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Abstract

Imaging genetics has attracted significant interests in recent studies. Traditional work has focused 

on mass-univariate statistical approaches that identify important single nucleotide polymorphisms 
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(SNPs) associated with quantitative traits (QTs) of brain structure or function. More recently, to 

address the problem of multiple comparison and weak detection, multivariate analysis methods 

such as the least absolute shrinkage and selection operator (Lasso) are often used to select the 

most relevant SNPs associated with QTs. However, one problem of Lasso, as well as many other 

feature selection methods for imaging genetics, is that some useful prior information, e.g., the 

hierarchical structure among SNPs, are rarely used for designing a more powerful model. In this 

paper, we propose to identify the associations between candidate genetic features (i.e., SNPs) and 

magnetic resonance imaging (MRI)-derived measures using a tree-guided sparse learning (TGSL) 

method. The advantage of our method is that it explicitly models the complex hierarchical 

structure among the SNPs in the objective function for feature selection. Specifically, motivated by 

the biological knowledge, the hierarchical structures involving gene groups and linkage 

disequilibrium (LD) blocks as well as individual SNPs are imposed as a tree-guided regularization 

term in our TGSL model. Experimental studies on simulation data and the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) data show that our method not only achieves better predictions 

than competing methods on the MRI-derived measures of AD-related region of interests (ROIs) 

(i.e., hippocampus, parahippocampal gyrus, and precuneus), but also identifies sparse SNP 

patterns at the block level to better guide the biological interpretation.
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1 Introduction

NEUROIMAGING genetics is an emergent research field aiming at identifying genetic 

variants that influence measures derived from anatomical or functional brain images [1]. 

Compared to diagnostic measures based on cognitive or clinical assessments [2], [3], any 

quantitative measures extracted from different brain imaging modalities can be treated as 

intermediate or endophenotypes that are closer to the underlying biological mechanisms of 

the disease.

Genome-wide association studies (GWAS) in imaging genetics domain are increasingly 

being used to identify the associations between the high-throughput single nucleotide 

polymorphisms (SNPs) and the quantitative traits (QTs) of imaging data [4], [5]. To our 

knowledge, pairwise univariate analysis methods that work on statistic tests or p-values from 

standard individual SNP tests focus on examining statistical effects of each individual 

genetic variant at one time. However, it may ignore the underlying interacting relationship 

among SNPs and thus easily lead to a weak detection of associations. To address this 

problem, multivariate or multi-locus methods (e.g., by incorporating multi-SNP 

dependencies in the model) can detect SNPs missed by univariate methods [6], [7].

To jointly evaluate multiple correlated SNPs, regularization techniques such as ridge 

regression have been adopted in [8]. Meanwhile, some sparsity-based feature selection 

methods such as the L1-regularized least absolute shrinkage and selection operator (Lasso) 

[9] have been proposed to identify a subset of features (i.e., SNPs) for subsequent 
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association analysis. In [10], Lasso regression has been used to evaluate gene effects in a 

GWAS of the temporal lobe volume and discover a small set of genes that pass the genome-

wide significance. In addition, Elastic Net, which combines L1-norm and L2-norm 

regularization to address the problem of high dimensionality and multiple colinearity 

simultaneously, has been implemented for imaging genetics studies [11], [12]. In particular, 

the L1-regularized term is used to enforce the ‘sparsity’ on the individual features, ignoring 

the structure information among SNPs that exist throughout the whole genome. Recently, 

based on Group Lasso by imposing the ‘group sparsity’ with L1/L2-norm regularization 

[13], an alternative method has been proposed in [14] to consider the group structure among 

SNPs. These L1 or L1/L2-regularized regression methods allow for a large number of 

correlated SNPs being incorporated into a single model and select a sparse set of SNPs that 

are associated with imaging measures. However, in the above methods, the hierarchical 

structure among SNPs that is different from flat group structure, is still not used for 

designing more powerful model.

On the other hand, in machine learning community, sparse learning methods with tree-

structured regularizations have been proposed to model the underlying multilevel tree (i.e., 

hierarchical) structures among the inputs or outputs [15], [16]. The hierarchy- structured 

sparsity has been implemented with hierarchical agglomerative clustering technique for 

multi-scale mining on fMRI application [17]. Recently, the tree structure-based method has 

also been successfully used for neuroimaging-based brain disease classification [18].

