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Abstract 

For decades, magnetic resonance imaging has shown overwhelming utility in the 

diagnosis and monitoring of diseases and disorders. In the human brain, it has been used 

to assess changes in brain structure and function in both healthy and unhealthy individuals 

and across patient cohorts. Contrast in structural images has been derived from proton 

density, and relaxation based (T1, T2 and T2*) processes. Moreover, methods such as 

perfusion, diffusion and functional imaging have provided complementary information in 

the assessment of neurodegenerative diseases and disorder affecting the central nervous 

system. With the availability of ultra-high field imaging, new contrast mechanisms are able 

to provide additional information that can be derived from magnetic resonance imaging 

data. In particular, not only the magnitude of the magnetic resonance imaging signal 

contains important information, but also the signal phase, which is highly sensitive to 

changes in magnetic properties of tissues and the effect scales with field strength. In 

quantitative susceptibility mapping, a method that is still under development, phase 

images allow the derivation of susceptibility maps. These maps can contain vital 

information about iron deposition, calcification, microbleeds, and changes in tissue 

microstructure.  

The overall aim of my research was to improve the utility of the approach by analysing 

quantitative susceptibility maps derived from multi-echo gradient recalled echo magnetic 

resonance imaging signals. I made three significant advances. First, I used quantitative 

susceptibility mapping at an ultra-high field and studied the temporal trends in magnetic 

susceptibility using signal compartmentalisation. I found the trends in magnetic 

susceptibility as a function of echo time are influenced by tissue microstructure 

differences. This information is potentially useful in identifying changes in tissue 

microstructure in the human brain.  

Second, I investigated how changes in temporal magnetic susceptibility change as a 

function of the magnetic field strength of the MRI scanner. I found the processing pipeline 

and field strength to affect signal compartmentalisation, however consistent results can be 

generated provided a distinct processing pipeline is used.   

Third, I studied how signal compartments could be used to parcellate cortical regions in 

the human brain. I examined the use of single and multiple orientation quantitative 

susceptibility mapping methods. I found cortical regions can potentially be parcellated 

using signal compartmentalisation of the multiple echo gradient recalled echo MRI signal. 

My work may lead to full parcellation of the human brain and help explore how parcellated 
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brain regions play a role in brain development and how they change with brain diseases 

and disorders.  
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Chapter 1 Introduction 

The advances in magnetic resonance imaging (MRI) have provided several techniques to 

investigate physical structures and chemical composition of biological tissue in both health 

and disease (1). Contrasts in the MRI images have always been of great interest for 

clinicians and researchers. Numerous sequences have successfully been used in clinics 

and research to study physiological changes (1). Different parameters in the sequence 

can be varied to obtain the desired contrast of the biological tissue (2–5). Sequences 

available in clinics and research are: Fluid-attenuated inversion-recovery (FLAIR) (2), 

Magnetization transfer (MTR) (6), susceptibility weighted imaging (SWI) (7), diffusion (4) 

and perfusion weighted (3) MRI. Differences in tissue were exploited in proton density, 

T1-weighted, T2-weighted, and T2*-weighted imaging to generate a contrast in 

magnitude data and simultaneous influences in phase data (2,5). These sequences have 

been used in assessing fat, measuring MRI contrast agents, estimating iron deposits, 

calcification, and lesions (5,8,9).  

The complex MRI data acquired from the scanner includes magnitude and phase 

information (10). Although both magnitude and phase data have been used to generate 

MRI images, phase imaging has gained attention in the last decade with the possibility of 

high signal-to-ratio (SNR) ratio in phase images with (a) high resolution (11). Phase data is 

sensitive to intrinsic tissue variances and thus can provide intricate details of anatomical 

structures (11). Furthermore, at (the) ultra-high field strengths phase information provides 

excellent gray-white matter contrast (11). However, there are two limitations associated 

with phase data: (a) phase data is non-local, and (b) phase data is geometry and 

orientation dependent, making phase data not reproducible (12). Hence, intrinsic tissue 

image contrast, magnetic susceptibility measured from phase data which is local and not 

geometry and orientation dependent. 

Susceptibility-based susceptibility weighted imaging (SWI) uses magnitude and phase 

data and resolves for (the) local magnetic field (13).  SWI has been used in clinical MRI to 

assess traumatic brain injury (TBI), haemorrhagic disorders, multiple sclerosis and other 

neurodegenerative diseases (7). Despite   gaining acceptance in clinics,  SWI is affected 

by geometry and orientation dependence with respect to the main magnetic field (12,13). 

Quantitative susceptibility mapping (QSM), a quantitative extension to SWI solves 
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geometry and orientation dependence and generates magnetic susceptibility maps from 

phase data only (magnitude is used for brain edge information) (12). The QSM maps are 

sensitive to tissue composition and structure and have already found applications in 

measuring iron deposits, depicting traumatic brain injury (TBI), and in neurodegenerative 

diseases such as multiple sclerosis (MS) (12). 

1.1 Magnetic resonance imaging 

Magnetic resonance imaging senses magnetic moment(s) generated by (a) hydrogen (1H) 

nucleus, a single proton with spin and charge (1). (The) Human body has hydrogen atoms 

(fat and water) (1). The spinning protons can be considered as small magnets. When an 

external magnetic field is applied hydrogen atoms align with the external magnetic field  

(14). The precessional frequency of the hydrogen atom is propotional to the magnetic field 

applied and can be described by the Larmor equation as mentioned in Equation (1.1).  

 0Lf Bγ=   (2.1) 

 where Lf  is the Larmor frequency, γ  is the gyromagnetic ratio, and 0B  is the static 

magnetic field. Differences in tissue’s composition causes  hydrogen atoms to resonate at 

different frequencies (12). This is called chemical shift and can be characterized using 

Magnetic Resonance Spectroscopy.   

When an external field is applied protons are aligned with or against the magnetic field and 

generate a net magnetization vector (10). At equilibrium when an external field is applied, 

no signal can be detected from tissue (1). A radiofrequency pulse (RF) pulse is applied to 

perturb the equilibrium and influence the net magnetization vector (10). When (the) RF 

pulse is applied the protons are flipped on an angle called (the) flip angle. With the B0 

applied, the time spins take to return to its equilibrium is called T1 relaxation or spin-lattice 

relaxation. The dephasing happens in (a) transverse plane called T2 relaxation or spin-

spin relaxation. Another basic image contrast is proton density weighted imaging which 

helps to assess the number of protons per volume. Proton density weighted imaging 

cannot delineate the tissues, however have high signals in all tissues (1). T1 and T2 

relaxations are used to exploit the different tissue properties such as fluid appearing dark 

and fat appearing bright on T1-weighted imaging. In T2-weighted imaging both fluid and fat 

appears bright. In proton density weighted imaging fluid appears intermediate and fat 

appears bright. 
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 The time at which spins are back in phase is called echo time (5), TE. The time interval at 

which (the) RF field is applied for proton excitation is repetition time, TR.  

The measured MR signal’s vector is represented in complex expression (14). It is 

quadrature detection, and provides data with (a) 90o phase difference thus forming real 

(referred to as Re-In phase) and imaginary data (referred to as Im-Quadrature phase). The 

magnitude and phase can be described as in the equation (1.2) and (1.3). 

 2 2Re Im ,Mag = +   (2.2) 

 1 Imtan ( ),
Re

Phase −=   (2.3) 

An important step in making image(s) from signal(s) is frequency encoding or phase 

encoding (1). In frequency encoding, while acquiring the signal, the resonant frequency is 

a function of spatial position. In phase encoding the gradient is applied for a specific time 

as simultaneously orthogonal direction is used for frequency encoding. When a gradient is 

applied it affects (the) frequency and phase. When the gradient is switched off the 

frequency will be normal again but a phase shift can be observed. After the frequency and 

phase information is recorded through time and space, analog-to-digital (a) converter 

digitize(s) the signal (10). The signal is then stored in a k-space. (The) k-space is a 

multidimensional grid of complex data. The centre of (the) k-space has low spatial 

frequencies which determine the tissue contrast, and higher spatial frequencies towards 

outer space determine image detail. Slice selective gradients can be applied across (the) 

z-axis, y-axis, and z-axis to generate axial, coronal, and sagittal images respectively (12). 

A uniform homogeneous magnetic field is important as it can affect the quality of (the) 

image(s) (10). There are two types of shimming: active shimming and passive shimming. 

In active shimming current(s) through the coils are used treat any inhomogeneities in the 

field. In passive shimming ferromagnetic materials or metals sheets are used inside the 

magnet to make the field homogeneous. In a scanner there are shim coils, gradient coils, 

radiofrequency coil(s), and patient coils (1). Shim coils are used to improve homogeneity, 

gradient coils are used for imaging, RF coils are used to transmit the B1 field (RF field is 

referred to as B1 field), and patient coils are used to receive MR signal.  
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1.2 Susceptibility Weighted Imaging 

Susceptibility weighted imaging uses T2*‐weighted magnitude image(s) and phase 

image(s) to generate a contrast exploiting (the) tissue’s magnetic susceptibility differences 

(15). (The) Gradient echo sequence was used, and (the) magnitude and (the) filtered 

phase was multiplied (15). SWI can differentiate between diamagnetic and paramagnetic 

tissue composition (13). Diamagnetic materials have negative susceptibility values such as 

calcium and paramagnetic materials have positive susceptibility values such as 

deoxygenated blood (15). 

Phase data contains a lot of information about susceptibility induced change(s) in the local 

field (11,12,15). However, phase processing is very challenging as it is wrapped,  it is local 

and (the) non-local phase needs to be disentangled (16). SWI aims to achieve a qualitative 

enhancement of magnitude images using information from (the) signal phase.  In SWI, to 

process (the) phase a high pass filter is used to remove lower frequency components (17) 

Figure 1.1. Then a phase mask is created (a binary distribution of 0’s and 1’s), and is 

multiplied to (the) magnitude image (15). Susceptibility maps (are) generated after 

combining (the) filtered phase image(s) and (the) magnitude (15). SWI provides high 

resolution delineation of cerebral venous architecture and are accepted clinically to identify 

haemorrhages and calcification in neurovascular and neurodegenerative disease(s) (18). 

On the other hand QSM produces quantitative maps of magnetic susceptibility, a physical 

property of tissue by solving inverse problem(s). 

 As compared to SWI, a high read-out bandwidth (>62 kHz) and high spatial resolution 

(lower voxel size) is required for QSM to reduce intravoxel dephasing and subsequent 

signal loss (13). Duyn et al. has shown that at high fields phase-based contrast(s) provide 

excellent contrast-to-noise ratio(s) and improved resolution (11). Therefore, at 7T (a) 

higher resolution (lower voxel size) produces an improved CNR to delineate anatomical 

structures.  Table 1.1 shows examples of SWI and QSM protocols. Voxels in SWI and 

QSM are isotropic. 
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1.3 Quantitative Susceptibility Mapping 

The main goal of computing susceptibility maps is to ascertain the sources causing field 

perturbation. The field perturbation introduced by biological tissues may aid in 

Figure 1.1 Flowcharts of processing steps of SWI (a) and QSM (b). (a) SWI combines both the magnitude 
and a filtered phase map in a multiplicative relationship to enhance image contrast(s). Minimum intensity 
projection (MIP) is commonly applied to highlight the veins. SWI flowchart adapted from Reichenbach et al. 
(b) There are two major steps involved in QSM: filtering (the) background phase and solving an inverse 
problem. 

Table 1.1 Examples of SWI and QSM protocoles for the brain. Source: (13)  
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understanding tissue composition and structure. Quantitative susceptibility mapping is a 

technique which resolves the local nuclear magnetic resonance (NMR) of the tissues with 

varying magnetic susceptibility (10). Magnetic susceptibility can be defined as the degree 

of magnetization an object experiences when placed in an external magnetic field (10). 

Magnetic susceptibility can be defined as (19): 

 ,M Hχ=   (2.4) 

where M is the induced magnetization,  H is the applied magnetic field described in Am-

1,  χ  is the magnetic susceptibility and it is a dimensionless quantity. When an external 

magnetic field oB is applied in z-direction to a sample with a magnetic susceptibility ( )rχ , 

the induced magnetization at any point r  can be written as (19): 
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Equation (1.5) can be written as a convolution between ( )zM r  and dipole response ( )G r : 

 0( ) ( ) ( ),z zB r M r G rµ∆ = ∗   (2.6) 

where ( )G r  is the Green’s function (20): 
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Lastly, change in (the) measured field is expressed using (a) forward modelling process is 

defined as: 

 { }1
0( ) ( ) ( ) ,zB r B FT k G kχ−∆ = ⋅ ⋅   (2.8) 

where, ( )kχ  is the Fourier transform of ( )rχ (12,19). 

The notation can also be expressed as  (13): 

   0 . * ,B B dχ∆ =measured   (2.9) 

where  B∆ measured  is measured field, 0 B is the main field strength, χ  is the magnetic 

susceptibility and d  is the convolution kernel. Magnetic susceptibility can be calculated by 

performing dipole deconvolution of the signal (16). All biological components such as iron, 

myelin, and calcium induce a specific magnetic field perturbation at (a) microscopic level 

which is reflected in the measured field (Figure 1.1). The measured field consists of field 
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inhomogeneities which are local and nonlocal. Nonlocal effects include inhomogeneities in 

the main magnetic field due to air-tissue interface(s), chemical shift(s), imperfect shimming 

or eddy currents (12). Local effects in the measured field include field(s) induced by iron, 

myelin or calcifications (10). 

 

 

 

Gradient echo T2* maps are sensitive to changes induced in the uniform magnetic field 

by water, myelin, iron or calcium content in tissue (12). Transverse relaxation (T2*) in 

gradient recalled sequence(s) is a combination of T2 relaxation and relaxation caused by 

inhomogeneities and the relationship can be defined as (5): 

 * '
2 2 2

1 1 1 ,
T T T

= +   (2.10) 

where '
2

1
inhoB

T
γ= ∆  can be described as: 

 *
2 2

1 1    ,
  inhoB
T T

γ= + ∆   (2.11) 

where γ  is the gyromagnetic ratio, T2 is the transverse magnetisation of tissue  and 

inhoB∆  is the effect due to magnetic field inhomogeneities across an oxel. (The) Spin echo 

sequence uses (a) 180o pulse which removes (the) T2* dephasing effect, whereas (the) 

gradient recalled echo (GRE) does not use (the) 180o pulse and contains T2* decay 

information susceptible to static field inhomogeneities (10). This information is mirrored in 

(the) phase data. The pulse sequence diagram for gradient recalled echo sequence(s) is 

shown in Figure 1.2. In (the) GRE sequence the radiofrequency (RF) pulse applied is less 

than 90o (10). The slice select gradient is applied together with the RF pulse. Frequency 

encoding is used in a negative direction to dephase protons and in a positive direction to 

rephase protons as a read out gradient. The Dephasing and rephasing gradient(s) in the 

transverse plane generates the gradient echo. When the scanner acquires the signal it is 

referred to as a readout (10). The Gradient recalled echo sequence uses low flip angles 

which makes it faster in acquisition than the spin echo (10). The time between the RF 

pulse application and signal acquisition is called the echo time TE.  

