58 research outputs found

    Interactive Causal Correlation Space Reshape for Multi-Label Classification

    Get PDF
    Most existing multi-label classification models focus on distance metrics and feature spare strategies to extract specific features of labels. Those models use the cosine similarity to construct the label correlation matrix to constraint solution space, and then mine the latent semantic information of the label space. However, the label correlation matrix is usually directly added to the model, which ignores the interactive causality of the correlation between the labels. Considering the label-specific features based on the distance method merely may have the problem of distance measurement failure in the high-dimensional space, while based on the sparse weight matrix method may cause the problem that parameter is dependent on manual selection. Eventually, this leads to poor classifier performance. In addition, it is considered that logical labels cannot describe the importance of different labels and cannot fully express semantic information. Based on these, we propose an Interactive Causal Correlation Space Reshape for Multi-Label Classification (CCSRMC) algorithm. Firstly, the algorithm constructs the label propagation matrix using characteristic that similar instances can be linearly represented by each other. Secondly, label co-occurrence matrix is constructed by combining the conditional probability test method, which is based on the label propagation reshaping the label space to rich label semantics. Then the label co-occurrence matrix combines with the label correlation matrix to construct the label interactive causal correlation matrix to perform multi-label classification learning on the obtained numerical label matrix. Finally, the algorithm in this paper is compared with multiple advanced algorithms on multiple benchmark multi-label datasets. The results show that considering the interactive causal label correlation can reduce the redundant information in the model and improve the performance of the multi-label classifier

    2019 Scholarly Productivity Report

    Get PDF
    https://scholarsmine.mst.edu/care-scholarly_productivity_reports/1000/thumbnail.jp

    The Bridge Newsletter Winter 2019

    Get PDF
    -Dehghani joins S&T-Life after death of solar panels-Civil engineering senior studies in Hong Kong-Planning for future climate changes in the Artichttps://scholarsmine.mst.edu/bridge/1016/thumbnail.jp

    2020 Scholarly Productivity Report

    Get PDF
    https://scholarsmine.mst.edu/care-scholarly_productivity_reports/1008/thumbnail.jp

    Identifying Candidate Genetic Associations with MRI-Derived AD-Related ROI via Tree-Guided Sparse Learning

    Get PDF
    Imaging genetics has attracted significant interests in recent studies. Traditional work has focused on mass-univariate statistical approaches that identify important single nucleotide polymorphisms (SNPs) associated with quantitative traits (QTs) of brain structure or function. More recently, to address the problem of multiple comparison and weak detection, multivariate analysis methods such as the least absolute shrinkage and selection operator (Lasso) are often used to select the most relevant SNPs associated with QTs. However, one problem of Lasso, as well as many other feature selection methods for imaging genetics, is that some useful prior information, e.g., the hierarchical structure among SNPs, are rarely used for designing a more powerful model. In this paper, we propose to identify the associations between candidate genetic features (i.e., SNPs) and magnetic resonance imaging (MRI)-derived measures using a tree-guided sparse learning (TGSL) method. The advantage of our method is that it explicitly models the complex hierarchical structure among the SNPs in the objective function for feature selection. Specifically, motivated by the biological knowledge, the hierarchical structures involving gene groups and linkage disequilibrium (LD) blocks as well as individual SNPs are imposed as a tree-guided regularization term in our TGSL model. Experimental studies on simulation data and the Alzheimer's Disease Neuroimaging Initiative (ADNI) data show that our method not only achieves better predictions than competing methods on the MRI-derived measures of AD-related region of interests (ROIs) (i.e., hippocampus, parahippocampal gyrus, and precuneus), but also identifies sparse SNP patterns at the block level to better guide the biological interpretation
    • …
    corecore