Motivated by the above literature review, following the existing work (i.e., [19], [20]), we 

propose to identify more significant and meaningful SNP associated with magnetic 

resonance imaging (MRI)-derived measures from preselected candidate SNP set by using a 

tree-guided sparse learning (TGSL) method, which explicitly models the prior hierarchical 

tree structure among the SNPs in the objective function for feature selection. Here, the 

hierarchical tree structure is constructed based on the following prior knowledge, i.e., each 

tree node is for one feature group and different tree heights represent different levels of 

groups. Specifically, some SNPs are naturally connected via different pathways, and 

multiple SNPs located in one gene often jointly express certain genetic functionalities. On 

the other hand, another genetic biology phenomenon, i.e., linkage disequilibrium (LD) [21], 

describes the non-random distributions between alleles at different loci. Inspired by the 

above prior knowledge, the spatial gene and LD relationships among SNPs can be encoded 

into the tree regularization simultaneously that is an enhanced model for extending the 

previous work [22] to guide the feature selection for subsequent prediction. We demonstrate 

the practical utility of our method on the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) cohort for identifying genetic associations with QTs of MRI-derived ROI measures 

(including bilateral volumes of the hippocampus, parahippocampal gyrus and precuneus) 

that are known to be relevant to Alzheimer’s disease. From empirical experiment results, as 

expected, the tree-guided sparse learning not only yields improved prediction performances 

and but also identifies high-level SNP clusters jointly affecting relevant QTs.

It is worth noting that the focus of this initial study is to examine the prediction and feature 

selection power of the proposed TGSL model using a candidate SNP set, which performs a 

“pre-selection” step to get a biologically relevant candidate set with a moderate number of 
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SNPs. In the existing imaging genetic studies, there are many other works considering the 

entire brain regions or more interestingly interaction between image phenotype and the 

genotype simultaneously. Silver et al. [23] and Zhu et al. [24] proposed structured sparse 

low-rank regression models for imaging genetics analysis. Batmanghelich et al. [25], [26] 

and Zhu et al. [27] proposed Bayesian frameworks to identify multiple imaging phenotypes 

related to genetic markers. Both methods share a similar goal to identify relevant imaging 

phenotypes via multivariate multiple regression, which is different from our model where 

only one targeted phenotype associated to structured genotypes is analyzed in this study.

2 Method

2.1 Background of Sparse Learning on Imaging Genetics

Assume that there are M training subjects, with each represented by an N-dimensional 

feature vector (i.e., SNPs) and a response value (i.e., MRI-derived measure). Let X be an M 

× N feature matrix with the m-th row xm = (x1
m, …, xnm, …, xN

m ) ∈ RN denoting the m-th 

subject’s feature vector, and y be the corresponding MRI-derived measures of M subjects. A 

linear regression model can be formulated as follows:

y = Xα + ε, (1)

where α is a vector of coefficients assigned to the respective features, and ε is an error term. 

To encourage the ‘sparsity’ among features, the L1-norm regularization is imposed on the 

vector of regression coefficients as follows [9]:

α = argmin
α

‖y − Xα‖2 + λ‖α‖1, (2)

where λ is a regularization parameter that controls the sparsity in the solution. The non-zero 

elements in α indicate that the corresponding input features are relevant to the regression 

outputs. This L1-regularized Lasso regression method imposes sparisty on the individual 

variables for feature selection, which provides an effective multiple regression model to 

identify a subset of relative SNPs associated with MRI-derived measures. However, the 

Lasso-based method completely ignores the joint associated features, since another 

hypothesis is that the group or block of SNPs can convey important biological information 

and jointly affect the phenotypes.

In order to address the group-wise association among the features, sparsity can be enforced 

at the group level by an L1/L2-regularization, where the L2-norm is applied for the input 

features within the same group, while the L1-norm penalty is applied over the groups of 

input features [13], and it can be formulated as follows:

α = argmin
α

‖y − Xα‖2 + λ∑j = 1
N wj‖αGj‖2, (3)

where Gj (j = 1, …, N) is a set of pre-defined non-overlapping feature clustering groups,wj is 

a predefined weight for the corresponding group Gj. The regularization term 

∑j = 1
N wj‖αGj‖2, which refers to L1-norm on the ∥αGj∥2 penalizes all coefficients in the 
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same group for joint feature selection. In practice, structure relationships are available when 

the priori knowledge are embedded. The group sparsity technique has been used in prior 

imaging studies [14]. Nevertheless, the disadvantage of this model is that it imposes the 

sparsity on the group-level while we know that perhaps only a handful of SNPs in a group 

are related.