Figure 1.2 Susceptibility source and MR signal phase. 
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The phase data captures information on the induced field change (10) . The phase (ϕ ) 

reflecting inhomogeneities for echo time (TE) is defined as: 

   . . ,B TEϕ γ= − ∆  (2.12) 

where γ  is the gyromagnetic ratio and B∆  is the effect due to magnetic field 

inhomogeneities. The susceptibility effects captured in the induced field can then be 

calculated from equation(1.9). However, computing susceptibility from the equation is an 

ill-posed inverse problem as inverse filtering will cause streaking artefacts in the magnetic 

susceptibility maps due to zeros present on dipole at magic angle 54.7o. (12) Methods to 

improve streaking artefacts are discussed in section 1.3.3. 

 

1.4 QSM at (an) ultra-high field 

QSM is a phase imaging technique (21). The tissue-specific magnetic field perturbation 

information used to calculate susceptibility maps is reflected in phase data (21). Duyn et 

al. has demonstrated that gradient-echo sequence at 7.0 tesla (7T) generates a strong 

phase contrast within and between gray and white matter (11). The contrast is attributed to 

local field variations in magnetic susceptibility which is potentially mainly due to iron 

deposits. It infers that local field variations amplifies at ultra-high field(s) thus generating 

strong phase contrasts (10). 

Figure 1.3 2D Pulse sequence diagram for gradient recalled echo. RF is the radio frequency pulse, SLICE is 
the slice selection gradient, PHASE is the phase encoding gradient, READOUT is the readout gradient, ADC 
is the analog-to-digital converter, and SIGNAL is the signal acquired. The amplitude of the phase encoding 
gradient is changed to obtain different k-space lines. 
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A study ha(s) shown T2*-weighted images at 7T are more sensitive to susceptibility 

contrast(s) as compared to 1.5T and can effectively divulge the details of microvasculature 

for human brain tumours (22). It is also demonstrated that 7T is more sensitive to 

anatomical details as compared to 3T (23). 7T also provides a higher sensitivity to 

susceptibility-induced variations with (a) high SNR and high resolution (24). Therefore, 

susceptibility maps calculated from phase data acquired at ultra-high field(s) become more 

informative as the maps are more sensitive to human brain structures as compared to 

lower fields. In this thesis mainly the motivation behind using the data acquired from ultra-

high field scanner(s) (7T) was high sensitivity to susceptibility-induced variations, high 

SNR, and high resolution. 

1.5 QSM processing  

GRE T2* weighted sequence(s) is (are) used to generate QSM maps (10). QSM is a post-

processing technique and susceptibility maps can be generated by different methods (12). 

In a basic processing pipeline (the) GRE phase and magnitude data is used. Mainly, the 

susceptibility maps are influenced by (the) GRE phase data and thus categorized as 

phase imaging method (16). A simple QSM pipeline shown in Figure 1.4  involved mask 

generation(s), phase unwrapping, background field removal (tissue phase) and dipole 

inversion(s) (susceptibility map(s)). Complex data is acquired from the scanner and then 

separated into phase and magnitude (16). The complex data can be combined with the in-

built scanner coil combination method or can be combined outside the scanner. Magnitude 

data can be used to generate mask(s), however it is also plausible to use phase 

information for mask generation (10). (The) Mask is used to segment the brain for 

background phase removal and susceptibility map generation. Then phase data is 

processed to unwrap the phase and remove the background phase to compute tissue 

phase (13). It is also plausible to perform phase unwrapping and background phase 

removal in one step to obtain tissue phase(16). Finally, susceptibility map(s) is (are) 

generated from (the) tissue phase. Phase processing, brain mask generation and dipole 

inversion are the main steps in the QSM pipeline and are discussed in the following sub-

sections. 
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1.5.1 Phase processing  

Since phase data depends on the bulk susceptibilities of different tissues, phase 

processing is a crucial step in (the) QSM pipeline (25). Phase processing includes phase 

unwrapping and background phase removal (10). Phase wrapping occurs because of the 

phase measurement between +𝜋𝜋 to –𝜋𝜋. Numerous methods have been proposed for 

phase unwrapping if implemented separately from background phase removal (12). Phase 

unwrapping algorithms can be classified into spatial and temporal domains. In the spatial 

phase, unwrapping (of) the phase difference between two neighbouring voxels is 

calculated, whereas in the temporal phase unwrapping (the) phase difference between 

echo times is utilized. Several spatial phase unwrapping methods are available (12). A 

region growing spatial unwrapping path-based algorithm uses separate quality maps for 

seed finding and unwrapping, and the quality maps include the information from both (the) 

magnitude and (the) phase (26). Unwrapping is performed simultaneously in a number of 

regions, and the seed(s) in the region grow outwardly (27). The limitation of this region 

growing method is that unwrapping depends on the initial seed point. The initial seed 

points are supposed to be in locally smooth regions, otherwise it affects the phase 

unwrapping. Another three-dimensional quality map based unwrapping technique unwraps 

the most reliable voxels first and the least voxels last (28). This method unwraps (the) 

highest quality regions first and (the) lowest quality regions last. This technique relies on of 

quality maps for unwrapping and if noisy voxels are chosen as high quality voxels, it can 

influence unwrapping.  An N-dimensional phase unwrapping method can unwrap the 

Figure 1.4 Schematic illustration of the general QSM pipeline used to obtain susceptibility maps from raw 

phase images acquired using gradient recalled echo magnetic resonance imaging sequences.  
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phase data of any dimension with an optimized cost function (29). It has been 

implemented for 2D and 3D MRI data but can be implemented to any number of 

dimensions. This method has been used in echo planar imaging (EPI) unwarping and 

rapid, automated shimming applications in functional magnetic resonance imaging (fMRI). 

The optimization method used in this approach is stuck in the local minimum after each 

iteration. Therefore, this method being fast and easy to implement does not promise the 

best solution. Phase unwrapping can also be performed using Laplacian-based methods 

(30). In Laplacian-based methods, the Laplacian operator uses only trigonometric 

functions of the phase and removes the components which are not part of the brain 

following spherical mean value filtering (SMV) for background phase removal (31). This 

method is fast and robust but background phase removal could not be performed 

efficiently. Another Laplacian based method uses phase Laplacian outside the brain with 

L2 norm minimisation (30). This fast and easy to implement method achieved phase 

unwrapping and background phase removal effectively in one step. The spatial 

unwrapping method fails to work effectively when the phase difference between adjacent 

voxels is greater than  𝜋𝜋. Temporal unwrapping has an advantage over spatial unwrapping 

in that it works even when the phase difference between adjacent voxels is greater than  𝜋𝜋 

(12). The Temporal domain is useful in  multi echo data where voxel-by-voxel unwrapping 

is performed with short echo spacing (32) or unequal echo spacing (33).  The Voxel-by-

voxel unwrapping method catalytic multi echo phase unwrapping scheme (CAMPUS) uses 

the information in the multi echo gradient echo sequence with short interecho spacing (32). 

The CAMPUS algorithm performed better than PhUN and the branch cut algorithm, 

however the flow induced phase contributions can introduce errors in unwrapping as 

shown in Figure 1.5 (4c-white arrow). Another voxel-by-voxel unwrapping method 

unwrapping multi‐echo phase images with irregular echo spacings (UMPIRE) uses 

unequal echo spacing so that no wraps can occur between the echo time and  removing 

(removes) any phase offsets computed. This method is fast and robust but it does not 

when bipolar compensation is used. Ineffective phase unwrapping or any additional noise 

originated at this step will be propagated in the QSM pipeline. Therefore, phase 

unwrapping is a critical step in the QSM pipeline as it determines the quality of 

susceptibility maps. 
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(The) Background field consists of nonlocal and local phase components (10) and the 

Background field removal methods remove nonlocal field inhomogeneities. Various 

methods have been suggested to remove the background field before or after phase 

unwrapping (12). A k-space high pass filtering preserves local phase information but might 

not be able to remove the background field effectively with a small filter size whereas 

employing a large filter size can fail to detect details in the phase information for large 

structures (34). Homodyne filtering can also be used to remove the background phase, but 

using a small filter size might not remove the background phase completely and using a 

Figure 1.5 Comparison of unwrapped phase images by (the) Catalytic multiecho phase unwrapping 

Scheme (CAMPUS), phase unwrapping (PhUN), and the branch cut algorithms (of) four normal volunteers. 

To avoid the cusp artefact observed in the scanner-combined phase images, these (phase) images were 

derived from (the) complex division of echo 10 by echo 1 to give an effective echo time of 23.67ms. The 

White arrow in (c-4) points to a few voxels incorrectly unwrapped by CAMPUS due to the violation of slow 

flow assumption. The black arrows in row (d) and (e) points to areas where PhUN and the branch cut 

algorithms failed to unwrap. Note that the phase images were scaled to the full gray scale range for better 

visualization. Source:(32) 
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large filter size may lead to signal loss (15,35,36). Another method uses the Fourier 

transform based field estimation method to evaluate geometry-induced field changes 

introduced by air-tissue interface (35). This method is very computationally intensive and 

hence the processing time is very long. A polynomial fitting is also used to remove the 

background field that does not require phase unwrapping or masking (37). However, for 

this method if moving window analytical estimation is not performed correctly it can 

generate artefacts. Projection onto dipole fields (PDF) is considered as a reliable method 

which is based on the assumption that the background field generated by the background 

field dipoles is a harmonic function and the local field is nonharmonic (38). The same 

assumption is exploited in a sophisticated harmonic artefact reduction for(of) phase data 

(SHARP), using the spherical mean value property (39). There are two improved versions 

of SHARP available: regularization enabled SHARP (RESHARP) and the variable radius 

of the spherical kernel at the brain boundary (V-SHARP). RESHARP employs Tikhonov 

regularization at the deconvolution stage of spherical mean value filtering to reduce noise 

levels (40), while SHARP uses truncated single value decomposition (SVD). It was shown 

in the results that truncated SVD generates more Gibbs artefacts than Tikhonov 

regularization (40,41). V-SHARP uses a spherical filter with a different radius, and it 

reduced artefacts close to boundaries as the filter size is small (and) close to boundaries 

(41). Our work implemented iterative harmonic phase removal using the Laplacian 

operator (iHARPERELLA), an integrated method to unwrap the phase and effectively 

remove the background (30). Figure 1.6 shows that consistent results can be obtained 

from HARPERELLA, PDF and V-SHARP. iHARPERELLA is easy to implement, fast, 

robust and accurate (30). 
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1.5.2 Brain masks 

 Artefacts from the noisy regions such as air-tissue interfaces impacts the quality of 

susceptibility maps (12,15,35). A study has also revealed that areas close to the skull and 

background field from blood flow limited the accuracy of susceptibility maps (42). The 

background field induced by artefacts can be reduced by masking such regions and 

managing them separately (43). Therefore, generating masks is a crucial step as any 

errors from local field variations can affect the quality of susceptibility maps. A study 

demonstrated that masking out noisy regions can reduce artefacts and improve 

susceptibility maps when a haemorrhage is present (44). It infers that masking plays an 

Figure 1.6 Comparison of the background-removed phase and magnetic susceptibility obtained using 

different phase processing methods. (A, B) Tissue phase images obtained using HARPERELLA [HARmonic 

(background) PhasE REmovaL using the LAplacian operator]. (C, D) Tissue phase images obtained using 

path-based phase unwrapping and V-SHARP (sophisticated harmonic artefact reduction for phase data with 

varying spherical kernel sizes). (E, F) Tissue phase images obtained using path-based phase unwrapping 

and PDF (projection onto dipole fields). (G, H) The Phase difference between the results obtained with 

HARPERELLA and path-based phase unwrapping plus PDF. (I, J) Susceptibility maps derived from 

HARPERELLA-processed phase images. (K, L) Susceptibility maps derived from phase images obtained 

using path-based phase unwrapping and V-SHARP. (M, N) Susceptibility maps derived from phase images 

obtained using path-based phase unwrapping and PDF. (O, P) The Difference between the susceptibility 

maps obtained with HARPERELLA and path-based phase unwrapping plus PDF. Source:(30) 
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important role in computing the susceptibility maps specifically near air-tissue interfaces or 

when motion is present. 

Brain masking is defined as the region with a spatial distribution of 1’s and 0’s (12). The 

area of interest in masking is represented by 1’s and the region outside the area of interest 

is represented by 0’s. Masks can be produced by thresholding phase data or magnitude 

data (26,45). Masks can be a whole brain mask or a structure specific mask. Masks can 

be generated manually using a visualization software such as MIPAV (46) and carefully 

referring to an atlas. In our work, while performing manual segmentation for the specific 

regions such as caudate, putamen, gray matter or white matter we used an atlas for 

anatomical reference (47). Masks can also be generated automatically using the Brain 

extraction tool in FSL (FMRIB, University of Oxford) or FreeSurfer (29,48). One important 

consideration is the registration of data to the FSL or Freesurface while extracting the 

labels. Although Freesurfer is completely automated, manual editing can be performed at 

particular steps to ensure the alignment of labels (48). Masks can also be used to perform 

computations such as a frequency shift or susceptibility value calculation for the specific 

region.  

1.5.3 Dipole inversion  

Magnetization at the voxel level can be signified as a magnetic dipole and thus the dipole 

model is assumed to be representative of the influences within a voxel (49).The 

assumption has been tested in phantom studies (50–52). The dipole approximation is 

confirmed to work in high iron brain regions (53). The iron concentration showed a 

correlation with susceptibility. However, it remains unclear whether the dipole 

approximation holds  inhomogeneous tissue (WM, GM) (12,54,55).  The local field is the 

convolution of susceptibility sources with the unit dipole at any point the space (12). 

Therefore, magnetic susceptibility can be calculated by deconvolving the local magnetic 

field with the magnetic field generated by a unit dipole (Equation(1.9)). A Three-

dimensional susceptibility matrix was Fourier transformed and multiplied element-by-

element  (56). Using the Fourier transformation it was faster to compute magnetic 

susceptibility as compared to integral-based methods (56). Moreover, complex and non-

local expressions become simple and local when computed in the Fourier domain (20).  

The 3D deconvolution is an ill-posed inverse problem due to the presence of zeros on 

the edges of the dipole and division by zeros would cause streaking artefacts which is the 

biggest challenge for QSM algorithms as shown in Figure 1.7 (12). Several methods have 
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been proposed to solve this ill-posed inverse problem and reduce these steaking artefacts 

(12). The QSM algorithms can be classified into single orientation based or multiple 

orientation based (21). Several single orientation based methods have been proposed. 

One way of reducing streaking artefacts is through regularization techniques. 

Regularization techniques use prior information to solve ill-posed inverse problems (51). 

The prior information can be extracted from the anatomy provided by an MRI. 

Regularization techniques have been used to improve the streaking artefacts such as ℓ1- 

regularized susceptibility mapping (57). A different Bayesian regularization approach uses 

tissue priors from magnitude images to fill the missing information causing artefacts (54). 

Another tissue prior method which uses information from magnitude and phase images to 

improve the underestimation of susceptibility distribution is Morphology Enabled Dipole 

Inversion (MEDI) (50,58). The limitation of tissue prior methods is its reliance on accurate 

prior information. An iterative orthogonal and right triangular decomposition (iLSQR) 

method uses the derivative relationship to evaluate susceptibility maps (59). The LSQR is 

based on the bidiagonalization described by Golub and Kahan (60). It is shown that the 

LSQR  generated better results if the problem is ill-conditioned as compared to conjugate-

gradient algorithm (61). This method is fast, robust and easy to implement, and has shown 

significant improvement over streaking artefacts. The Threshold-based k-space (TKD) 

method applies the threshold in the k-space to reduce the streaking artefacts caused by 

the zeros present at the magic angle (62). The TKD approach relies on the value of the 

threshold chosen. If the value is too low the streaking artefacts will affect the quality of 

susceptibility maps, and if the value is too high the susceptibility maps will show less 

contrast (62). We have used Threshold-based k-space (TKD) in our work which includes 

information from different angles (63). It is demonstrated that TKD information from two or 

three orientations can improve the quality of susceptibility maps as compared to a single 

orientation. This method is simple and fast to implement and has also shown a reduction in 

artefacts (63). 
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When data is acquired from multiple orientations, oversampling fills the null regions at the 

magic angle (54.70) (Figure 1.8) (64). Hence, streaking artefacts can be removed with 

multiple orientation acquisition. However, one major limitation of multiple orientation 

acquisition is the limited movement of the human head in the scanner which makes it an 

impractical approach. The Calculation of susceptibility through multiple orientation 

sampling (COSMOS) is considered to be a gold standard as it generates very high quality 

susceptibility maps but it requires a minimum of 12 orientations data (64).  

