15 research outputs found

    Aivopulsaation mallinnus mittausjärjestelmässä

    Get PDF
    Tiivistelmä. Tämän työn aiheena on esitellä erilaisia ihmisen pään emulointimalleja sekä rakentaa mittausjärjestelmä ihmisen aivonesteen värähtelyn mittaamista varten NIRS:llä (near-infrared spectroscopy, lähi-infrapunaspektroskopia) aivopulsaation vaikutuksesta. Tarkoituksena on selvittää emulointimallien kehityksen nykytila kallo- sekä aivomallien näkökulmasta. Emulointimallien valmistamisessa ja kehittämisessä pitää ottaa huomioon mittausten toistettavuus sekä käytettävien materiaalien sopivuus halutulle mittausmodaliteetille. Mallien kehitys tutkimuksissa on tärkeää uusien laitteiden ja tekniikoiden suunnittelussa. Niiden käytöllä tutkimuksissa myös varmennetaan laitteiden turvallisuus ennen kliinistä testausta, sekä vältytään eettisiltä ongelmilta ja ristiriidoilta. Emulointimallien kehityksen nykytilan lisäksi työn tarkoituksena on selvittää, voidaanko aivonesteen värähtelyä aivopulsaation vaikutuksesta mitata NIRS:llä. Työssä rakennettiin tutkimusasetelma, jolla emuloidaan aivo-selkäydinnesteen muutoksia aivojen ja kallon välissä aivojen pulssin vaihtelun mukaan. Emulointimallin valmistuttua suoritettiin mittaukset NIRS:llä ja tulokset osoittivat, että aivopulsaatio voitiin havaita selkeästi mittauksissa, mutta Monro-Kellie-doktriini toteutumista ei voitu luotettavasti osoittaa.Emulation of cerebral pulsation in a measurement setup. Abstract. The subject of this thesis is introducing different kind of phantoms used to emulate human head functions and build a research setup to measure cerebrospinal fluid changes in the skull due to the brain pulsation with NIRS (near-infrared spectroscopy). The purpose of the thesis is to sort out the state-of-the-art of the development of phantoms from the skull and brain phantom point of view. When manufacturing and developing phantoms, the repeatability of the measurements and suitability of the materials used for the desired measurement modality must be considered. Developing phantoms in studies is important in designing new devices and techniques. They are also used to certify the safety of devices before clinical testing and avoid ethical problems and conflicts. In addition to sort out the state-of-the-art of phantoms the other purpose of the thesis is to find out whether vibration of cerebrospinal fluid can be measured by NIRS according to the brain pulsation. In the technical part of the thesis, a research setup was built to simulate vibration in the cerebrospinal fluid between the brain and the skull according to the variation of the brain pulsation. Measurements were performed with NIRS, and results showed that vibration of cerebrospinal fluid can be seen clearly in measurements, but Monro-Kellie-doctrine could not be shown

    Theory of delocalised charge transfer​​​​​​​

    Get PDF

    Measurement of forces in optical tweezers\ua0with applications in biological systems

    Get PDF

    Mapping the humanities, arts and social sciences in Australia

    Get PDF

    Applications of electron paramagnetic resonance in biomedicine

    Get PDF

    Quantum optomechanics in the unresolved sideband regime

    Get PDF

    Imaging, manipulation and optogenetics in zebrafish

    Get PDF
    The work described here investigates the advantages and limitations of using laser light for the deep in-vivo illumination and micromanipulation of the neuronal system in zebrafish. To do so, it combines and develops novel optical methods such as optogenetics, light sheet microscopy and optical micromanipulation. It also demonstrates, for the first time, that directional and focused laser beams can successfully be used to target large objects at considerable depth in a living organism to exert purely optical force – in this case on otoliths (ear stones) – and create fictive vestibular stimuli in a stationary animal. The behavioural study and simultaneous imaging of the whole brain reveal the location of the brain cells specific to each ear stone. Elucidating these fundamental neural processes holds substantial value for basic neuroscience researchers, who still have only a vague grasp of how brain circuits mediate perception. As such, it represents highly innovative research that has already led to high-impact publications and is now being intensively pursued

    Measuring tissue variations in the human brain using quantitative MRI

    Get PDF
    corecore