Considering the limitations of L1-regularized Lasso and L1/L2-regularized Group Lasso, 

how can we identify the sparse solutions from a group with highly correlated variables? A 

recent regularization regression in reverse inference named as Elastic Net, has been 

proposed to conduct the high dimensional and correlated data analysis [11], [12] as 

following:

α = argmin
α

‖y − Xα‖2 + λ1‖α‖1 + λ2‖α‖2
2 . (4)

The quadratic penalty term makes the loss function strictly convex, and therefore, it has a 

unique minimum. The Elastic Net method formulated as (4) combines the L1-regularized 

Lasso and ridge penalization. Each of them is a special case of the Elastic Net: (1) Lasso 

when λ1 = λ and λ2 = 0; and (2) ridge when λ1 = 0 and λ2 = λ. In this context of imaging 

genetics, Elastic Net is indeed a competitive method to discover multi-locus associations.

2.2 Tree-Guided Sparse Learning

One limitation of the Lasso, Group Lasso and Elastic Net is that these methods have not 

taken into account the spatial structure of the data, and thus ignore the biological fact 

existing the hierarchal structure among SNPs. With these observations, in this section, we 

introduce a TGSL method [15] for solving the problem of identifying SNPs with 

hierarchical tree structures.

The hierarchical tree is constructed with intuitions that each tree node is for one feature 

group and different tree heights represent different levels of groups. The group construction 

is induced by the prior knowledge, i.e., multiple SNPs located in one gene often jointly 

affect certain genetic functionalities or alleles at different loci exhibit the non-random 

distributions with LD. Therefore, in the TGSL model, a tree structure is used to represent the 

hierarchical spatial relationship (grouping by LD blocks and by genes) among SNPs, with 

leaf nodes denoting SNPs and internal nodes denoting the groups of SNPs and groups of LD 

blocks. A schematic diagram in Fig. 1 shows an example of tree hierarchy structure.

Assume that a hierarchical tree T has d depth levels, and there are ni nodes organized as 

Ti = {G1
i , …, Gj

i, …, Gni
i } in the ith level (0 ≤ i ≤ d). Different depth levels indicate the 

different scales of feature groups. The index sets of the nodes at the same level have no 

overlapping, and the index set of a child node is a subset of its parent’s index set. The TGSL 

method [15] can be formulated as:

α = argmin
α

‖y − Xα‖2 + λ∑i = 0
d ∑j = 1

ni wji αGji 2 . (5)
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where αGji is the set of coefficients assigned to the features within node Gj
i, wji is a 

predefined weight for node Gj
i with priori knowledge. Since each node presents a subtree of 

T, if one node is selected, all its descendant child nodes in tree will also be selected. A 

regularization predefined by the tree structure can be imposed on the sparse learning 

optimization problem to encourage a joint selection of structured relevant SNPs. In addition, 

the TGSL method combines the L1-regularized Lasso defined as (2) and non-overlapped 

Group Lasso defined as (3). Note that, it includes our previous formulation (3) as a special 

case, when the index tree is of depth 1 and w1
0 = 0.

2.3 An Analytical Solution and Optimization

The objective function (5) can be efficiently solved using the Nesterov’s accelerated 

proximal gradient optimization algorithm [28], [29], where the regularization also needs to 

be evaluated in each of its iteration. A detailed description on Moreau-Yosida regularization 

for grouped tree sparse learning optimization used in this paper can be found in [15].

The objective function can be separated into a smooth part and a non-smooth part. 

Accordingly, to achieve the approximating operation, the following function is constructed 

for approximating the composite function [28]:

min
α

f(α) + 〈α − αi, ∇f(αi)〉 + l
2‖α − αi‖2 + λΩ(α) . (6)

The quadratic term keeps the update in a neighborhood, where f is close to its linear 

approximation. ∇f(αi) denotes the gradient of f(α) on point αi at the ith iteration, and l is the 

step size which is an upper bound on the Lipschitz constant of ∇f. This problem can be 

equivalently re-written as:

min
α

1
2‖α − αi − 1

l ∇f(αi) ‖2 + λΩ(α) . (7)

The proximal operator associated with our regularization term λΩ is the function that maps a 

vector u to the unique solution. The grouped tree structure regularization described in [15] 

for a given v is formulated by:

min
u

1
2‖u − v‖2 + λ∑i = 0

d ∑j = 1
ni wji αGji 2 . (8)

This operator is initially introduced to generalize the projection operator onto a convex set. 