 

 

 

 

1.6 Compartment modelling using multiple echo time GRE-MRI phase 
data  

GRE data has improved gray-white matter contrast by many times in magnitude and 

phase (11). The contrast may possibly have originated from deoxyhemoglobin blood 

(11,65), myelin (11,66), and iron (11,67,68). Several studies have suggested that contrast 

Figure 1.7 Susceptibility map with streaking artefacts (a) and without streaking artefacts (b). 

Figure 1.8 (a) The object is scanned at the first position. Then the object is rotated around the x-axis. (b) The 

scan is repeated at the second orientation. The rotation-scanning process repeats until the required number 

of rotations is reached. Subsequent rotations are not shown here. (c) The dipole response kernel function in 

the Fourier domain (fixed with respect to the object) has zeros located on a pair of cone surfaces (the green 

pair for the first sampling and the blue pair for the second sampling). The presence of these zeros makes the 

inversion extremely susceptible to noise and they need to be avoided when possible. Sampling from two 

orientations is insufficient because these two pairs of cone surfaces will still intercept, resulting in lines 

of common zeros. Sampling from an appropriate third angle can eliminate all the common zeros in the dipole 

kernels except the origin, which only defines a constant offset but does not change the relative susceptibility 

difference between tissues in the image. Source:(64) 
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in GRE magnitude and phase images is also related to the orientation and global geometry 

of white matter with respect to the main magnetic field at subcellular level (69–73). Another 

study has demonstrated that myelin content and microstructure affects T2* maps in white 

matter of the human brain at an ultra-high field (74). Moreover, it is also seen that tissue 

constituents like iron-rich oligodendrocytes influence the MR phase data in white matter 

(75).  

 Multi-echo GRE sequences have been used to study T2* decay in white matter across 

echo time (76–78). Gradient echo multi echo sequences have been used to analyse T2* 

decay as it is considered sensitive to capture the water exchange effects at shorter echoes 

in white matter. Studies have successfully used T2* decay to evaluate myelin water 

fraction (MWF) with a threepool model across echo time at 3T (76,79). The three pool 

model consists of myelin water pool (my), myelinated axon water pool (ma), and a mixed 

water pool (mx) as shown in Equation(1.13). The three pool model measured T2* decay 

within seven parameters. Pool specific T2* ranges were fixed for my, ma and mx pools. A 

number of iterations were performed to achieve optimum T2* endpoints with the minimum 

error between fitting and the measured signal. 

 
* * *
2, 2, 2,( ) ,my ma mx

t t t
T T T

my ma mx blS t A e A e A e A
− − −

= + + +   (2.13) 

Where S is the magnitude signal as a function of time, Amy, Ama, and Amx represent the 

amplitude of the signals arising from three water pools , Abl represents any residual 

baseline signal, and T2*my, T2*ma, T2*mx are the relaxation rate for three water pools. The 

limitation of the model was low SNR in MRI data. An improved model was proposed by 

Gelderen et al. (Equation(1.14)). The study has also used a three-compartment model and 

has indicated that the frequency shift associated with each compartment is  induced by 

varied myelin structure susceptibilities. It is shown that field strength affects SNR and thus 

multi-compartment model values (78) in white matter.  

 
* * *
2,1 1 2,2 2,3 32 2

1 2 3( ) ,tR i f t tR tR i f tS t A e A e A eπ π− − − − −= + +   (2.14) 

Where S is the magnitude signal as a function of time,  Ai is the amplitude, fi the off-

resonance frequency (in Hz) and R*2,i the relaxation rate of component i (R*2=1/T2*) . The 

multi-compartment, when resolved at the voxel level, provides the compartment specific 

(axonal, myelin and extracellular) distinct volume, frequency shifts, and T2* values in white 

matter. This study has used single image acquisition which can increase the scan time and 

single image acquisitions are more prone to motion artefacts. Sati et al. have investigated 
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how orientation can affect frequency shifts for compartments (80). The model used can be 

described as: 

 
*
2,3 2

1
( ) ,i itR jt f

ii
S t Ae π− − ∆

=
=∑   (2.15) 

where S(t) is the complex signal as function of time, j is the imaginary unit, Ai is the 

amplitude, Δfi the frequency shift with respect to the local mean resonance frequency as 

determined by subtracting the low-pass filtered phase, R*2,i  the relaxation rate of the 

component i. This model considered two complex valued compartments and one real-

valued compartment. The study concluded that frequency shift compartments are affected 

by the magnetic field effect induced by myelin, axonal, and interstitial water with respect to 

the main magnetic field. Another complex value based three compartment method was 

proposed which did not require the background phase removal method (81). This method 

fits complex data to the complex model. The model is as follows: 

 
* * *
2, 02, 2,( 1/ 2 ) (2 )( 1/ 2 ) ( 1/ 2 )( ) ( ) ,my my bgax ax ex exT i f t i f t iT i f t T i f t

my ax exS t A e A e A e eπ π ϕπ π− + ∆ ∆ −− + ∆ − + ∆= + +   (2.16) 

where, An is the amplitude, T2*,n is the relaxation time,  Δfn is the frequency shift of 

my(myelin), ax(axonal), and ex(extracellular), Δfbg is a background frequency offset term 

that originates from the macroscopic (nonlocal) field inhomogeneity, and 𝜑𝜑0 is the phase 

offset. The method is robust and the results obtained from this method were more stable 

as compared to previous methods. Considering the anisotropic nature of myelin, 

Sukstanskii et al. proposed a new three-compartment model which accounts for the 

orientation effects  of myelinated axons (82). The proposed three compartments are: 

axonal, myelin and extracellular, in which axonal and myelin water frequency shifts are 

affected by anisotropic magnetic susceptibility, and myelin water is non-monoexponential 

(82).  

Multi-compartment modelling has been applied to assess the demyelination in multiple 

sclerosis. A reduction or complete loss of myelin water has been observed in chronic 

demyelinated MS lesions (83,84). Since the three water pools are associated with 

particular T2*, multi-compartment fitting of T2* decay (including frequency shift) could 

provide information about MS-related abnormalities.  A study in MS patients has 

implemented a three component model with the following equation (85): 

 
* * *
2,1 1 2,2 2 2,3 (2 )( 1/ 2 ) ( 1/ 2 ) ( 1/ )

1 2 3( ) ,gi f tT i f t T i f t T tS A e A e A e e π ϕπ π +− + ∆ − + ∆ −= + +   (2.17) 
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where, An is the amplitude, T*2,n is the relaxation time, and Δfn is the frequency shift of 

the component n, which is defined relative to the interstitial water frequency fg , and 𝜑𝜑 is 

the phase offset. This study established that the three compartment model could 

characterize myelin loss based on the frequency shifts. The results exhibited a good 

correspondence with clinical findings. Furthermore, performing myelin water imaging 

(MWI) at 7T brings additional high SNR gain which is important for in depth myelin 

assessment (86). 

This suggests that thecomposition and arrangement of microstructure influences the 

GRE signal. The compartmentalization of the GRE signal over the echo time may provide 

a new diagnostic tool to investigate microstructure on the gradient echo contrast (87). 

However, how tissue composition and orientation influences  gray matter were not studied 

and it is shown that tissue composition influences susceptibility maps such as iron 

deposits (53). This thesis focuses on analysing tissue structure influences in gray matter 

regions with a multi-compartment model. QSM has been seen as a promising measure for 

tissue assessment as compared to phase mapping (88). Therefore, we decided to perform 

compartment modelling on susceptibility values. The phase unwrapping, background 

phase removal and susceptibility map calculation algorithms were available in STI 

Suitev2.0 (30). STI Suitev2.0 is fast and easy to implement. Chapter 3 aims at the multi-

exponential fitting of GRE data in human brain regions across echo time to quantify the 

tissue. 

1.7 Utility of ultra-high field MRI 

Anatomical structural details with high resolution has always been of great interest in both 

clinics and research MRIs. T1, T2, and T2* sequences have been widely implemented on 

1.5T and 3T (2,5,83,89). With the availability of ultra-high field scanners, it is possible to 

obtain a high SNR. Duyn et al. has also demonstrated that the SNR of the GRE phase 

signal is improved as the field strength is increased (11).  

It is demonstrated that  multi-compartment analysis requires a high SNR (79). Geldren 

et al. has demonstrated a multi-compartment fitting of T2* decay at 3T and 7T. The study 

showed that compartments at 3T were less separable as compared to 7T. The potential 

reason could be the lower SNR at 3T (78). 19 echoes were acquired for the study with TE1 

= 2.7ms and an echo spacing of 2.35ms. The choice of echo time was made to detect 

slow water exchange in white matter in T2* mapping (74). It is not evaluated yet how SNR 

affects gray matter compartments for different field strengths. We extended our work from 
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Chapter 3 to analyse multi-compartment fittings at 3T and 7T in Chapter 5 to assess 

frequency maps over echo time for both gray and white matter. For this study frequency 

shift maps were computed. Frequency shift maps can be computed by scaling multiple 

echo phase data with respective echo time but we calculated frequency maps from 

susceptibility maps. A recent study has shown that frequency maps when calculated from 

susceptibility maps have reduced the effect of local field inhomogeneities effect (90). 

Therefore, in Chapter 5 frequency maps assessed are computed from susceptibility maps. 

Cronin et al. has proposed that methodological differences can affect susceptibility 

maps across echo time (91). He suggested that Laplacian unwrapping fails to perform 

around strong susceptibility sources like cerebral microbleeds (CMBs). It is still not clear 

how different processing pipelines can affect compartment modelling. Therefore, we 

decided to use two different methods to analyse any methodological effects on multi-

compartment modelling. Different phase processing pipelines have been discussed in 

section 1.3.1. An integrated Laplacian based method for phase and unwrapping and 

background phase removal (iHARPERELLA) (30), and path based phase unwrapping 

method were used with iLSQR (61) for susceptibility map calculation at the end. All of the 

algorithms are available in STI Suitev2.0.   

1.8 GRE in cerebral cortex 

As discussed in section 1.3.3, orientation plays an important role in the computation of 

susceptibility maps (64). Although multiple orientation yields good quality susceptibility 

maps,  it is still not feasible to achieve the desired human head rotations in the scanner. 

Several single orientation methods have been proposed to reduce the streaking artefacts 

caused by the null signal region (see section 1.3.3) (12). Sati et al. has shown that the 

orientation with respect to the main magnetic field influences compartment values (80).  

However the impact of the orientation in compartments has not been studied for gray 

matter.  

The orientation effects in gray matter and white matter were studied using two different 

methods (threshold-based k-space (TKD) and iLSQR) (61,62). The threshold-based k-

space (TKD) method as discussed in section 1.3.3 uses two or three orientations and 

improves the susceptibility maps as compared to the single orientation method (62), while 

iLSQR is a single orientation method which removes streaking artefacts significantly (30). 

Frequency shifts were computed from the susceptibility maps computed from TKD and 

iLSQR  it is suggested by Wu et al. that this method reduces nonlocal effects (90). 
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It is shown that contrast in cortical gray matter is attributed to layer-specific iron and 

myelin contributions (92). Studies have shown that cortical regions have specific T1,T1/T2 

weighted maps (93–95). The Use of T2*-weighted maps can indicate  higher sensitivity in 

assessing tissue architecture and the region-specific presence of iron and myelin at an 

ultra-high field (11,92,96). A study has shown that T2*-weighted mapping can potentially 

explain the tissue arrangement but the application was limited as lower brain regions had 

absent or reduced T2* values (5). Frequency shifts computed from multi-compartment 

modelling have not been assessed in cortical regions. Frequency shift maps are sensitive 

to any tissue variations and compositions (80). In Chapter 6 a frequency shift based 

cortical region analysis is performed. 

  

1.9 Applications of QSM  

1.9.1 Quantification of iron deposits  

Iron is found to be the main source of contrast in QSM (53). There are two types of iron 

present in the brain heme iron (hemoglobin and enzymes in the blood pool) and non-heme 

iron (in parenchyma) (65,97). The difference between heme and non-heme is the 

presence and absence of oxygen. It is considered that in deep grey matter regions the 

main source of phase contrast is the iron content of the tissue (65). The susceptibility 

source of tissue iron is mainly stored in ferritin macromolecules (98). The ferritin is 

paramagnetic and increases the bulk magnetic susceptibility of the tissue (99). It is also 

suggested in a study that the main paramagnetic contribution in grey matter is from Ferritin 

bound iron (53,98). 

Chemical iron concentration and bulk magnetic susceptibility are found to be linearly 

correlated as shown in Figure 1.9. Therefore, iron deposits show a higher correspondence 

to susceptibility. A higher correlation is found for deep grey matter structures in contrast 

with white matter and the possible reason could be the presence of larger iron 

concentrations in grey matter structures (53). QSM provide maps of bulk magnetic 

susceptibility of local tissue variations mainly contributed by paramagnetic iron in grey 

matter (39).In white matter structures QSM based iron measurements become less 

sensitive and more difficult due to the presence of diamagnetic myelinated fibres (53).  

Numerous methods have been proposed to identify and assess brain iron (65). This non-

invasive technique holds great promise to assess increased iron deposits that are 

https://www.sciencedirect.com/topics/medicine-and-dentistry/hemoglobin
https://www.sciencedirect.com/topics/neuroscience/enzymes
https://www.sciencedirect.com/topics/medicine-and-dentistry/parenchyma
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associated to various neurological disorders such as Alzheimer’s disease, Parkinson’s 

disease, and multiple sclerosis (100,101). 

 

 

Iron accumulation increases over the life span and hence the mean susceptibilities. Figure 

1.10 shows that QSM is sensitive to detect the changes in age-related iron deposition with 

two different methods (102). Susceptibility values for caudate, putamen, substantia nigra, 

red nucleus, and globus pallidus are higher in elderly participants as compared to young 

participants, however it is not true for frontal white matter, thalamus and dentate nucleus. It 

can therefore be deduced that the susceptibility measure can estimate any age-related 

variations in iron distribution for most of the grey matter regions.  

Figure 1.9 Correlation of bulk magnetic susceptibility with measured iron concentration. The line represents 

the regression of all data points and the dotted lines indicate the 95% confidence intervals. Source:(53) 
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1.9.2 Traumatic brain injury 

QSM is sensitive to the paramagnetic property of deoxyhaemoglobin venous abnormality 

in Traumatic brain injury (TBI) (16,103). The Phase difference between venous blood spins 

Figure 1.10 Mean ± SEM of average susceptibility in ppm computed by the two methods (ℓ1-regularized 

QSM, top; ℓ2-regularized QSM, bottom) for each ROI in the young and elderly groups. Source: (102) and 

LEM means standard error from the mean.  



