1,185 research outputs found

    Hypertension in mice lacking 11beta-hydroxysteroid dehydrogenase type 2

    Get PDF
    Deficiency of 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) in humans leads to the syndrome of apparent mineralocorticoid excess (SAME), in which cortisol illicitly occupies mineralocorticoid receptors, causing sodium retention, hypokalemia, and hypertension. However, the disorder is usually incompletely corrected by suppression of cortisol, suggesting additional and irreversible changes, perhaps in the kidney. To examine this further, we produced mice with targeted disruption of the 11β-HSD2 gene. Homozygous mutant mice (11β-HSD2(–/–)) appear normal at birth, but ∼50% show motor weakness and die within 48 hours. Both male and female survivors are fertile but exhibit hypokalemia, hypotonic polyuria, and apparent mineralocorticoid activity of corticosterone. Young adult 11β-HSD2(–/–) mice are markedly hypertensive, with a mean arterial blood pressure of 146 ± 2 mmHg, compared with 121 ± 2 mmHg in wild-type controls and 114 ± 4 mmHg in heterozygotes. The epithelium of the distal tubule of the nephron shows striking hypertrophy and hyperplasia. These histological changes do not readily reverse with mineralocorticoid receptor antagonism in adulthood. Thus, 11β-HSD2(–/–) mice demonstrate the major features of SAME, providing a unique rodent model to study the molecular mechanisms of kidney resetting leading to hypertension. J. Clin. Invest. 103:683–689 (1999

    Species-specific differences in the inhibition of 11β-hydroxysteroid dehydrogenase 2 by itraconazole and posaconazole

    Get PDF
    11β-hydroxysteroid dehydrogenase 2 (11β-HSD2) converts active 11β-hydroxyglucocorticoids to their inactive 11-keto forms, thereby preventing inappropriate mineralocorticoid receptor activation by glucocorticoids. Disruption of 11β-HSD2 activity by genetic defects or inhibitors causes the syndrome of apparent mineralocorticoid excess (AME), characterized by hypokalemia, hypernatremia and hypertension. Recently, the azole antifungals itraconazole and posaconazole were identified to potently inhibit human 11β-HSD2, and several case studies described patients with acquired AME. To begin to understand why this adverse drug effect was missed during preclinical investigations, the inhibitory potential of itraconazole, its main metabolite hydroxyitraconazole (OHI) and posaconazole against 11β-HSD2 from human and three commonly used experimental animals was assessed. Whilst human 11β-HSD2 was potently inhibited by all three compounds (IC; 50; values in the nanomolar range), the rat enzyme was moderately inhibited (1.5- to 6-fold higher IC; 50; values compared to human), and mouse and zebrafish 11β-HSD2 were very weakly inhibited (IC; 50; values above 7 μM). Sequence alignment and application of newly generated homology models for human and mouse 11β-HSD2 revealed significant differences in the C-terminal region and the substrate binding pocket. Exchange of the C-terminus and substitution of residues Leu170,Ile172 in mouse 11β-HSD2 by the corresponding residues His170,Glu172 of the human enzyme resulted in a gain of sensitivity to itraconazole and posaconazole, resembling human 11β-HSD2. The results provide an explanation for the observed species-specific 11β-HSD2 inhibition by the studied azole antifungals. The obtained structure-activity relationship information should facilitate future assessments of 11β-HSD2 inhibitors and aid choosing adequate animal models for efficacy and safety studies

    11β-HSD2 SUMOylation Modulates Cortisol-induced Mineralocorticoid Receptor Nuclear Translocation Independently of Effects on Transactivation