What makes proximal methods appealing for solving sparse decomposition problems is that 

this operator can be computed in closed-form. Note the minimizer of (8) has the same 

solution as the original problem of (5). To implement the algorithm, we set ud+1 = v, and 

only need to maintain a working variable u, which is initialized with v for the minimization 

of (8) admits an analytical solution. We then traverse the index tree T in the reverse breadth-

Hao et al. Page 6

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2020 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



first order to update u. At the traversed node Gj
i, we update uG according to the operation in 

(10), with i from d to 0 and j from 1 to ni. In addition, the implementation of the algorithm 

can also help explain why the structured group sparsity can be induced. Algorithm 1 shows 

such an efficient solution.

2.4 Imaging Phenotype Prediction

We treat each SNP as a feature and each QT as a response variable. And the similar 

regression model including multiple features (SNPs) and single response (imaging-derived 

measures) is also formulated in [30]. Based on the selected SNPs using TGSL, a regression 

model can be used for the final prediction on the phenotype. Support vector regression 

(SVR) is one of the widely used regression models to achieve generalized performance as it 

attempts to minimize the generalized error bound that is the combination of the training 

error and a regularization term with controlling the complexity of the hypothesis space [31]. 

Therefore, a linear kernel, which maps from original space to feature space is adopted for 

simplicity. The identification of QTs from genotype to phenotype is important to understand 

the underlying biological mechanism for the disease. In addition, our goal is to reveal the 

relationship between these identified SNP loci and imaging phenotypes. Thus, the genetic 

biomarkers we find in the prediction model with feature selection can provide therapists with 

a powerful and supplementary epidemiological evidence to assess the predisposition for a 

population to a certain disease (i.e., Alzheimer’s disease (AD)).

Algorithm 1. To Minimize J in Equation (5)

Input: v ∈ Rp, the index tree T with nodes Gji, λ > 0, λji =

λwji, wji ≥ 0, (i = 0, 1, …, d, j = 1, 2, …, ni)

Output: u0 ∈ Rp

1: Set:
ud + 1 = v (9)

2: For i = d to 0
3: For j = 1 to ni
4: Compute

uGji
i =

0 uGji
i + 1

2
≤ λwji

uGji
i + 1

2
− λwji

uGji
i + 1

2

uGji
i + 1 uGji

i + 1
2

> λwji
(10)

5: End
6: End

Fig. 2 shows the flowchart of the proposed method. Firstly, to capture the hierarchical 

relationship of the SNPs in our candidate set, we construct a tree structure by consisting of 

multiple levels. (1) The raw genetic data features (i.e., SNPs) are at the first (lowest) level. 

(2) The LD blocks are at the second level, where each LD block contains a set of SNPs. (3) 
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Genes are at the third level. Note that the SNPs studied in this work are extracted from risk 

genes. Thus, each gene contains a set of LD blocks and each LD block contains a set of 

SNPs. This forms a hierarchical structure among SNPs. Then, the constructed tree structure 

is imposed on the regularization of TGSL model to select the relevant features. Finally, SVR 

is used to predict the image-derived measures using the selected SNPs features.

3 Data Descriptions

In this section, we evaluate the effectiveness of the proposed method on the ADNI database 

(http://adni.loni.usc.edu/), where candidate SNPs are examined and selected to predict the 

response of the MR imaging phenotypes. The ADNI was launched in 2003 as a public-

private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal 

of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron 

emission tomography (PET), other biological markers, and clinical and neuropsychological 

assessment can be combined to measure the progression of mild cognitive impairment 

(MCI) and early AD. For up-to-date information, see www.adni-info.org.

In the present study, a total of 910 non-Hispanic Caucasian participants with both imaging 

and genotyping data are available, including 210 healthy control (HC), 82 significant 

memory concern (SMC), 272 early mild cognitive impairment (EMCI), 186 late mild 

cognitive impairment (LMCI), and 160 AD participants, as shown in Table 1.