56 
 

and tissue spins provides frequency shifts with a higher sensitivity to micro-haemorrhages.  

Figure 1.11 shows the susceptibility weighted imaging map for a severe TBI case. QSM  

can further reduce the blooming artefacts with more sensitivity to small vessels as QSM is 

not geometry dependent (13). 

 

1.9.3 Multiple Sclerosis 

QSM is sensitive to the relaxation rate R2*=1/T2* of the tissue and hence may reflect tissue 

abnormalities (15). The Contrast in QSM maps is contributed to by paramagnetic iron and 

diamagnetic myelin (53,88). In multiple sclerosis (MS) a substantial increase in iron and 

demyelination in white matter has been observed (105). Since QSM maps are influenced 

by paramagnetic (iron) and diamagnetic (myelin) constituents in tissues, potentially QSM 

maps can assess the iron accumulation or demyelination in MS.  Figure 1.12 shows R2* 

and QSM maps in a healthy control and a MS patient. An increased intensity can be seen 

on susceptibility maps in the basal ganglia region in a MS patient. 

Figure 1.11 A Susceptibility map of a sample severe traumatic brain injury case. Each image represents a 

slab 8 mm thick after maximal intensity projection across four slices, each 2 mm thick. Left and right images 

show different levels of the same brain. Cerebral microbleeds (solid arrows) demonstrate much brighter 

signasl than surrounding veins (dashed arrows) and brain tissue. Source:(104) 
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1.9.4 Brain Tumour 

QSM can differentiate between tumor-related calcification and blood products (106). It has 

also been found to be sensitive to glioblastoma and glioblastoma with oligodendroglial 

components (106). Figure 1.13 shows images of a glioblastoma patient with 

oligodendroglial components. Figure 1.13(j) shows a hyper intense region indicating blood 

components and a hypo intense region representing calcification. 

Figure 1.12 Representative R2* maps (top row) and quantitative susceptibility maps (bottom row) of two 29-

year-old individuals, a healthy control subject and a MS patient. Note increased (more paramagnetic) 

susceptibility in the basal ganglia in the MS patient. Differences are most evident in the putamen (arrow, 

0.049 vs 0.092 ppm). Image window settings were identical: R2* mapping, from 0 (black) to 40 sec−1(white); 

QSM, from −0.1 (black) to 0.25 ppm (white). Source:(105) 
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1.10 QSM reconstruction challenge 

QSM is a powerful tool to assess the tissue variances (16). However, the reconstruction 

pipeline is still a challenging task (12). As orientation plays an important role in QSM, 

studies have demonstrated that it is possible to reduce reconstruction artefacts in single 

orientation methods for clinical studies(54,107). However, a detailed understanding is 

required to generate reproducible and accurate QSM results. A 2016 study on the 

Figure 1.13 Images of a 42 year old man with a glioblastoma in the right occipital lobe (patient B1), who was 

treated with 12 cycles of bevacizumab after completion of radio chemotherapy, are presented in the upper 

part (a–e). The lower part (f–j) reveals images of a 46 year old man with a glioblastoma in the frontal lobe 

(patient B2), who was treated with 5 cycles of bevacizumab. T1-weighted images before (a,f) and after the 

contrast agent administration (b,g). FLAIR images (c,h), SW images (d,i) and susceptibility maps (e,j) are 

presented for each patient. The patient in the upper part represents SBS that only correlates with hyper 

intense areas on the susceptibility maps (arrow heads), whereas the patient in the lower part reveals 

additional calcifications indicated by hypo intense correlations of SBS on susceptibility maps (arrows). 

Source:(106) 
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reconstruction challenges in QSM has analysed various QSM algorithms (108). After 

comparing various QSM algorithms, it was concluded that different QSM algorithms 

exhibited methodological differences and this makes extracting the true susceptibility 

values challenging, an implication for clinical translation. 
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Chapter 2 Research aims and hypothesis  

The Aim of this thesis is to develop new methods by exploiting the information contained in 

susceptibility maps. A study has shown that frequency shifts from multi-echo gradient echo 

sequences vary with echo times (69). It is also shown that the GRE phase signal in white 

matter consists of frequency shifts from axonal, myelin and extracellular water which can 

be identified with a multi-compartment model (80,82). The studies mentioned had three 

compartment information which includes the size of the compartment, R2* or T2*, and the 

frequency shift. The studies have implemented different compartment models to assess 

the influences on gradient echo signals through compartments. The Quality of the fit is 

used to evaluate how perfectly the measured data points are explained by the 

compartment model. The Different number of compartments can be used in the modelling 

techniques.  

Compartment modelling has been performed only in the white matter (78,80,82,85). It 

is still unknown whether or why the susceptibility or frequency shift (which can be 

calculated from susceptibility maps) varies over the echo time. Theoretically, magnetic 

susceptibility should not vary over the echo time as it is a physical quantity. Additionally, it 

has not been studied whether compartmentalization of susceptibility maps or frequency 

maps indicate any influences of tissue composition or arrangement. We analysed how 

echo-time dependence in QSM could potentially reveal the tissue variation through 

compartmentalization in human brain regions. Parameterization of GRE signals may 

possibly reflect the health of tissue which might be useful in detecting any early 

abnormalities in neurological and neurodegenerative diseases. 

Research has established that phase imaging offers 10-fold improvement in contrast-

noise-ratio (CNR) as compared to GRE and magnetization-prepared rapid gradient-echo 

(MPRAGE) magnitude images, and it further improves  approximately 100-fold at ultra-

high fields (11). The research gap was to investigate how GRE signal compartments are 

influenced by the field strength and how using different processing pipelines affects 

compartments. We analysed multi-compartment models in human brain regions at 3T and 

7T with two different processing pipelines. This study enables us to decide the usability of 

compartments with the field strength and different methodologies.  
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Susceptibility maps computed from a single orientation and multiple orientations differ 

in the quality, suggesting orientation plays an important role in QSM (109). The Research 

question was to study the influence of the orientation on compartmentalisation. It was 

explored how compartments vary with data acquired at different angles in human cerebral 

cortex. The Multi-compartment model was used to analyse compartments in different 

cortical regions. The Single orientation and TKD (with orientation information from three 

acquisitions in different angles) were used to compute frequency shifts. It was analysed if 

a single orientation is informative (enough) to implement the multi-compartment model as 

compared to multiple orientations. 

Aim 1:  Echo-time dependent quantitative susceptibility mapping contains 
information on tissue properties - Chapter 3 

Hypothesis 

It has been shown in a study that frequency shift maps derived from phases are echo time 

dependent in white matter (80,82). A three compartment signal model (interstitial water, 

intra-axonal water and myelin water) was used to explain the non-linear trend in 

susceptibility (80). The frequency maps or susceptibility maps have not been studied over 

the echo time in grey matter. We suggested the susceptibility maps in grey matter regions. 

Although compartmental frequency shift contributions have been used to explain the trend 

in white matter, the trend in QSM response has not been studied in either gray or white 

matter (73,80,82) . We proposed to study the information contained in the temporal trend 

by analysing the mapped magnetic susceptibility as a function of echo time from gradient 

recalled data acquired at 7T.  

Aim 2:  Contribution of cortical layer cytoarchitecture to quantitative 
susceptibility mapping - Chapter 4 

Hypothesis 

Our results from Chapter 3 suggested that it is possible that chemical composition and 

structural arrangement influence susceptibility maps over the echo time. To further study 

the effect of tissue composition, we computed magnetic susceptibility maps obtained from 

multiple echo time magnetic resonance imaging data over the echo time for series of 

voxels selected along the line of gennari, and just above and just below the line of gennari. 

The proposition was to analyse how different or similar the susceptibility maps are along 

the line of gennari, above the line of gennari and below the line of gennari as the 

linecontains highly myelinated axons affecting susceptibility values (110).  
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Aim 3: Field strength influences on the gradient recalled echo MRI signal 
compartment frequency shifts - Chapter 5 

Hypothesis 

The Signal to noise ratio is directly proportional to the main magnetic field (11). Field 

perturbations are influenced by field strength and are reflected in the gradient recalled 

echo magnetic resonance imaging (GRE-MRI) signals (11). Mapping of phase at 7T has 

been shown to provide as much as a 10-fold increase in gray-white matter contrast in 

comparison to the contrast in magnitude images (11). In Chapter 3 the susceptibility over 

the echo time has been explored in human brain regions at 7T. However, the influences of 

the magnetic field strength on susceptibility or frequency maps were not clear. Therefore, 

in Chapter 5 the impact of field strength is studied in the frequency shifts which are further 

compartmentalised in selected human brain regions.  

 

Aim 4: Evaluation of multi-echo QSM in the brain cortex using an ultra-high 
field - Chapter 6 

Hypothesis 

Results from Chapter 5 indicated that methodological and field strength differences 

influence frequency shift compartments, however consistent results can be generated with 

any method or field strength used. We extended our frequency map analysis in the human 

Cerebral Cortex in Chapter 6. As it is demonstrated that orientation affects frequency 

maps and susceptibility maps (12,69), we planned to assess the effect of orientation in 

frequency maps generated from QSM maps, and the measurements were made at 

different angles. It was explored how frequency shifts computed from different   

methodologies can be used to assess cortical regions. 
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Chapter 3 Echo-time dependent quantitative susceptibility 
mapping contains information on tissue properties 

Magnetic susceptibility has been considered echo time independent. However, this 

assumption is not true if the anisotropicity of specific tissues is taken into account. The 

field orientation dependent field perturbations will induce an anisotropic magnetic 

susceptibility. The effect will vary with the structure, composition and arrangement of the 

tissue. However, it is still unclear which factors influence the magnetic susceptibility at the 

voxel level. In this chapter we investigated susceptibility maps over echo time, and 

analysed if the susceptibility trends reflects any changes in chemical composition and 

tissue structure. 

3.1 Abstract 

Magnetic susceptibility is a physical property of matter that varies depending on chemical 

composition and abundance of different molecular species. Interest is growing in mapping 

of magnetic susceptibility in the human brain using magnetic resonance imaging 

techniques, but the influences affecting the mapped values are not fully understood. We 

performed quantitative susceptibility mapping on 7 Tesla (T) multiple echo time gradient 

recalled echo data and evaluated the trend in 10 regions of the human brain. Susceptibility 

maps were plotted across echo time in the caudate, pallidum, putamen, thalamus, insula, 

red nucleus, substantia nigra, internal capsule, corpus callosum, and fornix.  

We implemented an existing three compartment signal model and used optimization to fit 

the experimental result to assess the influences that could be responsible for our findings. 

 The susceptibility plots across echo time are different for different brain regions, and sub-

segmentation of specific regions suggests that differences are likely to be attributable to 

variations in tissue structure and composition. 

 Using a signal model, we verified that across echo time a nonlinear behaviour in 

experimentally computed susceptibility within imaging voxels may be the result of the 

heterogeneous composition of tissue properties. Decomposition of voxel constituents into 

meaningful parameters may lead to informative measures that reflect changes in tissue 

microstructure. 
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3.2 Introduction 

Quantitative susceptibility mapping (QSM) has been developing rapidly as a magnetic 

resonance imaging (MRI) tool (12,51,111). In QSM, maps of regional changes in the 

physical constant, magnetic susceptibility, are obtained. Although both magnitude and 

phase images are known to be influenced by the magnetic properties of tissue, gradient 

recalled echo (GRE) phase images have been shown to contain excellent contrast and, at 

a field strength as low as 1.5T, can reveal anatomic structures not visible on 

corresponding magnitude images (25). QSM relies on acquired phase images to solve for 

voxel susceptibilities. At the ultra-high field (7T), as much as a 10-fold improvement in 

phase image contrast relative to magnitude image contrast can be achieved (11). Several 

studies have verified that QSM-based approaches are sensitive to tissue composition, 

resulting in image contrasts that reflect tissue structural changes (31,107). In fact, QSM 

has been used to monitor iron deposition (53,112), quantify contrast agent uptake 

(113,114), identify multiple sclerosis lesions (105,115), and map cerebral microbleeds 

(116) and intracranial calcification (42). 

The echo time of GRE-MRI data acquisitions can manually be varied to influence the 

phase contrast achieved in GRE-MRI data. Researchers have demonstrated an echo time 

of the average of the grey and white matter T2* (transverse relaxation time in the presence 

of field inhomogeneities) results in the maximum phase contrast between grey and white 

matter in a normal participant (11,117). Additionally, it was shown that white matter 

frequency shift maps generated from phase images, the input to the  QSM processing 

pipeline, are influenced by echo time (69). Constituents such as iron and cellular 

constituents such as oligodendrocytes within voxels affect susceptibility isotropically or 

anisotropically, and have been suggested to influence the phase response with echo time 

in a nonlinear fashion (75). Decades ago Chu et al. showed shifts in the nuclear magnetic 

resonance signal frequency due to bulk susceptibility and suggested that complicated 

structures with multiple susceptibility compartments are likely the cause of non-intuitive 

changes in the signal over the echo time (118). Hence, the pattern of echo time 

dependence of QSM maps may provide insight into tissue structure and the effects of 

central nervous system disorders on brain tissue constituents.  

However, the echo time dependence on various brain regions, particularly grey matter 

regions, has not been evaluated as a function of the mapped value of susceptibility. To 

study the regional dependence of QSM on echo time, we evaluated the QSM result at an 

ultra-high field across a range of echo times. Very short echo spacing GRE-MRI data were 
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used to evaluate susceptibility values in 10 brain regions and in specific sub-regions. We 

then sought to parameterise the mapped susceptibility curves over echo time by 

compartmentalising the MRI signal into multiple susceptibility constituents. We formulated 

signal compartments using the plane wave formulation, as has been done in previous 

studies.  

Initial work on water-fat separation using MRI data across echo time considered a two 

compartment model containing water and fat pools (119,120). In this model a fixed 

frequency shift between water and fat was used in the computations. Each compartment 

was expressed as a complex valued plane wave having an amplitude, induced frequency 

shift and relaxation time. Compartment contributions at the voxel level were obtained 

through an optimisation procedure. The approach was adopted in four white matter studies 

and considered three instead of two frequency shift compartments associated with myelin 

water, restricted water such as those within axons, mobile water such as those in 

extracellular spaces and in cerebrospinal fluid (80). The effect of iron has not been 

considered in these models, however the plane wave formulation, the basis of each signal 

compartment, is theoretically capable of accounting for large amplitude susceptibility 

constituents. The first modelling approach considered one real valued compartment 

(restricted water) and two complex valued compartments incorporating frequency shifts 

due to two susceptibility effects (78). This approach was shown not to be as robust in 

fitting white matter frequency shift trends as a model wherein each of the three signal 

compartments were allowed to account for separate susceptibilities (80). The three 

susceptibility compartment model was recently applied in a multiple sclerosis cohort in 

which white matter lesions are known to form and showed a frequency shift change 

associated with a so-called white matter lesion compartment (85). A more complicated 

expression for myelinated axon contribution has also been developed as a replacement for 

the plane wave based expression for myelin contribution, with the aim of expressing signal 

dependence on white matter orientation with respect to the imaging field (121). In our work 

we opted to investigate the utility of the second model (three susceptibility compartments 

and no fibre orientation dependence) as the alignment of myelinated axons with respect to 

the imaging field is not necessarily resolvable, or applicable, in all brain regions studied.  