    Get PDF
    The enzyme 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) has an essential role in aldosterone target tissues, conferring aldosterone selectivity for the mineralocorticoid receptor (MR) by converting 11β-hydroxyglucocorticoids to inactive 11-ketosteroids. Congenital deficiency of 11β-HSD2 causes a form of salt-sensitive hypertension known as the syndrome of apparent mineralocorticoid excess. The disease phenotype, which ranges from mild to severe, correlates well with reduction in enzyme activity. Furthermore, polymorphisms in the 11β-HSD2 coding gene (HSD11B2) have been linked to high blood pressure and salt sensitivity, major cardiovascular risk factors. 11β-HSD2 expression is controlled by different factors such as cytokines, sex steroids, or vasopressin, but posttranslational modulation of its activity has not been explored. Analysis of 11β-HSD2 sequence revealed a consensus site for conjugation of small ubiquitin-related modifier (SUMO) peptide, a major posttranslational regulatory event in several cellular processes. Our results demonstrate that 11β-HSD2 is SUMOylated at lysine 266. Non-SUMOylatable mutant K266R showed slightly higher substrate affinity and decreased Vmax, but no effects on protein stability or subcellular localization. Despite mild changes in enzyme activity, mutant K266R was unable to prevent cortisol-dependent MR nuclear translocation. The same effect was achieved by coexpression of wild-type 11β-HSD2 with sentrin-specific protease 1, a protease that catalyzes SUMO deconjugation. In the presence of 11β-HSD2-K266R, increased nuclear MR localization did not correlate with increased response to cortisol or increased recruitment of transcriptional coregulators. Taken together, our data suggests that SUMOylation of 11β-HSD2 at residue K266 modulates cortisol-mediated MR nuclear translocation independently of effects on transactivation

    The Anabolic Androgenic Steroid Fluoxymesterone Inhibits 11β-Hydroxysteroid Dehydrogenase 2-Dependent Glucocorticoid Inactivation

    Get PDF
    Anabolic androgenic steroids (AAS) are testosterone derivatives used either clinically, in elite sports, or for body shaping with the goal to increase muscle size and strength. Clinically developed compounds and nonclinically tested designer steroids often marketed as food supplements are widely used. Despite the considerable evidence for various adverse effects of AAS use, the underlying molecular mechanisms are insufficiently understood. Here, we investigated whether some AAS, as a result of a lack of target selectivity, might inhibit 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2)-dependent inactivation of glucocorticoids. Using recombinant human 11β-HSD2, we observed inhibitory effects for several AAS. Whereas oxymetholone, oxymesterone, danazol, and testosterone showed medium inhibitory potential, fluoxymesterone was a potent inhibitor of human 11β-HSD2 (half-maximal inhibitory concentration [IC50] of 60-100nM in cell lysates; IC50 of 160nM in intact SW-620, and 530nM in MCF-7 cells). Measurements with rat kidney microsomes and lysates of cells expressing recombinant mouse 11β-HSD2 revealed much weaker inhibition by the AAS tested, indicating that the adverse effects of AAS-dependent 11β-HSD2 inhibition cannot be investigated in rats and mice. Furthermore, we provide evidence that fluoxymesterone is metabolized to 11-oxofluoxymesterone by human 11β-HSD2. Structural modeling revealed similar binding modes for fluoxymesterone and cortisol, supporting a competitive mode of inhibition of 11β-HSD2-dependent cortisol oxidation by this AAS. No direct modulation of mineralocorticoid receptor (MR) function was observed. Thus, 11β-HSD2 inhibition by fluoxymesterone may cause cortisol-induced MR activation, thereby leading to electrolyte disturbances and contributing to the development of hypertension and cardiovascular diseas

    Caffeine Reduces 11β-Hydroxysteroid Dehydrogenase Type 2 Expression in Human Trophoblast Cells through the Adenosine A2B Receptor