3.1 Imaging Data and Pre-Processing

The MRI data used in this paper were obtained from the ADNI database. We aligned the 

preprocessed imaging data ((i.e., voxel based morphometry (VBM))) to each participant’s 

same visit scan, and then created normalized gray matter density maps from MRI data in the 

standard Montreal Neurological Institute (MNI) space as 2 × 2 × 2 mm 3 voxels, registered 

by SPM software package [32]. 116 ROI level measurements of mean gray matter densities 

were further extracted based on the MarsBaR AAL atlas [33]. After removal of the 

cerebellum, the imaging measures of 90 ROIs were used as QTs in our experiments. All the 

measures were pre-adjusted for age, gender, education and intracranial volume (ICV) using 

the regression weights derived from the healthy control participants. We computed the 

volume of GM tissue in that ROI region as a feature.

Although brain images in different modality could provide a large number of different 

phenotypes for imaging genetic studies, selected candidate imaging traits should be highly 

heritable and be widely related with the pathology disease or biological process as closely as 

possible. Many image-derived measures such as bilateral volumes of the hippocampus, 

parahippocampal gyrus and precuneus are highly heritable and may be more directly 

influenced by genetic variation [34], [35], [36], [37]. The properties of the MRI-derived 

measurement responses are shown in Table 2.

3.2 Genotyping and Pre-Processing

Genotypes for the 910 subjects in this study were obtained from the ADNI database. The 

samples contain candidate genes from ADNI subjects, while genes information used for LD 
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calculation are from (http://browser.1000genomes.org/Homo_sapiens/UserData/Haploview?

db=core).

Genome-wide genotyping data were available for the full set of ADNI subjects. All SNPs 

data, used in this study, are genotyped using the Human 610-Quad BeadChip (Illumina, Inc., 

San Diego, CA) [38]. In order to handle the large scale dirty genetic data, we used a well-

known genetic analysis tool PLINK [39] to filter the genotype data using the following 

exclusion criteria: rare SNPs (minor allele frequency (MAF) < 0.05), violations of Hardy-

Weinberg Equilibrium (HWE p < 10−6), poor call rate (< 90%) per subject and per SNP 

marker, gender check, and sibling pair identification. Data were further “phased” to impute 

any missing individual genotypes after filtering using the MaCH program [40].

Following the approach to pre-selecting the SNPs, we used ANNOVAR(http://

annovar.openbioinformatics.org) to annotate the SNPs with their corresponding genes listed 

in reference [19], [41] and the AlzGene database (http://www.alzgene.org). We focused our 

analysis on 20 AD risk genes. For each gene, we extracted all the SNPs within ±5k base 

pairs of the gene boundary based on the ANNOVAR annotation. Accordingly, there is no 

overlap among different groups.

This resulted in 3,781 SNPs being mapped to the top risk 20 genes. Fig. 3 presents the AD 

risk factor gene (CR1, BIN1, INPP5D, MEF2C, EPHA1, NME8, ZCWPW1, CLU, PTK2B, 
CELF2, MS4A6A, SORL1, FERMT2, RIN3, SLC24A4, DSG2, ABCA7, CD33, APOE, 
CASS4) and the numbers of preselected SNPs in our study.

As mentioned before in Fig. 1, we formed two interval levels in the tree. For the high 

interval nodes, since all SNPs had been divided into different genes naturally, we used the 

natural groups to construct groups, one for each of 20 genes.

In addition, for the low interval nodes, LD is another genetic biology phenomenon to 

construct groups, which refers to the non-random association of alleles at two or more loci. 

It is due to the physical connection between nearby loci on a chromosome, which is known 

as genetic linkage. Taking the SNPs on APOE for example, numerical values r2 of the LD 

maps were determined by Haploview [21], where r2 were the pairwise correlation between 

two SNPs as shown in Fig. 4. And Fig. 5 demonstrates the hierarchical structure grouping by 

LD blocks on APOE. Accordingly, on the LD levels, there were 233 blocks comprising 

2,407 SNPs, with each of the remaining 1,374 SNPs being isolated by itself. For the input in 

the models, each SNP value was coded in an additive fashion as 0, 1 or 2, indicating the 

number of minor alleles.