Instead of assigning names to compartments, we took the general approach of 

investigating how mapped susceptibility compartments vary in various brain regions known 

to have differences in cell density, packing arrangements, myelination and iron 

accumulation. For example, we considered brain regions such as the pallidum, red 
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nucleus, substantia nigra and putamen known to contain high iron concentrations (65,122), 

whereas the caudate and thalamus have not been described to accumulate high levels of 

iron. Furthermore, we investigated how susceptibility compartments change in the 

substantia nigra and pallidum sub-regions, all of which are known to have different 

cytoarchitectures. Our work promotes the use of susceptibility across echo time in brain 

studies, thereby we refer to the method as temporal quantitative susceptibility mapping 

(tQSM).   

3.3 Methods 

3.3.1 Data acquisition 

Ethics was granted through the University of Queensland human ethics committee. In vivo 

brain imaging (five healthy adult volunteers: two females aged 30 and 32, and three males 

aged 31, 34  and 41) sessions were conducted on a 7T whole-body MRI research scanner 

(Siemens Healthcare, Erlangen, Germany) with a 32 channel head coil (Nova Medical, 

Wilmington, USA). A 3D gradient recalled echo non-flow compensated scan was acquired 

with the following parameters: TE1 = 2.04ms, echo spacing = 1.53ms, 30 echoes, TR = 

51ms, flip angle = 15°, voxel size = 1mm × 1mm × 1mm and matrix size = 210 × 168 × 

144.  

 

 

Figure 3.1 Illustration of the pipeline used to compute quantitative susceptibility maps. Individual channel 
data were processed using STI Suite and combined into a single image at the very end.  
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3.3.2 Data reconstruction pipeline 

A number of QSM processing pipelines have been developed to extract susceptibility from 

GRE-MRI data (102,109,123), which includes phase unwrapping, background phase 

removal and the solution to the field-to-source inverse problem. Several phase unwrapping 

and background removal techniques have been proposed (38,54,124). Advances have 

resulted in improvements in the quality of susceptibility information across the entire brain. 

In practice, the field-to-source inverse problem is solved by the deconvolving tissue phase 

with a dipole kernel (125–127). The problem is ill-posed due to the presence of zeros in 

the kernel, which in the past resulted in unwanted streaking artefacts (64,107). Recently 

developed methods have been able to reduce the confounding effects of such artefacts 

(50,59).  

Data were acquired from 32 channels and each channel was individually processed 

prior to combining images (128). The combined images were a weighted average of the 

individual channels. The magnitude image of each channel was used to form a channel 

mask using the BET tool provided as part of MIPAV (http://mipav.cit.nih.gov/). The result 

was read into MATLAB® (The MathWorks, Inc., Natick, Massachusetts, United States) 

and binarised. individual channel masks were stored for use in the STI Suite 

(http://people.duke.edu/~cl160/) processing package to compute spatial variations in 

magnetic susceptibility. STI Suite calculates susceptibilities with respect to the mean 

susceptibility of the region studied, which in our case was the whole brain. The QSM 

pipeline is schematically illustrated in Figure 3.1 . In brief, individual raw phase data were 

processed using iHARPERELLA provided as part of STI Suite (30,31,41). iHARPERELLA 

was recently shown to lead to results as good as V-SHARP (129). The combined magnetic 

susceptibility map was calculated as the average of individual channel susceptibility maps 

using iLSQR available in STI Suite. The iLSQR output was mapped over echo times, 

denoted as tQSM. 

3.3.3 Manual region-of-interest selection 

Manual segmentation was performed using a number of different echo time 7T magnitude 

images based on clarity of structures identified in Figure 3.2, namely the caudate, 

pallidum, putamen, thalamus, internal capsule, red nucleus, insula, corpus callosum, 

substantia nigra and fornix. The segmentation of each ROI was guided by a human brain 

atlas (47). The instruction was to segment regions such that segmentation boundaries 

were clearly confined to the region, and not touching adjacent brain regions. This 
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approach produces a higher level of confidence for each region. ROIs were drawn using 

MIPAV, and saved in the NIFTI format. A Matlab script was used to binarise ROI values, 

resulting in region masks.  

 

 

A second level segmentation was performed on three regions. The pallidum was 

segmented into internal and external regions, the substantia nigra was segmented into 

compact and reticular regions, and the insula was segmented into anterior and posterior 

regions. These sub-regions were chosen as they are known to have different 

cytoarchitectures and cell densities.   

3.3.4 Mapping of susceptibility across echo time 

Segmentation was performed on each hemisphere where relevant. The values were then 

averaged across hemispheres and repeated for each echo time. This formed susceptibility 

data for each participant over the echo time. Mean susceptibility values are plotted against 

echo time, and standard deviations within each region are shown as well.  

3.3.5 Multi-compartment contributions to susceptibility  

Three models with three signal compartments each have been used to describe the non-

linear nature of the MRI frequency shift in white matter. In other studies signal 

compartments have been referred to as contributions from intra-axonal space, myelin and 

interstitial space. In the first model two signal compartments contain a frequency shift 

Figure 3.2 Illustration of the location of the ten human brain regions-of-interest used to assess changes in 

magnetic susceptibility.  
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component and the other accounts for magnitude signal decay only (78). The second 

model employs independent frequency shifts for all compartments (80). The third model 

incorporates a non-plane wave based function for the myelin contribution (121). The 

additional complexity for the myelin signal was developed for white matter and we primarily 

deal with grey matter. Therefore, we used the second model, which was recently applied 

to multiple sclerosis data (81), and ignored fibre orientation as we primarily deal with grey 

matter wherein neuron structure is vastly different to the relatively highly myelinated and 

aligned cylindrical axons of white matter. Each signal compartment of an image voxel is 

assumed to be describable using an amplitude modulated plane wave formulation: 
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where n is the signal compartment,  ω  defines the angular frequency and φ  is a phase 

shift. Notably, the induced change in angular frequency is a function of the induced change 

in magnetic field, as defined by the Larmor equation ( Bω γ∆ = ∆  , where γ   is the 

gyromagnetic ratio). Furthermore, the amount of magnetic field change is determined by 

the magnetic susceptibility ( χ  ) of the substance (notably, 0B Bχ∆ =  where 0B  is the 

reference field or static field of the scanner). The relationship 0B Bχ∆ =  in the MRI context 

holds only when changes due to susceptibility are confined to a voxel. Since we consider 

effects within voxels, which are small spread out constituents with relatively small 

susceptibility, we may assume that field change is local and 0B Bχ∆ =  holds. We can justify 

this in two ways. Firstly, a field produced by a dipole (commonly used susceptibility source 

representation in QSM) decays at a rate 1/r2, where r represents distance away from the 

centre of the dipole. If we consider microscale effects to be responsible for a change in the 

magnetic field, then the extent of these changes decay on the microscale as well. 

Secondly, Chen et al. simulated the induced field distribution within voxels and showed an 

extent of  a few micrometres at most from axonal structures which were less than 5 

micrometres in size (130). Hence, we assume field changes due to microscale effects are 

contained within millimetre scale voxels, and a dipole representation for individual 

compartments can be avoided. With this in mind, Equation (3.1) can be used to define the 

measured complex signal: 
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The formulation of Equation (3.2) has nine parameters: 1A , 2A , 3A , 1 2 3, ,χ χ χ , *
2,1T , *

2,2T  

and *
2,3T . Previously, the 2-norm of the residual formed by subtracting the right-hand-side of 

Equation (3.2) from ( )S t  was used and minimised based on an initial guess and brute 

force searching for an optimal solution within the vicinity of the initial guess was performed 

in an iterative manner. We opted for a robust method of optimising for the nine 

parameters, thereby we implemented in MATLAB® the global optimisation method called 

differential evolution (131), which was used to fit the temporal evolution of QSM curves 

after values were averaged across all participants and each of the brain regions studied. 

Through empirical testing we found that a cost function based on the argument was able to 

produce better fits than the approach adopted in previous work. Hence, we minimised the 

following cost function: 
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where 1 2 3 1A A A+ + = , M  is the number of echo points of data collected, ( )mtχ  are 

reconstructed susceptibility values from experimental data at each echo time m output 

from iLSQR, and the equation can be derived starting from Equation (3.2), applying Euler’s 

formula and calculating the phase based on the expanded equation. The scaling 0 mB tγ  

was applied to convert the phase to a susceptibility prior to subtracting it from the mapped 

value of susceptibility ( ( )mtχ  ). We initialised values for
1

A , 
2

A  and 
3

A  in (0,1) randomly 

and we imposed 1 2 3 1A A A+ + =  within the optimisation algorithm. In the differential evolution, 

algorithm values for
1

 , 
2

  and 
3

  were constrained to ( 610 , 610 ), that is the magnitude 

of the value was not allowed to exceed 1ppm. Via empirical testing, we found 

compartment T2* to be quite insensitive to changes across compartments, which is likely 

due to how the cost function is formulated (i.e. Equation(3.3)), whilst this was not the case 

for the magnetic susceptibility value. Hence, we computed the voxel T2* through an 

optimisation procedure by initialising to a random value in the interval (20, 40ms).  these 

values were not constrained through the iterations, but we did restrict them to take positive 

values only. We set the number of initial parameter states to 500 and ran 20,000 iterations, 

the scaling factor (F) was set to 0.9 and a 20% cross over (CR) between parameter 

estimates was allowed at each iteration using the DE/rand/1/bin variant of the differential 

evolution algorithm. We repeated each run 10 times to confirm the convergence to a 
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reproducible estimate of parameters. Careful consideration has been taken to avoid 

overfitting, as discussed in our recent work (132).  

3.4 Results 

3.4.1 tQSM curves  

We mapped magnetic susceptibility across the entire brains of five participants from data 

acquired on a human 7T MRI scanner and extracted values for ten brain regions. 

Supporting Figure III provides example magnitude images and susceptibility maps at echo 

times of 3.57ms, 15.81ms and 31.11ms. Figure 3.3 (caudate, internal capsule, red 

nucleus, corpus callosum) and Figure 3.4 (thalamus, pallidum, substantia nigra, putamen, 

fornix and insula) provide the tQSM curves. The mean values across the five participants 

are represented as the thick solid line, and plus and minus one standard deviation bands 

are shown using dashed lines. From these results we can conclude that tQSM curves vary 

across brain regions. We sub-segmented particular brain regions to study the influence of 

tissue cytoarchitecture variations on the tQSM curve. 

The substantia nigra consists of compact and reticular parts  (133). The compact part 

has relatively large multipolar pigmented neurons (diameter in the range 25-45 

micrometres; 300,000 to 550,000 neurons) with long and spine poor dendrites extending 

into the reticular region. The reticular region consists of large multipolar non-pigmented 

neurons (mean diameter around 25 micrometres; 260,000 to 280,000 neurons) having 

long thick infrequently branching, aspiny dendrites, which are densely covered with 

synaptic contacts. Additionally, it has been shown that the reticular part of the substantia 

nigra generally contains more iron than the compact part (133). Figure 3.5 (a) provides the 

results for the compact and reticular parts of the substantia nigra. The positive 

susceptibility shift present from reticular to compact results may be suggestive of an 

increase in neuron density and/or pigmentation, and may also be associated with different 

levels of iron. Increased neuron density increases the number of magnetic field 

perturbations within imaging voxels, which may be interpreted as increased magnetic 

susceptibility constituents within voxels (130).   

The pallidum is composed of external and internal segments having different 

cytoarchitectures (133). We manually segmented the pallidum into external (containing as 

many as 1.46 million neurons) and internal segments (around 310,000-350,000 neurons) 

and Figure 3.5(b) provides the result. A positive shift in the susceptibility curve with an 

expected increase in neuron density can also be observed.   
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The anterior insula has large pyramidal cell layers and a lack of development of a 

granular layer results in a well-defined cytoarchitecture resembling frontal cortical structure 

Type I, while the posterior insula has thick and parvicellular granular layers similar to the 

parietal cortical structural Type III (134). The anterior and posterior sub-segmentation 

results for the insula are provided in Figure 3.5(c). Interestingly, a different trend in the 

mapped susceptibility response for the anterior and posterior regions is present in 

comparison to sub-regions of the substantia nigra and pallidum (compare Figure 3.5(c) to 

Figure 3.5(a) and Figure 3.5(b)). The distinct deviation of the two curves may be caused 

by the presence of agranular structures towards the anterior region and granular structures 

towards the posterior region. These findings imply tissue cytoarchitecture may play a role 

in tQSM curve formation. Such a result may be useful in detecting and monitoring changes 

in tissue cytoarchitecture, and measurable changes may play a role in various 

neurodegenerative brain diseases and disorders. 

 

3.4.2 Parameterisation of signal compartments 

Table 3.1 provides the results for the ten brain regions investigated via fitting of values 

used to parameterise the three susceptibility compartments, and Table 3.2 summarises 

the results for the pallidum, insula and substantia nigra sub-regions. Supporting Figures I 

and II provide the result fitted across echo time which are averaged across all participants. 

Figure 3.3 tQSM results for (a) caudate, (b) internal capsule, (c) red nucleus and (d) corpus callosum. 

Individual plots show the response for each participant (thin solid lines) along with the group mean (thick 

solid line) and standard deviation (dashed lines). We found a trend in susceptibility values with echo time, 

and the trend varies with region selected.  
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The adjusted R2 value is representative of the quality of fit achieved. For nine out of the 

ten regions studied, the fitting process resulted in an adjusted R2 greater or equal to 0.93, 

implying a very good quality of fit. A plot of each fitted curve is provided as supporting 

information. For the pallidum a good fit was not obtained (R2 = 0.42). Two reasons are 

plausible for this result. Firstly, the three compartment model may not have sufficient 

degrees of freedom to be able to explain the trend in the tQSM curve (i.e. require 

additional terms). Secondly, the model assumes plane waves can be used to explain each 

signal compartment, which may not appropriately describe the signal behaviour observed 

in the experimental data. In Table 3.2 results for internal and external regions of the 

pallidum are provided with R2 = 0.99 and R2 = 0.82 respectively. Both the internal and 

external regions contain a very similar susceptibility compartment (0.074ppm and 

0.075ppm, 1.4% difference) and two slightly different susceptibility compartments 

(0.033ppm versus 0.036ppm and 0.129ppm versus 0.137ppm resulting in 9.1% and 6.2% 

differences). Interestingly, the pallidum has similar compartment susceptibilities as well 

(0.080ppm, 0.037ppm and 0.14ppm). This suggests that segmentation of the brain regions 

into sub-regions can potentially lead to improved compartment fitting.   

Sub-segmentation of the insula into anterior and posterior regions did not result in 

better model fitting (adjusted R2 of 1.00 and 0.96 versus 0.99), which is reasonable since 

the quality of the fit for the insula was already very good. It may be that tissue 

heterogeneity within the insula results in some destructive cancellation of compartment 

signals. This is evidenced by vast susceptibility differences across the anterior and 

posterior regions, as given in Table 3.2, and these values are also different to those 

calculated for the insula. Signal compartments may thereby be decomposable into smaller 

and smaller regions, which may result in increasing difficulty in interpreting model 

parameters.   
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As already mentioned, the pallidum and substantia nigra contain similar neuronal cell 

bodies (133). The largest compartment of the substantia nigra has a susceptibility of 

0.03ppm, the value of which is present as the second largest compartment of the internal 

region, and as the smallest compartment of the external region of the pallidum. 

Furthermore, the second largest compartment of the substantia nigra has a susceptibility 

of 0.07ppm, which is present as the largest susceptibility compartment of the internal 

region and second largest susceptibility compartment of the external region of the 

pallidum. 