    Get PDF
    Maternal caffeine consumption is associated with reduced fetal growth, but the underlying molecular mechanisms are unknown. Since there is evidence that decreased placental 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) is linked to fetal growth restriction, we hypothesized that caffeine may inhibit fetal growth partly through down regulating placental 11β-HSD2. As a first step in examining this hypothesis, we studied the effects of caffeine on placental 11β-HSD2 activity and expression using our established primary human trophoblast cells as an in vitro model system. Given that maternal serum concentrations of paraxanthine (the primary metabolite of caffeine) were greater in women who gave birth to small-for-gestational age infants than to appropriately grown infants, we also studied the effects of paraxanthine. Our main findings were: (1) both caffeine and paraxanthine decreased placental 11β-HSD2 activity, protein and mRNA in a concentration-dependent manner; (2) this inhibitory effect was mediated by the adenosine A2B receptor, since siRNA-mediated knockdown of this receptor prevented caffeine- and paraxanthine-induced inhibition of placental 11β-HSD2; and (3) forskolin (an activator of adenyl cyclase and a known stimulator of 11β-HSD2) abrogated the inhibitory effects of both caffeine and paraxanthine, which provides evidence for a functional link between exposure to caffeine and paraxanthine, decreased intracellular levels of cAMP and reduced placental 11β-HSD2. Taken together, these findings reveal that placental 11β-HSD2 is a novel molecular target through which caffeine may adversely affect fetal growth. They also uncover a previously unappreciated role for the adenosine A2B receptor signaling in regulating placental 11β-HSD2, and consequently fetal development

    High Salt Intake Down-Regulates Colonic Mineralocorticoid Receptors, Epithelial Sodium Channels and 11β-Hydroxysteroid Dehydrogenase Type 2

    Get PDF
    Besides the kidneys, the gastrointestinal tract is the principal organ responsible for sodium homeostasis. For sodium transport across the cell membranes the epithelial sodium channel (ENaC) is of pivotal relevance. The ENaC is mainly regulated by mineralocorticoid receptor mediated actions. The MR activation by endogenous 11β-hydroxy-glucocorticoids is modulated by the 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2). Here we present evidence for intestinal segment specific 11β-HSD2 expression and hypothesize that a high salt intake and/or uninephrectomy (UNX) affects colonic 11β-HSD2, MR and ENaC expression. The 11β-HSD2 activity was measured by means of 3H-corticosterone conversion into 3H-11-dehydrocorticosterone in Sprague Dawley rats on a normal and high salt diet. The activity increased steadily from the ileum to the distal colon by a factor of about 3, an observation in line with the relevance of the distal colon for sodium handling. High salt intake diminished mRNA and protein of 11β-HSD2 by about 50% (p<0.001) and reduced the expression of the MR (p<0.01). The functionally relevant ENaC-β and ENaC-γ expression, a measure of mineralocorticoid action, diminished by more than 50% by high salt intake (p<0.001). The observed changes were present in rats with and without UNX. Thus, colonic epithelial cells appear to contribute to the protective armamentarium of the mammalian body against salt overload, a mechanism not modulated by UNX

    Luteinizing hormone induces expression of 11beta-hydroxysteroid dehydrogenase type 2 in rat Leydig cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Leydig cells are the primary source of testosterone in male vertebrates. The biosynthesis of testosterone in Leydig cells is strictly dependent on luteinizing hormone (LH). On the other hand, it can be directly inhibited by excessive glucocorticoid (Corticosterone, CORT, in rats) which is beyond the protective capability of 11beta-Hydroxysteroid dehydrogenase type 1 (11beta-HSD1) and type 2 (11beta-HSD2; encoded by gene Hsd11b2 in rats) in Leydig cells. Our previous study found that LH increases 11beta-HSD1 expression in rat Leydig cells, but the effect of LH on the expression and activity of 11beta-HSD2 is not investigated yet.</p> <p>Methods</p> <p>The Leydig cells were isolated from male Sprague-Dawley rats (90 days of age). After Leydig cells were incubated either for 24 h with various concentrations of LH (2.5, 5, 10 and 20 ng/mL) or for different time periods (2, 8, 12 and 24 h) with 20 ng/mL LH, the mRNA expression of 11beta-HSD2 was measured by real-time PCR. 11beta-HSD2 protein levels in Leydig cells were assayed by Western Blot and 11beta-HSD2 enzyme activity was determined by calculating the ratio of conversion of [3H]CORT to [3H]11-dehydrocorticosterone by 24 h after stimulation with 20 ng/ml LH. Four reporter gene plasmids containing various lengths of Hsd11b2 promoter region were constructed and transfected into mouse Leydig tumor cells to investigate the effect of LH on Hsd11b2 transcription. A glucocorticoid-responsive reporter gene plasmid, GRE-Luc, was constructed. To evaluate influence of LH on intracellular glucocorticoid level, rat Leydig cells were transfected with GRE-Luc, and luciferase activities were measured after incubation with CORT alone or CORT plus LH.</p> <p>Results</p> <p>We observed dose- and temporal-dependent induction of rat 11beta-HSD2 mRNA expression in Leydig cells subject to LH stimulation. The protein and enzyme activity of 11beta-HSD2 and the luciferase activity of reporter gene driven by promoter regions of Hsd11b2 were increased by LH treatment. LH decreased the glucocorticoid-induced luciferase activity of GRE-Luc reporter gene.</p> <p>Conclusion</p> <p>The results of the present study suggest that LH increases the expression and enzyme activity of 11beta-HSD2, and therefore enhances capacity for oxidative inactivation of glucocorticoid in rat Leydig cells in vitro.</p