4 Experimental Results

4.1 Simulation Study

In this section, we present a simulation study to show the potential power of the proposed 

TGSL model. We simulated data from the true model y = Xα + σε, where ε (ε ~ N(0, 1)) 

was the noise and σ was noise level (e.g., σ = 0.01). In this example, we set n = 100, p = 

1,000, so that n < < p and we generated the n × p design matrix X from normal distribution 
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N(0, 1). And then we generated the vector α with a groupe structure (including 4 groups 

with all-zeros and 4 groups that were assigned to have sparse predictors) as follows:

αT = (α1, …, α20
20

, 0, …, 0
180

, α21, …, α
10

, 0, …, 0
290

,

α31, …, α40
10

, 0, …, 0
290

, α41, …, α45
5

, 0, …, 0
195

, ) .

Thus, we obtained the response y. In this experiment, we performed 3 sets of simulations 

with different sparsity levels, which respectively included 5, 15 and 25 truth signals out of 

45 variables (i.e., those from the non-zeros groups).

In each study comparison, we used L1-regularized Lasso, L1/L2-regularized Group Lasso, 

Elastic Net and our proposed TGSL methods to select a subset of features and predict the 

regression responses, respectively. In simulations, we set the number of depth levels d in the 

tree structure as 2. Following the previous studies [15, 18], we set the weight assignments on 

the penalized groups as the square root of the group elements for the Group Lasso and the 

proposed TGSL model. All regularization parameters from models (including Lasso, Group 

Lasso, Elastic Net and TGSL) were optimally tuned using a grid search from the range of 

{0, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1} by nested 5-fold cross-validation 

on the training set. The performances on each simulation dataset were assessed with root 

mean squared error (RMSE), Pearson correlation coefficient (PCC) and coefficient of 

determination (CD). In our experiments, 5-fold cross-validation strategy was adopted to 

evaluate the effectiveness of the reference methods. For facilitating efforts to replicate our 

results, we have published the matlab code and simulation data. These resources are 

available at https://sourceforge.net/projects/ibrain-cn/files/TGSL.

As shown in Table 3, the TGSL for all signal amounts consistently outperforms the other 

methods in RMSE measurement. Regarding the PCC results in Table 4, the best PCCs are 

obtained by TGSL and it shows the best PCCs of 0.8 for all signal sparsity levels. It is worth 

noting that without an explicit apriori knowledge, Elastic Net can get better performances 

than Lasso, since the L2 penalty shrinks the coefficients particularly in highly correlated 

features and thus indirectly encourages the grouping effect [11], [12]. While compared to 

Group Lasso, TGSL can well impose the sparsity on the group levels. Here, we are aware of 

the fact supporting the scene that only a handful of features in a group are related. As shown 

in Table 5, although TGSL shows the weak predictabilities, it is better than the other 

methods in CD measurement. These experiment results quantified by different 

measurements demonstrate that the proposed tree-guided structure can help improve 

regression performance and discover the signals better than the other methods.

4.2 Real Data Applications on ADNI

In the real data applications, we used L1-regularized Lasso, L1/L2-regularized Group Lasso, 

Elastic Net and our proposed TGSL methods to select a subset of features (i.e., SNPs) to 

predict the regression responses on the test data. In this experiment setting, we set the 

number of depth levels d in the tree structure as 3. As for the Group Lasso and our proposed 

TGSL, we set the weight assignments on the penalized groups as the square root of the 
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group elements’ size. Since L1/L2-regularized method refers to the flat manner, we defined 

the groups using LD blocks for Group Lasso.

The primary goal of this experiment is trying to demonstrate the superiority of our proposed 

TGSL when all methods select the same number of features. Although the Lasso and Elastic 

Net are considered as flexible dimensionality reduction algorithms to select any number of 

features (e.g., the fewest or only one) for different sparsity levels, from the perspective of 

system biology, it is more meaningful to discover a set number of loci as well as genes rather 

than top significant SNPs for pathway analysis and interpretations. On the other hand, as the 

hierarchical clustering structures are imposed for joint effectiveness consideration in 

optimization, both Group Lasso and our proposed TGSL methods won’t be able to select 

fewer features than the size of the smaller feature group. Thus, for fair comparisons, we have 

only present the performances of the compared methods in terms of their capability to select 

the same numbers of features in the moderate areas. As for the regularized parameters in all 

comparisons, we determined their values corresponding to the number of selected SNPs 

from 200 to 2000 with the approximate step of hundreds. The performance of each trial was 

assessed with RMSE, a widely used criterion in regression analysis. Average RMSE result 

was calculated based on 10-fold cross validation.