  

Figure 3.4 tQSM results for (a) thalamus, (b) pallidum, (c) substantia nigra, (d) putamen, (e) fornix and (f) 

insula. Individual plots show the response for each participant (thin solid lines) along with the group mean 

(thick solid line) and standard deviation (dashed lines). We found a trend in susceptibility values with echo 

time, and the trend varies with region selected.  
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Interestingly, we found the internal and external regions of the pallidum contain a small 

susceptibility compartment (0.033ppm and 0.036ppm), and both the compact and reticular 

regions of the substantia nigra were found to have small susceptibility compartments 

(0.029ppm and 0.037ppm). It is plausible that compartments have characteristic magnetic 

properties affecting the GRE-MRI signal in distinct ways. Differences in the values here 

may be attributable to the small compartment sizes, which makes contributions from these 

susceptibility constituents less impacting on the optimisation procedure and also noise 

may hinder the results especially when compartment sizes are very small with respect to 

other compartments.  

 

Figure 3.5 Shown are tQSM results for sub-regions of the (a) substantia nigra (compact and reticular), (b) 

pallidum (internal globus pallidus and external globus pallidus), and (c) insula (anterior and posterior insula). 

These regions are known to have different cell densities and cytoarchitectures, and the susceptibility curve 
depicts a different pattern for each case.    

 Table 3.1Three compartment model fittings results for the ten brain regions. Adjusted R2 represents the 
quality of fit, and 𝜒𝜒  is the symbol for magnetic susceptibility and subscripts denote the three signal 
compartments. T2* was calculated for the voxel. Values have been arranged from largest to smallest 
compartment contribution.  
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The red nucleus is known to contain large amounts of iron in comparison to the brain in 

general (65,122). The threecompartment fitting resulted in susceptibilities of 0.052ppm, 

4.369ppm and 5.262ppm in proportions of 91.3%, 5.5% and 3.2% respectively. In 

essence, the signal is dominated by a small susceptibility compartment and affected by a 

small but high susceptibility compartment (8.7% of the signal component). The size and 

sign of the susceptibility implies the presence of a high magnetic susceptibility constituent, 

which may be a marker of iron load. High susceptibility compartments within the red 

nucleus of 4.36ppm (5.4%) and 5.262ppm (3.2%) can potentially be combined into one 

compartment to account for the likely presence of iron.  

 

Figures 3.6 and  3.7 show the standard deviation of magnetic susceptibility computed 

based on magnetic susceptibility variations within brain regions. The combined result for 

participants is shown after individual variances were pooled prior to calculating the 

standard deviation. Figure 3.3, Figure 3.6, and Figure 3.4 and Figure 3.7 , can be 

compared directly. We may note that the standard deviation based on participant 

differences is generally larger than the standard deviation due to variations in 

susceptibilities within the brain regions. Furthermore, the region-based variation appears 

to maintain a fairly consistent window (of) echo time (i.e. standard deviations do not fan 

out with longer echo times), implying adverse effects such as noise unlikely play a role in 

the mean estimate of magnetic susceptibility. The regions which were sub-segmented into 

sub-regions (substantia nigra, pallidum and insula in Figure 3.5 and Table 3.2) also show a 

larger standard deviation, as more influences contribute to the measurements.        

Table 3.2 Three compartment model fittings for the sub-segmented regions (SN stands for substantia nigra 

and GP stands for globus pallidus). Adjusted R2 represents the quality of fit, and 𝜒𝜒  provides the calculated 

value of the magnetic susceptibility across the three compartments. T2* was calculated for the voxel. Values 

have been arranged from largest to smallest compartment contribution. 
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3.5 Discussion 

Our work assesses quantitative susceptibility mapping across echo time. By studying ten 

brain regions, we have been able to establish that the mapped value of susceptibility 

changes with echo time. Interestingly, frequency shift maps are also shown to be a 

function of echo time in white matter (69), and recently the presence of iron and 

oligodendrocytes were suggested to produce a non-linear response with echo time (75). It 

is already explained by Haacke et al. that a change of field (dB0) is not a function of echo 

time, only the phase evolves with echo time (15). Therefore, the change in phase reflects 

intrinsic tissue variations. 

 

White matter volumes, known as highly myelinated fibres, are present not only in the 

fornix, internal capsule, and corpus callosum, but also in the caudate (53,135,136). The 

presence of negative valued susceptibilities within these brain regions is possibly a 

measure of white matter contribution. This has also been observed in a study on the 

corpus callosum exploring changes in frequency shift images across echo time (85).  

The fornix, internal capsule and corpus callosum brain regions have echo time 

dependent curves which are always negative. Notably, the contribution and magnetic 

susceptibility value of each signal compartment influences the amplitude and shape of the 

curves, which we deduce by comparing the susceptibility curves from these three brain 

regions over the echo time. Wharton and Bowtell studied fibre-orientation contrast in 

Figure 3.6 Standard deviation of the mapped magnetic susceptibility within regions across the ten brain 

regions plotted over echo time: (a) fornix, (b) caudate, (c) putamen and (d) internal capsule. Solid line is the 

mean magnitude signal and dashed lines represent one standard deviation from the mean. 
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gradient echo MRI, wherein they show effects on the frequency shift across echo time 

curve due to the angle made between white matter and the magnetic field of the scanner 

(69). They showed both a change in amplitude of the frequency shift curve, and also a 

change in the shape of the curve. Frequency shifts mapped over echo time did not change 

sign, that is, they were consistently negative. Based on our results and those by Wharton 

and Bowtell, we can conclude that magnetic field orientation plays an important role in the 

values obtained using susceptibility mapping. Since the susceptibility over the echo time 

value in white matter is influenced by field orientation, the estimated compartment values 

should be influenced as well. 

 

The caudate and the putamen are cytoarchitecturally similar structures with small 

neuronal cell bodies (137). It has also been established that the putamen contains larger 

amounts of iron than the caudate, and iron deposition increases with age (39,53,98). We 

found that both the caudate and putamen have similar susceptibility compartments. The 

second largest compartment of the caudate and the largest compartment of the putamen 

Figure 3.7 Standard deviation of the mapped magnetic susceptibility within regions across the ten brain 

regions plotted over echo time: (a) corpus callosum, (b) red nucleus, (c) thalamus, (d) insula, (e) pallidum 

and (f) substantia nigra. The Solid line is the mean magnitude signal and dashed lines represent one 

standard deviation from the mean. 
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were found to have similar susceptibilities (0.06ppm versus 0.054ppm in Table 3.1). 

Moreover, the second largest compartment of the caudate and the largest compartment of 

the putamen are also similar in susceptibility (0.06ppm versus 0.054ppm in Table 3.1).  

The caudate and putamen contain dopamine neurons projecting from the compact sub-

region of the substantia nigra (138). The reticular region of the substantia nigra has a 

0.08ppm susceptibility compartment whereas the overall substantia nigra was found to 

have a 0.07ppm susceptibility compartment (Table 3.2), both of which are in close 

agreement with caudate and putamen compartment susceptibilities of 0.08ppm and 

0.07ppm. Substantia nigra compartments with 0.07ppm (4.6%) and 0.03ppm (92.9%) 

susceptibilities have commonalities with the reticular region with 0.08ppm (9.7%) and 

0.03ppm (88.1%) compartment susceptibilities, respectively.  

The reticular part of the substantia nigra and the internal part of the pallidum have 

similar cytoarchitectures (133). We found two signal compartments for each region with 

similar susceptibilities (0.03ppm (19.2%) versus 0.03ppm (88.1%) and 0.07ppm (65.2%) 

versus 0.08ppm (9.7%) for the internal pallidum and reticular substantia nigra, as shown in 

Table 3.2).  

The sub-segmentation results for the insula in Table 3.2 imply that white matter volume 

contribution (negative compartment) localises to the posterior region of the insula. Studies 

have confirmed the white matter volume contribution is due to the indistinct layering of 

grey matter and blending of white matter (134). Values for insula depict that the first two 

compartments localise to the anterior region, and the posterior region appears to have 

different structures present. The anterior insula is known to have an agranular structure 

containing von Economo neurons (139,140), whilst the posterior insula has a granular 

structure. The level of complexity may be attributable to the different susceptibility 

compartments present when sub-segmentation of the insula is performed. The large 

susceptibility value in the posterior part of the insula dominates the smaller susceptibility 

values both in size (-0.78ppm) and contribution (45.5%), which can explain why a relatively 

good fit was obtained. 

The Pallidum did not demonstrate a good fit (R2 = 0.42). It is possible that in this case 

cytoarchitecture complexity cannot be captured via a three compartment fitting. Sub-

segmentation of the pallidum results in good fits (R2 = 0.9 and R2 = 0.89) suggesting that 

both the internal and external regions of the pallidum can be mapped with better accuracy 

using three compartments. For example, the susceptibility value of 0.14ppm (35.7%) in the 

pallidum appears to have contributions from internal 0.13ppm (16.1%) and external 
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0.12ppm (57.3%) regions, since the compartment contributions average to 36.7%, which is 

close to the overall contribution within the pallidum (35.7%). The 0.08ppm susceptibility 

compartment appears to be present in both internal and external regions as well, with 

susceptibilities of 0.07ppm. However, the percentages do not equate here, which may be 

due to the largest compartment having a compensating effect as part of the fitting process. 

That is, the fitting procedure based on three compartments was not able to obtain a good 

fit hence the largest compartment contribution may deviate from reality.   

The thalamus contains a heterogeneity of cell nuclei, and the complexity of the 

structure can lead to measures appearing isotropic by nature (141). We may therefore 

expect to map a smaller amplitude tQSM curve in the thalamus as destructive cancellation 

at the voxel level due to induced field changes at the microscale can occur. That is, the 

change in magnetic field within a voxel from which susceptibility is indirectly deduced 

depends on the complex interactions of microscopic field changes, which is likely to 

appear more uniform or isotropic in terms of induced field change as tissue complexity 

increases. On the other hand, the more consistently anisotropic the microstructures are 

within a voxel,  the larger the measurable susceptibility effect that can be expected (102).  

The corpus callosum is an example of a highly anisotropic cytoarchitecture, and the 

largest signal compartment does have a large negative susceptibility value (Table 3.1). 

Hence, the inclusion of many cell types within voxels may artificially lead to a smaller 

susceptibility response, even though the actual susceptibility of the tissue compartments 

may not change. Effectively, this is because susceptibility is derived from an indirect 

measure of field change. It is therefore reasonable that different cellular morphologies and 

their arrangement lead to differing changes in the imaging field, which can be mimicked by 

changing the size of the magnetic susceptibility along with the amount of compartmental 

contribution. A future approach of overcoming this issue is to develop model 

compartments catering for cytoarchitecture variations in a discrete manner. Then the 

problem boils down to one of choice between different cytoarchitectures, as opposed to 

solving an optimisation problem formulated as a continuous problem, as is the case here. 

This issue of a continuous problem versus a discrete problem has been recognised in 

methods aiming to separate water and fat signals (120,142). 

3.5.1 Considerations for QSM studies 

As a general rule, the mapped value of magnetic susceptibility as a function of echo time is 

not flat in brain regions studied (shown in Figure 3.3 and Figure 3.4). Hence, our results 
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question the reproducibility of QSM findings when changes to the acquisition parameters 

are made. This is because a relatively small change to the echo time can lead to a 

dramatic change in the mapped value of susceptibility, see for example the pallidum, 

putamen and insula plots, all of which are shown in Figure 3.4. For multi-centre QSM 

studies, regions exhibiting relatively flat susceptibility responses could be considered as 

reference regions (posterior region of the insula and thalamus).   

A study conducted on a 7T scanner using a 3D spoiled gradient echo MRI sequence 

with 0.7mm isotropic resolution, echo time of 15ms and repetition time of 23ms, mapped 

susceptibilities in the pallidum (0.19 ± 0.02ppm), putamen (0.09 ± 0.01ppm), caudate 

(0.09 ± 0.01ppm) and thalamus (0.05 ± 0.01ppm) (109). Based on results in Figure 3.3 and  

3.4, our findings at the 15ms echo time are different: pallidum (0.085 ± 0.015ppm), 

putamen (0.025 ± 0.025ppm), caudate (0.040 ± 0.015ppm) and thalamus 

(0.0075 ± 0.013ppm). These differences may be attributed to differences in sequence 

parameters used in the studies, such as the repetition time. In another study images were 

collected on a 7T neuroimaging optimised MRI scanner with seven echo times starting 

at 4.57ms and incremented by 4.89ms. Susceptibilities were computed in the pallidum 

(0.117ppm), putamen (0.0586ppm), caudate (0.0599ppm) and thalamus (0.0395ppm) 

(143). Notably, the approach used to compute the susceptibility maps was different to our 

processing pipeline. Phase images were combined using a multi-channel phase 

combination, 3D path phase unwrapping was used, the background phase was removed 

using projection onto dipole fields and susceptibility maps were averaged across echo 

times. Our mean values for the susceptibility are around 0.075ppm (pallidum), 0.03ppm 

(putamen), 0.04ppm (caudate) and 0.005 (thalamus)  based on echo times larger than 

5ms. Based on these findings, careful consideration should be made as to how QSM 

studies are conducted.  

3.5.2 Methodological considerations 

QSM pipelines used in various studies have combined magnitude and phase data across 

all channels prior to QSM processing (31,126). We calculated susceptibility for each 

channel then averaged susceptibility maps across channels, as this approach was recently 

demonstrated to be more robust in generating a QSM result (128). Masks were derived for 

each channel individually, hence we performed susceptibility mapping only on parts of the 

brain for each channel. iHARPERELLA was used for background phase removal and 

phase unwrapping in a single integrated procedure purely based on the Laplacian 

operator. It has been shown to be fast and robust and preserves the low spatial frequency 
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components of the brain tissue phase (30). It is established that iHARPERELLA produces 

consistent results in comparison to V-SHARP (129). Susceptibility maps were calculated 

using  sparse linear equation and the least-squares (iLSQR) method in STI Suite(30,31). 

For QSM processing, l1 or l2-norm (102) minimisation with magnitude image priors could 

also be applied. These methods have been evaluated against each other in the literature, 

and the level of differences we observed due to echo time changes is significantly larger 

than those reported for methodological differences. Therefore, we would suggest that 

careful consideration should be made to the acquisition parameters used to obtain 

quantitative susceptibility maps, and how susceptibility values with echo time are used to 

assess brain changes. 

In this chapter I have investigated how magnetic susceptibility changes with echo time. 

The hypothesis for this study was that susceptibility would vary as a function of echo time, 

and the variations would mostly be around small echo times. This is because for small 

echo times, the phase has not been allowed to evolve sufficiently to be able to make 

accurate magnetic susceptibility maps. Also, I expected a plateau in magnetic 

susceptibility values to occur for a window of echo times. Neither of my expectations were 

met. Instead, I found that magnetic susceptibility varies as a function of echo time, and this 

change in magnetic susceptibility can be explained by tissue compartments in MRI voxels. 

Based on the three compartment signal model applied to the GRE-MRI data, I found 

compartment model parameters to be distinct across brain regions with some potential 

overlap in parameters. This study was performed on five participants and the results may 

vary over a larger cohort, however a nonlinear response has been observed in recent 

studies (Mathew Cronin, compartments). In later work, we showed that brain regions can 

have two or three distinct signal compartments (132). 

