we leverage the current convergence between Trusted Execution Environments and Opportunistic Networks to perform secure and privacy-preserving computations on personal devices. We call this convergence Edgelet computing and show that it can drastically change the way distributed processing over personal data is conceived. We demonstrate the pertinence of the approach through a real medical use-case being deployed in the field

    A comprehensive meta-analysis of cryptographic security mechanisms for cloud computing

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The concept of cloud computing offers measurable computational or information resources as a service over the Internet. The major motivation behind the cloud setup is economic benefits, because it assures the reduction in expenditure for operational and infrastructural purposes. To transform it into a reality there are some impediments and hurdles which are required to be tackled, most profound of which are security, privacy and reliability issues. As the user data is revealed to the cloud, it departs the protection-sphere of the data owner. However, this brings partly new security and privacy concerns. This work focuses on these issues related to various cloud services and deployment models by spotlighting their major challenges. While the classical cryptography is an ancient discipline, modern cryptography, which has been mostly developed in the last few decades, is the subject of study which needs to be implemented so as to ensure strong security and privacy mechanisms in today’s real-world scenarios. The technological solutions, short and long term research goals of the cloud security will be described and addressed using various classical cryptographic mechanisms as well as modern ones. This work explores the new directions in cloud computing security, while highlighting the correct selection of these fundamental technologies from cryptographic point of view

    Addressing Operator Privacy in Automatic Dependent Surveillance - Broadcast (ADS-B)

    Get PDF
    We investigate security of ADS-B system and propose a framework composed of two solutions that would require minimal change to the existing system. The investigation focuses on providing an encrypted ADS-B system that provides confidentiality, availability, and integrity while requiring minimal changes to the existing ADS-B specification. The proposed framework consisting of two solutions is envisioned to be implemented through software updates while providing backwards compatibility. The most challenging requirement during this study was to work within the constraints of the existing ADS-B system

    Towards Post-Quantum Blockchain: A Review on Blockchain Cryptography Resistant to Quantum Computing Attacks

    Get PDF
    [Abstract] Blockchain and other Distributed Ledger Technologies (DLTs) have evolved significantly in the last years and their use has been suggested for numerous applications due to their ability to provide transparency, redundancy and accountability. In the case of blockchain, such characteristics are provided through public-key cryptography and hash functions. However, the fast progress of quantum computing has opened the possibility of performing attacks based on Grover's and Shor's algorithms in the near future. Such algorithms threaten both public-key cryptography and hash functions, forcing to redesign blockchains to make use of cryptosystems that withstand quantum attacks, thus creating which are known as post-quantum, quantum-proof, quantum-safe or quantum-resistant cryptosystems. For such a purpose, this article first studies current state of the art on post-quantum cryptosystems and how they can be applied to blockchains and DLTs. Moreover, the most relevant post-quantum blockchain systems are studied, as well as their main challenges. Furthermore, extensive comparisons are provided on the characteristics and performance of the most promising post-quantum public-key encryption and digital signature schemes for blockchains. Thus, this article seeks to provide a broad view and useful guidelines on post-quantum blockchain security to future blockchain researchers and developers.10.13039/501100010801-Xunta de Galicia (Grant Number: ED431G2019/01) 10.13039/501100011033-Agencia Estatal de Investigación (Grant Number: TEC2016-75067-C4-1-R and RED2018-102668-T) 10.13039/501100008530-European Regional Development FundXunta de Galicia; ED431G2019/0

    A countermeasure approach for brute-force timing attacks on cache privacy in named data networking architectures

    Get PDF
    One key feature of named data networks (NDN) is supporting in-network caching to increase the content distribution for today’s Internet needs. However, previously cached contents may be threatened by side-channel timing measurements/attacks. For example, one adversary can identify previously cached contents by distinguishing between uncached and cached contents from the in-network caching node, namely the edge NDN router. The attacks can be mitigated by the previously proposed methods effectively. However, these countermeasures may be against the NDN paradigm, affecting the content distribution performance. This work studied the side-channel timing attack on streaming over NDN applications and proposed a capable approach to mitigate it. Firstly, a recent side-channel timing attack, designated by brute-force, was implemented on ndnSIM using the AT&T network topology. Then, a multi-level countermeasure method, designated by detection and defense (DaD), is proposed to mitigate this attack. Simulation results showed that DaD distinguishes between legitimate and adversary nodes. During the attack, the proposed DaD multi-level approach achieved the minimum cache hit ratio (≈0.7%) compared to traditional countermeasures (≈4.1% in probabilistic and ≈3.7% in freshness) without compromising legitimate requests.This work has been supported by FCT - Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020
    corecore