4.2.1 Regression Results Using Selected SNPs—We compare our proposed TGSL 

methods with standard feature selection methods such as Lasso, group Lasso and Elastic 

Net. For testing the regression performance with respect to different level of selected 

features in all methods, we adjust the regularization parameter to control the sparsity. Fig. 6 

reports the RMSE for regression on the bilateral (i.e., left and right) volumes of 

hippocampaus, parahippcampal gyrus and precuneus, respectively, by adopting a polynomial 

model to fit all the data obtained with different regularized parameters. According to Fig. 6, 

the proposed TGSL methods outperform the other competing methods on all the tested 

ROIs, showing the promise of TGSL. It’s worth noting that RMSE increased steeply as a 

function of the number of selected SNPs because the extra SNPs are noisy ones and thus 

harmful for the regression performance. Our results are in accordance with that of a prior 

study [19].

4.2.2 SNP Biomarker Selections—Following the previous regression results on the 

volumes of brain ROIs calculated on average, taking left hippocampus and right 

parahippocampal gyrus for example, we selected the 200 SNPs associated with the MRI-

derived measures from one fold test in one trial. As shown in Table 6, the proposed TGSL 

can achieve the best RMSE value on MIR-derived ROI volume predictions comparing to the 

other competitive methods.

As illustrated in Fig. 7, some relevant SNPs detected by Lasso method are observed on 

widespread gene space. There are few robust SNPs in feature selection via Group Lasso. It 

imposes the sparsity on the group-level while we know that only a handful of SNPs in a 

group are related. Elastic Net can identify the sparse solutions from a group with highly 

correlated SNPs, comparing to L1-regularized Lasso.
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We can also observe from the figure that as inducing the tree structure, the TGSL solutions 

lead to sparse blocks, where the selected SNPs are from meaningful LD blocks and two risk 

genes (INPP5D and CD33). As expected, the tree-guided sparse learning is to select multiple 

SNPs from one gene to find the joint effectiveness on synthesis of functional proteins in 

metabolic process. For example, INPP5D has been reported to be associated with AD 

through modulating the inflammatory process and immune response [42]. As a type I 

transmembrane protein, CD33 belongs to the sialic acid-binding immunoglobulin-like 

lectins, mediating the cell–cell interaction and inhibiting normal functions of immune cells. 

In the brain, it is mainly expressed on microglial cells. The level of CD33 has been found to 

be increased in the AD brain, which positively correlates with amyloid plaque burden and 

disease severity [43]. It is worth noting that these stable markers are also reported in other 

related heritable neurodevelopmental disorders, which is in accordance with the existing 

findings [44]. Although they have been considered as risk factor genes in dementia, the 

imaging genetic finding of joint INPP5D and CD33 warrants further investigation.

5 Conclusion

In this paper, we investigate the potential of exploiting tree-guided sparse learning (TGSL) 

method for identifying the associations between candidate SNPs and AD-related MRI-

derived ROI (hippocampus, parahippocampal gyrus and precuneus) measures, given 

hierarchical tree structure information (i.e., gene groups and LD blocks as well as individual 

SNPs). The experimental results on simulation studies and real data ADNI applications 

show the better performance that demonstrates the tree-guided regularizations help to 

discover the marks better than other reference methods. Furthermore, the similar model can 

be extended and applied to the other MRI-derived measure ROIs or other additional 

modality phenotypes (e.g., DTI, fMRI and PET data).

Since the TGSL study has focused on single phenotype outcome, it is an interesting future 

topic to expand this model into the multivariate multiple regression frameworks considering 

whole brain or more complex interaction between genotype, phenotype and diagnosis factors 

to identify more complicated multi-SNP-multi-phenotype associations. In addition, another 

interesting problem is If we extend upstream and downstream threshold (e.g., > 20 kbp) on 

the gene annotation, some SNPs could be annotated by multiple genes. While the non-

overlapping group structure in group Lasso limits its applicability in practice. Thus, the 

overlapping group Lasso penalized problem [45] or graph structure associations [46] should 

be further investigated in our future work.
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Fig. 1. 
Illustration of the tree-structured hierarchical relationship among SNPs: group by gene and 

group by linkage disequilibrium (LD) blocks.
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Fig. 2. 
The flowchart of the proposed method.
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Fig. 3. 
The Top 20 AD risk genes used in this study and the numbers of their SNPs.
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Fig. 4. 
Illustration plot on LD of SNPs on APOE by Haploview.
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Fig. 5. 
Hierarchical structure grouping by LD blocks on APOE.
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Fig. 6. 
Comparison of RMSE with respect to different number of selected SNPs from 200 to 2000 

by L1-regularized Lasso, Group Lasso, Elastic Net, the proposed TGSL in prediction on (a) 