3.6 Conclusion 

Mapping of magnetic susceptibility across echo time in the human brain may provide 

important insights into tissue structure which has applications in neurodegenerative 

diseases and disorders affecting the central nervous system. Our work shows that the 

microstructure of tissue potentially influences the susceptibility response across echo time, 

along with magnetic susceptibility compartments. A three compartment model was able to 

be used to fit the non-linear susceptibility response over the echo time in nine out of the 

ten brain regions studied. In the pallidum, a good fit was not achieved, however sub-

segmentation of the pallidum into internal and external regions resulted in a good fit of 

sub-regions. Potentially, models such as the ones used in this study may provide a tool to 
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help develop imaging biomarkers at the MRI voxel scale which are sensitive to changes at 

the microscale. 
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Chapter 4 Contribution of cortical layer cytoarchitecture to 
quantitative susceptibility mapping 

4.1 Introduction 

Quantitative susceptibility mapping (QSM) has been shown to be an important tool in 

mapping iron, calcification and contrast agent distribution, and understanding the effects  

of multiple sclerosis and traumatic brain injuries, alongside other pathophysiological 

susceptibility variations (12,59,144). Studies suggest that iron is the greatest source of 

susceptibility contrast in QSM (Schweser et al., 2011; Langkammer et al., 2012). However, 

tissue composition and cytoarchitecture likely influence the contrast in susceptibility maps. 

We explore how changes in cytoarchitecture influence magnetic susceptibility maps 

obtained from multiple echo time magnetic resonance imaging data. (Check references). 

4.2 Methods 

A 3D gradient recalled echo non-flow compensated scan was performed on a 7T ultra-high 

field whole-body MRI research scanner (Siemens Healthcare, Erlangen, Germany) with a 

32 channel dedicated head coil (Nova Medical, Wilmington, USA) using the following data 

acquisition parameters: TE1 = 4.5ms, echo spacing = 4.5ms, 10 echoes, TR = 49ms, flip 

angle = 12, voxel size = 0.5mm × 0.5mm × 0.5mm and matrix size = 316 × 320 × 96. Two 

separate slabs from one human volunteer (female, 31) were acquired, covering the 

primary visual cortex (granular layer structure) in the coronal orientation and the premotor 

and primary motor cortices (agranular layer structure) in the axial orientation. Figure 4.1 

shows lines across which data were analysed within the primary visual cortex, and Figure 

4.2 depicts the premotor and primary motor cortex lines. Voxels across cortices were 

selected using the magnitude images with the aid of MIPAV (46) and a human brain atlas 

(47). Phase data were unwrapped with MRPhaseUnwrap, iHARPERELLA was used to 

remove the background phase, and quantitative susceptibility maps were generated by the 

iLSQR method, all of which are available in the STI Suite v2.2 post-processing software 

package (30). Susceptibility maps were created for each echo time point and analysed 

only for select cortical voxels identified in Figure 4.1 and Figure 4.2. MATLAB® was used 

to generate susceptibility plots with echo time.  
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4.3 Results 

Figure 4.3 shows the susceptibility plots across echo times for the series of voxels 

selected along the line of gennari, and just above and just below the line of gennari. The 

line of gennari is layer 4B and it is known to contain highly myelinated axons (110). The 

dissimilarity in the curves likely indicates different myeloarchitecture across different layers 

of the cortex. In Figure 4.4 the cortical structure is assessed. Figure 4.4 (I-III) are 

susceptibility plots perpendicular to the cortex, whereas Figure 4.4(IV-VI) are plots along 

the cortex. Moreover, Figure 4.4(I) and  (IV) are for the primary visual cortex having a 

granular structure (145), and the responses for the agranular cortical structure are shown 

in Figure 4.4(II) and (V) for the premotor cortex and in Figure 4.4(III) and (VI) for the 

primary motor cortex. For the case of the granular structure (compare Figure 4.4(I) and 

(IV)), the angle between the line and the reference magnetic field of the scanner appears 

to play a larger role in the susceptibility measurement than in the cortical layer, as 

evidenced by the larger spread of values. However, the opposite is true for the agranular 

structures (compare Figure 4.4(II) and (V) and Figure 4.4(III) and (VI)). The angle between 

the reference magnetic field and cortical line taken (Figure 4.4 (I-III) appears to effect the 

results in a consistent manner irrespective of whether the cortical structure is granular or 

agranular. On the other hand, agranular structures have a larger influence on the 

computed susceptibility than the granular structure (Figure 4.4 (IV-VI). In chapter 3, it is 

observed that tissue composition and structure can influence the phase and hence 

susceptibility maps. The hypothesis was to study the susceptibility maps across the line of 

gennari, above and below line of gennari, as the line  has a different chemical composition 

than the voxels selected above and below. We expected to see different susceptibility 

maps for the line of gennari as it is highly myelinated. We observed differences in 

 Figure 4.1 The primary visual cortex slab: (I) slab orientation, (II) cross section of the slab, (IIa) zoomed in 
section of the primary visual cortex and coloured lines show the voxels selected across the cortex and the 
white arrow identifies the line of gennari, and (IIb) blue colour shows voxels selected along the line of 
gennari, and red and green colours show the voxels above and below the line of gennari. Data were 
averaged along the red, blue and green lines after the application of the QSM pipeline.  
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susceptibility values for the line of gennari, above and below line of gennari in one 

participant. This work is an accepted abstract (Surabhi Sood, Javier Urriola, Steffen 

Bollmann, Markus Barth, Kieran O’Brien, David Reutens and Viktor Vegh, “Contribution of 

cortical layer cytoarchitecture to quantitative susceptibility mapping”. Organization for 

Human Brain Mapping, Geneva, 2016). 

. 

 

 

Figure 4.2 The slab cutting across the premotor and primary motor cortices: (I) slab orientation, (II) cross 
section of the slab, (IIa) zoomed in section showing coloured lines across selected voxels in the premotor 
cortex, and (IIb) zoomed in section showing coloured lines across selected voxels in the primary motor 
cortex. Data were averaged on either side of the top of the cortex (i.e. averaged corresponding locations of 
the magenta, yellow and black lines, and averaged corresponding locations of the blue, green, red and cyan 
lines).  
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4.4 Conclusions 

Our work has demonstrated that cortical layer cytoarchitecture contributes to quantitative 

susceptibility mapping. These results may help in understanding brain diseases and 

disorders affecting cortical layering. 

 

 

 

 

 Figure 4.3 QSM plots of lines selected in the primary visual cortex, corresponding to Figure 4.1(IIa). A 
noticeable shift in the curves can be appreciated with a change in location.   
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 Figure 4.4 Graphs showing plots from the (I, IV) primary visual cortex (granular), and (II, V) premotor and 
(III, VI) primary motor cortices (both agranular). In (I-III) each line corresponds to a different projection 
perpendicular to the cortex. In (IV-VI) voxel locations for each line are assessed. Fine lines represent 
individual measurements and the thick black line represents the mean of individual measurements computed 
at each echo time point.  
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Chapter 5 Field strength influences on gradient recalled echo 
MRI signal compartment frequency shifts 

 

In Chapter 3 the susceptibility maps across echo time were studied in specific brain 

regions at 7T. This Chapter is an extension to analyse the temporal effects studied in 

Chapter 3. This work is performed on both 3T and 7T field strengths. Frequency is 

calculated from susceptibility maps and a multi-compartment model is used to assess 

frequency shifts. The Effect of field strengths on frequency shift compartments were 

investigated in human brain regions.   

5.1 Abstract  

Different echo time dependent gradient recalled echo MRI signal trends in different brain 

regions have been attributed to signal compartments in image voxels. It remains unclear 

how trends in gradient recalled echo MRI signals change as a function of MRI field 

strength, and how post-processing may impact signal compartments. We used two popular 

quantitative susceptibility mapping methods of processing raw phase images (Laplacian 

and path-based unwrapping with V-SHARP) before they were converted to frequency 

shifts in six specific brain regions at 3T and 7T. The frequency shift curves varied with 

echo time, and a good overlap between 3T and 7T mean frequency shift curves were 

present. However, the amount of variation across participants was greater at 3T, and we 

were able to obtain better compartment model fits of the signal at 7T. We also found the 

temporal trends in the signal and compartment frequency shifts to change with the method 

used to process images. The inter-participant averaged trends in gradient recalled echo 

MRI signals were similar at 3T and 7T, and the choice of method used to process images 

led to consistent results. However, the signal compartment frequency shifts obtained using 

different quantitative susceptibility mapping pipelines may not be comparable.  

5.2 Introduction 

Gradient recalled echo magnetic resonance imaging (GRE-MRI) signals are influenced by 

local variations in the magnetic field. At a scale below the size of image voxels, field 

inhomogeneity can be caused by variations in tissue microstructure, orientation and 

packing (130), and by the magnetic properties of tissue constituents (107). The phase of 

the GRE-MRI signal is directly affected by magnetic field inhomogeneity, and can be 

converted into maps of tissue phase (in radians or degrees), frequency shift (in Hz) or bulk 
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magnetic susceptibility (generally expressed in parts per billion). The latter, called 

quantitative susceptibility mapping (QSM), is the preferred approach as the non-local 

tissue phase is converted to a voxel value which can be interpreted directly (69). QSM has 

been used to demonstrate physiological and pathological tissue characteristics such as 

changes in iron levels (50,53,102) and calcification (54,146), and to measure the 

distribution of contrast agents (147,148).  

Studies have demonstrated that the temporal GRE-MRI signal phase is influenced by 

tissue microstructure and arrangement in white matter (70,73,149). White matter signal 

compartments have been defined to correspond to myelin,  axonal and extracellular 

spaces (80). It has thus been suggested that GRE-MRI signal compartments mapped at 

the voxel level may provide important information about tissue structure, composition and 

packing (150,151).  However, the biological correlates of grey matter signal compartments 

remain unclear. Sood et al. recently found that QSM values change as a function of echo 

time in a manner that differs between brain regions (151). They were also able to explain 

the non-linear relationship between GRE-MRI echo time and QSM values using signal 

compartments, and suggest a link with tissue microstructure. Therefore, it seems GRE-

MRI signal compartments are not local to white matter regions, instead they appear to be 

observable across the brain.   

Although white matter signal compartments have been estimated at 3T (78,81), a 

significant improvement in sensitivity can be achieved with the use of ultra-high field 

strength (7T) scanners (11,102,112). This gain has been attributed to an increase in 

induced field change due to an increase in field strength, leading to increased contrast-to-

noise ratio in phase images (11). In the presence of an external magnetic field, 

microarchitectural variations of tissues create local magnetic field perturbations. 

Wiggermann et al. has demonstrated a MRI frequency shift effect in multiple sclerosis, a 

disease associated with changes in tissue microstructure (152). In particular, they showed 

microstructural alterations in focal multiple sclerosis lesions result in MRI frequency shifts, 

suggesting the presence of local field perturbations and potentially signal compartments 

within image voxels. It is therefore important to understand how frequency shifts are 

influenced by different tissue types, i.e. by different brain regions, and to what extent  they 

can be mapped using different MRI field strengths.  

We decided to evaluate echo time dependent non-linear frequency shifts qualitatively 

and quantitatively through signal compartmentalisation. We considered different brain 

regions, namely the corpus callosum, caudate, putamen, pallidum, cerebrospinal fluid  
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(CSF) and thalamus. We performed our study at two common field strengths, 3T and 7T, 

and using two popular QSM pipelines: Laplacian, an integrated method of phase 

unwrapping and background field removal, and path-based unwrapping with V-SHARP 

background field removal. 

5.3 Methods  

5.3.1 Data Acquisition  

The University of Queensland human ethics committee approved this study and written 

informed consent was given by six healthy participants (19, 30 and 60 year old males and 

26, 33 and 47 year old females). 3D gradient recalled echo flow compensated scans were 

conducted on a 7T ultra-high field whole-body MRI research scanner (Siemens 

Healthcare, Erlangen, Germany) equipped with a 32 channel head coil (Nova Medical, 

Wilmington, USA) using the following parameters: TE1 = 4.98ms, echo spacing = 3.13ms, 

9 echoes, TR = 52ms, flip angle = 15o, voxel size = 0.75 × 0.75 × 0.75 mm, and matrix size 

= 242 × 280 × 160. The same participants were scanned using a 3T Siemens Magnetom 

Tim Trio scanner (Siemens Healthcare, Erlangen, Germany) using the product 32 channel  

head coil with TE1 = 6.29ms, echo spacing = 5.26ms, 9 echoes, TR = 60ms, flip angle = 

18o, voxel size = 1 × 1 × 1 mm, and matrix size = 210 × 210 × 120. Magnetization-

prepared rapid gradient echo (MPRAGE) has been widely used to acquire T1-weighted 

anatomical images of the human brain to assess brain tissue arrangement (153). At the 

ultra-high magnetic field B1 induced inhomogeneities create a bias field affecting the 

image quality in MPRAGE sequence. An improved version of MPRAGE, Magnetization 

Prepared 2 Rapid Acquisition Gradient Echoes (MP2RAGE) used two inversion pulses to 

reduce the B1 induced inhomogeneities (89). It has been demonstrated in the study that 

segmentation performed in freesurfer using MP2RAGE generated agreeable results (89). 

Freesurfer is a set of software tools which is used to study cortical and subcortical 

anatomy (48). Therefore, MP2RAGE data were acquired for segmentation in this study 

with the following parameters: TE = 3.44ms, TR = 4550ms, TI1 = 840ms, TI2 = 2370ms, 

flip angle1 = 5o, flip angle2 = 6o, voxel size = 0.75 × 0.75 × 0.75 mm, and matrix size = 

300 × 320 × 256 at 7T. We used a monopolar readout for both 3T and 7T acquisitions. 

Echo times for the 3T and 7T GRE-MRI data took into account the reduction in T2* at 7T 

compared to 3T. 
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5.3.2 Data Processing 

The 32 channel 3T GRE-MRI data were combined on the scanner as a body transmitter? 

coil was used during the data acquisition. Since a 7T body coil is not available, the 32 

channel 7T GRE-MRI magnitude and phase data were processed as previously described 

(154). Magnitude images were used to create a mask using the brain extraction tool in FSL 

(FMRIB, University of Oxford) (155). Maps of frequency shift were generated from phase 

data through two different approaches: (i) A Laplacian based technique as implemented in 

iHARPERELLA (129) was applied to the phase data; this is an integrated method which 

performs phase unwrapping and background phase removal in a single step, and (ii) 

MRPhaseUnwrap (28), a path-based phase unwrapping method was used to remove 

phase wraps in the raw phase data before V-SHARP (variable radius of the spherical 

kernel at the brain boundary) (41) was applied for background phase removal using the 

default parameters. Magnetic susceptibility ( χ ) maps were generated using iLSQR (30) in 

both cases before they were scaled to a frequency shift using 0f Bγχ∆ = , where 

6 -142.577 10 HzTγ = ×  and 0B  is the scanner field strength measured in units of Tesla. We 

used the MATLAB® implementation of iHARPERELLA (HARmonic PhasE REmovaL using 

the LAplacian operator), MRPhaseUnwrap, V-SHARP and iLSQR (Sparse linear and 

sparse least squares) available through STI Suite (http://people.duke.edu/~cl160/). Note 

that we opted to compute frequency shifts from susceptibility values by first processing raw 

data using the QSM pipeline. This is in view of Wu et. al.’s recent findings,  which showed 

that using the QSM pipeline a more robust fitting of the signal can be achieved (90). 
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5.3.3 Regions-of-interest  

3T GRE-MRI data were registered to the 7T GRE-MRI data using MIPAV (46). FreeSurfer 

(156) was used to segment individual brain regions using the 7T MP2RAGE data. Six 

regions-of-interest were chosen: caudate, cerebrospinal fluid (CSF), corpus callosum, 

pallidum, putamen and thalamus, as shown in Figure 5.1. Regions-of-interest were eroded 

(using the erode function in FSL with a threshold of 90%) to reduce partial volume effects 

due to adjacent brain regions. MATLAB® (The MathWorks, Natick, MA, USA) scripts were 

used to extract region-based values and to produce frequency shift plots. The first echo 

time signal was subtracted from all other echo time signals for the purpose of 

standardising frequency shift plots. Note that this is necessary as different systems (3T 

versus 7T) have different hardware and therefore produce different phase offsets at the 

first echo time.  