    Age-dependent Decrease in 11β-Hydroxysteroid Dehydrogenase Type 2 (11β-HSD2) Activity in Hypertensive Patients

    Get PDF
    Background The prevalence of arterial hypertension lacking a defined underlying cause increases with age. Age-related arterial hypertension is insufficiently understood, yet known characteristics suggest an aldosterone-independent activation of the mineralocorticoid receptor. Therefore, we hypothesized that 11β-HSD2 activity is age-dependently impaired, resulting in a compromised intracellular inactivation of cortisol (F) with F-mediated mineralocorticoid hypertension. Methods Steroid hormone metabolites in 24-h urine samples of 165 consecutive hypertensive patients were analyzed for F and cortisone (E), and their TH-metabolites tetrahydro-F (THF), 5αTHF, TH-deoxycortisol (THS), and THE by gas chromatography-mass spectroscopy. Apparent 11β-HSD2 and 11β-hydroxylase activity and excretion of F metabolites were assessed. Results In 72 female and 93 male patients aged 18-84 years, age correlated positively with the ratios of (THF + 5αTHF)/THE (P = 0.065) and F/E (P < 0.002) suggesting an age-dependent reduction in the apparent 11β-HSD2 activity, which persisted (F/E; P = 0.020) after excluding impaired renal function. Excretion of F metabolites remained age-independent most likely as a consequence of an age-dependent diminished apparent 11β-hydroxylase activity (P = 0.038). Conclusion Reduced 11β-HSD2 activity emerges as a previously unrecognized risk factor contributing to the rising prevalence of arterial hypertension in elderly. This opens new perspectives for targeted treatment of age-related hypertensio

    New roles for corticosteroid binding globulin and opposite expression profiles in lung and liver

    Get PDF
    Corticosteroid-binding globulin (CBG) is the specific plasma transport glycoprotein for glucocorticoids. Circulating CBG is mainly synthesized in liver but, its synthesis has been located also in other organs as placenta, kidney and adipose tissue with unknown role. Using an experimental model of acute pancreatitis in cbg mice we investigated whether changes in CBG affect the progression of the disease as well as the metabolism of glucocorticoids in the lung. Lack of CBG does not modify the progression of inflammation associated to pancreatitis but resulted in the loss of gender differences in corticosterone serum levels. In the lung, CBG expression and protein level were detected, and it is noteworthy that these showed a sexual dimorphism opposite to the liver, i.e. with higher levels in males. Reduced expression of 11â-HSD2, the enzyme involved in the deactivation of corticosterone, was also observed. Our results indicate that, in addition to glucocorticoids transporter, CBG is involved in the gender differences observed in corticosteroids circulating levels and plays a role in the local regulation of corticosteroids availability in organs like lung.Support was provided by: Fondo Investigación Sanitaria PI09/00505 to ME MG; Fondo Investigación Sanitaria PI13/00019 to DC SG-S; Predoctoral scholarship from the University of Barcelona to JG; European and Sardinian scholarship >Master and Back> to AL; Grant from Generalitat de Catalunya (AGAUR, Grant FI DGR 2013) to LB.Peer Reviewe
    • …
    corecore