Left Hippocampus, (b) Right Hippocampus, (c) Left Parahippocampal Gyrus, (d) Right 

Parahippocampal Gyrus, (e) Left Precuneus, and (f) Right Precuneus.
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Fig. 7. 
The patterns of SNP selections by L1-regularized Lasso, Group Lasso, Elastic Net, and the 

proposed TGSL on (a) Left Hippocampus and (b) Right Parahippocampal gyrus. The white 

entries are masked as selected SNPs.
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TABLE 1

Characteristics of the Subjects

Subjects HC SMC EMCI LMCI AD

Number 210 82 272 186 160

Gender 109 33 153 107 95

(M/F) /101 /49 /119 /79 /65

Age 76.13 72.45 71.51 73.79 75.18

(mean±std) ±6.54 ±5.67 ±7.11 ±8.40 ±7.88

Education 16.44 16.78 16.07 16.38 15.86

(mean±std) ±2.62 ±2.67 ±2.62 ±2.82 ±2.75

Note: HC = Healthy Control, SMC = Significant Memory Concern, EMCI = Early Mild Cognitive Impairment, LMCI = Late Mild Cognitive 
Impairment, and AD = Alzheimer’s disease.
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TABLE 2

Properties of the MRI- Derived Measurement Responses

Response ROI Range Mean±Std

Left Hippocampus 0.268-0.598 0.473 ± 0.052

Right Hippocampus 0.245-0.567 0.441 ± 0.049

Left Parahippocampal Gyrus 0.303-0.686 0.509 ± 0.049

Right Parahippocampal Gyrus 0.350-0.712 0.554 ± 0.047

Left Precuneus 0.179-0.597 0.356 ± 0.045

Right Precuneus 0.178-0.598 0.371 ± 0.042

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2020 November 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hao et al. Page 28

TABLE 3

Root Mean Squared Error on Simulation Study

#of True Signals L1Lasso Group Lasso ElasticNet proposed TGSL

5 0.70 ± 0.24 0.74 ± 0.19 0.69 ± 0.24 0.60 ± 0.22

15 3.66 ± 0.50 3.44 ± 0.61 3.58 ± 0.43 3.06 ± 0.60

25 4.85 ± 1.16 4.18 ± 1.20 4.81 ± 1.20 3.80 ± 0.91
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TABLE 4

Pearson Correlation Coefficient on Simulation Study

#of True Signals L1Lasso Group Lasso ElasticNet proposed TGSL

5 0.81 ± 0.14 0.81 ± 0.12 0.82 ± 0.14 0.86 ± 0.14

15 0.41 ± 0.29 0.77 ± 0.07 0.48 ± 0.25 0.82 ± 0.08

25 0.14 ± 0.14 0.81 ± 0.09 0.20 ± 0.12 0.82 ± 0.12
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TABLE 5

Coefficient of Determination on Simulation Study

#of True
Signals

L1Lasso Group Lasso ElasticNet proposed TGSL

5 0.61 ± 0.21 0.58 ± 0.16 0.62 ± 0.21 0.70 ± 0.22

15 0.04 ± 0.43 0.22 ± 0.08 0.07 ± 0.43 0.38 ± 0.05

25 −0.06 ± 0.06* 0.22 ± 0.05 −0.04 ± 0.09* 0.35 ± 0.07

Note:

*
indicates a negative value (the sum of squares of residuals is larger than the variance of the data).
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TABLE 6

RMSE with Respect to 200 Selected SNPs by Different Methods

Response ROI Hippocampus_L Parahipp_R

L1-Lasso 0.0555 0.0491

Group Lasso 0.0553 0.0501

Elastic Net 0.0557 0.0490

Proposed TGSL 0.0547 0.0487
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