5.3.4 GRE-MRI signal compartment fitting  

We used a multi-compartment model which has independent frequency shifts for all 

compartments (81): 
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where 𝐴𝐴𝑛𝑛 are compartment contributions, 𝑇𝑇2,𝑛𝑛
∗ is the signal compartment, and ∆𝑓𝑓𝑏𝑏𝑏𝑏 

defines the background frequency shift for the 𝑁𝑁 compartment model. In addition to the 

QSM pipeline, we used the background offset correction term (i.e. the term with ∆𝑓𝑓𝑏𝑏𝑏𝑏) to 

account for any leftover background effects. Instead of presenting results for 𝐴𝐴𝑛𝑛, we 

present compartment volume fractions computed by dividing each 𝐴𝐴𝑛𝑛  by the sum of  𝐴𝐴𝑛𝑛’s. 

We used a previously established approach to determine the number of signal 

compartments for each brain region (157). Notably, the induced change in angular 

frequency is a function of the induced change in the magnetic field, as defined by the 

Larmor equation ( )γ∆ = ∆f B . We converted magnetic susceptibility to frequency shifts using

0f Bγχ∆ = , where χ is the magnetic susceptibility. The Lorentzian sphere correction requires 

the frequency shift to be multiplied by 1/3 (73). This change results in a linear amplification 

of frequency shifts presented in the tables but does not change the relationship between 

the 3T and 7T findings, nor the Laplacian and path-based results. We did not apply a 

Figure 5.1 Illustration of the brain’s regions-of-interest used in this study for comparing temporal frequency 

shift curves. These are also the regions for which signal compartmentalisation was performed.   
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correction as it is unclear whether this correction is widely applicable across different brain 

regions. 

To assist convergence to an optimal solution using the approach described by Nam et 

al. (81), we up-sampled our nine echo point complex signal to 17 echo time points (i.e. 

inserted one echo time point between all measurements) using the interp1 function in 

MATLAB®. Since the frequency shift evolves smoothly as a function of echo time, we may 

assume values are continuous and additional points can be added. We found up-sampling 

to help with convergence towards a solution. Nam et al. (81) computed myelin water 

fraction maps using 16, 24 and 32 echo time points, and found 16 echo time points were 

able to produce consistent fitting as measured by parameter variations. For each 

segmented brain region we fitted the complex signal as a function of echo time after 

averaging data in a single region across participants. We computed the standard error of 

regression (SER) as a measure of the quality of fit; a value of < 10% indicates a very good 

level of fit and values > 20% indicate a poor fit.  

We repeated the 3T GRE-MRI data fitting when frequency shifts were fixed to those 

obtained using the 7T data and scaled using the field strength ratio (i.e. 3/7). Thereby, we 

provide compartment frequency shift results at 3T (Δf3T) at 7T (Δf7T) and corresponding 

volume fractions (VF3T and VF7T), and volume fractions when 3T frequency shifts were 

fixed based on 7T values (VFfixed). Additionally, we computed the Fréchet distance 

between mean curves to establish how close values are between 3T and 7T 

measurements, and to be able to comment on how methodological differences can impact 

on the curves. The Fréchet distance takes into account the location and ordering of the 

points, making it a suitable measure for our study.   

5.4 Results 

5.4.1 Frequency shifts as a function of echo time 

Figure 5.2 depicts frequency shift curves for each of the six brain regions investigated 

using the Laplacian method at the 3T and 7T field strengths. Frequency shifts have been 

plotted as a function of echo point. The solid line in each plot corresponds to the mean 

frequency shift after averaging voxel values in each region and across participants. The 

shaded area matched in colour with the solid line shows the inter-participant variation via 

one standard deviation from the mean. Similarly, Figure 5.3 provides results obtained 

using the path-based method.  
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Based on results presented in Figure 5.2 and Figure 5.3, three main points can be made. 

First, irrespective of the method, a good level of correspondence between 3T and 7T 

curves is present. Second, the 3T mean curves have a tendency to oscillate as a function 

of echo point more than the 7T curves. Third, the inter-participant variation is larger at 3T 

than at 7T. In Table 5.1 a summary of the area spanned by each shaded region in Figure 

5.2 and  5.3 is provided. We may note that at 7T the level of inter-participant variation is 

approximately halved.  

Interestingly, the ordering of the Fréchet distances is comparable between the Laplacian 

and path-based methods, suggesting that a fair level of intra-method consistency is 

present. In Table 5.2 the Fréchet distance between 3T and 7T curves has been tabulated. 

Fréchet distance can be defined as a measure of similarity between the curves. A value 

closer to zero implies curves are more similar, whilst larger values suggest less similarity 

between curves. However, it should not be confused with only points close to both data 

sets. This means the location and ordering of the points are also taken into account. In 

other words the fluctuation of data is important. For example, in the corpus callosum for 

the Laplacian method, there are two sharp fluctuations at 6th and 8th echoes, whereas in 

the path-based method there is no sharp fluctuation. Hence, the Fréchet distances are 

7.8ppb and 5.5ppb for the Laplacian and the path-based respectively in the corpus 

callosum. Similarly, in CSF there are two major fluctuations observed at the 4th and 6th 

echoes for the Laplacian, and no major fluctuation is observed in the path based method. 

Thus, the Fréchet distance in the Laplacian is higher than in the path-based method. In the 

putamen using the Laplacian method the fluctuation is twice upwards and twice 

downwards, which is why despite the curves in the Laplacian being  very close,  the 

Fréchet distance is much higher in the Laplacian, 2.5ppb, as compared to the path-based, 

0.9ppb. The Fréchet distance for the caudate is 1.5ppb for the Laplacian and 1.6ppb for 

the path-based. It should be noted here that there is no fluctuation or similar shape curves. 

Additionally, for the thalamus the fluctuation and shape curve is similar, and hence the 

Fréchet distance is similar. In the pallidum, for the Laplacian method there are minor 

fluctuations on echoes 2, 5, 6 , 7, and 8 with a change in the shape of the curve, whereas 

for the path-based there are minor fluctuations at the 2nd ,4th , and 6th echoes,  therefore 

explaining the Fréchet distance values.    

5.4.2 Signal compartmentalisation  

Table 5.3 provides the three compartment fitting results based on the data generated 

using the Laplacian method. Similarly, Table 5.4 was generated using the path-based 
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data. Model parameters were obtained by fitting the 3T and 7T multi-echo data, and 

frequency shifts have been presented alongside the standard error of regression (i.e. 

SERM and SERP calculated based on the signal magnitude and phase, respectively). We 

found either two (the putamen, pallidum, CSF and thalamus) or three (the corpus callosum 

and caudate) signal compartments. Irrespective of whether the Laplacian or path-based 

method was used to generate the data, the number of compartments for a specific region 

were the same. Moreover, the 7T data was able to be better fitted than the 3T data (i.e. 

SERM and SERP at 7T was less than at 3T). Frequency shifts have been arranged by the 

size of the compartment volume fractions, that is from largest to smallest. We should point 

out that since we used the model which incorporates the background offset term (see 

Equation (5.1)), the presented frequency shifts may be shifted with respect to each other. 

In addition, we did not reference frequency shifts with respect to a particular compartment. 

For this reason, it is more important to focus on the separation between frequency shifts 

than their actual value.  

For the corpus callosum, using the Laplacian data, a good level of fit (SER < 10%) was 

achieved for all three cases (i.e. 7T, 3T and 3T fixed with 7T frequency shifts). The 

compartment frequency shifts were also similar, suggesting that three compartments can 

be resolved at both 3T and 7T and the level of variation in frequency shifts between 3T 

and 7T is too small to cause a large error in the fit when 7T frequency shifts are used to fit 

3T data (SERM = 6.9% and SERP = 8.4%). Hence, the ability to fit the 3T curve does not 

deteriorate with the difference between 3T and 7T shifts. Whilst the volume fractions 

changed somewhat between 3T and 7T fits, the volume fraction estimated from the 7T 

data was recoverable from the 3T data using 7T frequency shifts (compare volume 

fractions of 44.7% to 43.0%, 36.1% to 38.3% and 19.2% to 18.7%). The path-based 

results showed a similar trend in compartment values, however the volume fractions were 

less recoverable based on 3T data.  

In the caudate using two compartments and the Laplacian data, we were not able to 

obtain a good fit. With the use of the three compartment model, we did achieve low SER 

values and we found a third compartment with a high frequency shift and low volume 

fraction. The frequency shift obtained using the 7T data was able to better explain the 

trends in the 3T data (compare SERM = 0.7% and SERP = 9.8% to SERM = 0.9% and 

SERP = 8.5%). Based on the path-based data, the fit did not improve when 3T frequency 

shifts were set based on those generated from the 7T data. Otherwise, the overall trends 

were similar.  
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For the putamen the Laplacian-based frequency shifts had a larger separation than 

those generated from the path-based data. The negative frequency shift in both cases had 

a larger volume fraction than the positive shift, and the fit at 3T decreased when fixed 7T 

frequency shifts were applied. The trends in the compartment values for the pallidum were 

similar to those obtained for the putamen. However, the fit for the pallidum was worse than 

that for the putamen (SERP > 10% in the pallidum versus SERP < 10% in the putamen, not 

including the fixed result). The thalamus also had two compartments with a negative and 

positive frequency shift and the negative frequency shift compartment had a larger volume 

fraction. The frequency shift separation between compartments is similar between the 

putamen and pallidum (around 40ppb for the Laplacian and around 30ppb for the path-

based), which increases in the thalamus (around 50ppb for both Laplacian and path-

based).  

In the CSF a dominant compartment (around 80%) was found with a frequency shift of 

around -20ppb irrespective of whether the Laplacian or path-based data were used in the 

fitting.  The 7T data resulted in a larger frequency shift for the smaller volume fraction 

compartment in comparison to what was estimated based on 3T data. Whilst the fit 

deteriorated with the fixing of frequency shifts for the 3T fitting, the fitting quality was still 

comparable. 
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Figure 5.2 Frequency shifts as a function of the echo point in the six brain regions obtained using the 

Laplacian reconstruction pipeline. Solid lines are the averaged values obtained for the brain region based on 

all participants, and the standard deviation of values is shown with the corresponding colour shaded region 
corresponding to inter-participant variability.  
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Figure 5.3 Frequency shift values as a function of the echo point in the six brain regions obtained using the 
path-based reconstruction pipeline. Plot description as per Figure 5.2.   
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Region Laplace  Path-based 

3T 7T 3T 7T 

Corpus callosum 418 176 292 210 

Caudate 351 147 183 90 

Putamen 173 72 146 60 

Pallidum 251 123 286 122 

CSF 212 117 196 91 

Thalamus 178 100 189 114 

 

 

Region Laplace (3T-7T) Path-based (3T-7T) 

Corpus callosum 7.8 5.5 

Caudate 1.5 1.6 

Putamen 2.5 0.9 

Pallidum 5.1 2.2 

CSF 2.7 1.2 

Thalamus 2.6 2.6 

 

 

Table 5.1 Areas (in units of ppb۰ms) spanned by the variations shown in Figure 5.2 and 5.3, calculated by 
taking the difference between the upper and lower error bounds at each echo point and by summing over 
echo numbers. The variation reduces with increase in the field strength, suggesting that inter-participant 
variability can be mitigated through field strength increases.   

Table 5.2 Fréchet distance (in ppb) calculated between 3T and 7T mean curves for the six brain regions 

based on both Laplace and path-based reconstruction methods. A value of zero implies curves completely 

overlap, whilst increasingly larger values reflect increasingly larger distances between curves.   

Table 5.3 Signal compartment parameters computed based on the Laplacian data. This table summarises 

Δf7T  and Δf3T values which denote 7T and 3T freqeuncy shifts for each of the signal compartments. 

Depending on the region, either two or three columns are shown corresponding to two or three signal 

compartments for that brain region. Respective volume fractions, VF7T and VF3T have been tabulated as well. 

VFfixed refers to volume fractions when 7T frequency shifts were used to fit 3T data. The standard error of 

regression (SER) was calculated based on signal magnitude (M) and phase (P). 
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  Laplacian    

Co
rp

us
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al
lo

su
m

 

∆𝒇𝒇7T (ppb) -77.9 59.6 16.7  

SERM (%) 

 

SERP (%) ∆𝒇𝒇3T (ppb) -65.6 34.1 5.5 

VF7T (%) 44.7 36.1 19.2 7.5 4.1 

VF3T (%) 57.3 24.4 18.3 9.1 5.9 

VFfixed (%) 43.0 38.3 18.7 6.9 8.4 

Ca
ud

at
e 

∆𝒇𝒇7T (ppb) 7.3 -45.5 106.8  

SERM (%) 

 

SERP (%) ∆𝒇𝒇3T (ppb) 3.1 -69.0 143.7 

VF7T (%) 64.3 29.2 6.5 0.3 6.3 

VF3T (%) 74.2 16.6 9.2 0.7 9.8 

VFfixed (%) 66.8 31.2 2.0 0.9 8.5 

Pu
ta

m
en

 

∆𝒇𝒇7T (ppb) -19.4 19.0  

SERM (%) 

 

SERP (%) ∆𝒇𝒇3T (ppb) -19.7 29.8 

VF7T (%) 61.6 38.4 0.9 5.1 

VF3T (%) 58.8 41.2 1.1 7.5 

VFfixed (%) 59.4 40.6 1.5 12.6 

Pa
lli

du
m

 

∆𝒇𝒇7T (ppb) -18.4 21.4  

SERM (%) 

 

SERP (%) ∆𝒇𝒇3T (ppb) -25.5 16.6 

VF7T (%) 78.5 21.5 0.8 13.6 

VF3T (%) 66.4 33.6 1.8 16.9 

VFfixed (%) 68.8 31.2 1.7 18.6 

CS
F 

∆𝒇𝒇7T (ppb) -15.2 107.0  

SERM (%) 

 

SERP (%) ∆𝒇𝒇3T (ppb) -21.5 47.1 

VF7T (%) 79.7 20.3 2.0 4.6 

VF3T (%) 79.9 20.1 4.3 6.7 

VFfixed (%) 84.9 15.1 3.7 8.8 

Th
al

am
us

 

∆𝒇𝒇7T (ppb) -15.6 37.0  

SERM (%) 

 

SERP (%) ∆𝒇𝒇3T (ppb) -25.9 16.0 

VF7T (%) 72.6 27.4 0.7 5.7 

VF3T (%) 55.3 44.7 0.9 8.4 

VFfixed (%) 70.9 29.1 0.8 9.1 
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Path-based 
Co

rp
us
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al
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m
 

∆𝒇𝒇7T (ppb) -60.3 65.8 20.4  

SERM (%) 

 

SERP (%) ∆𝒇𝒇3T (ppb) -44.5 55.7 18.3 

VF7T (%) 51.4 30.6 18.0 4.8 3.9 

VF3T (%) 69.5 21.3 9.2 6.1 5.9 

VFfixed (%) 58.2 21.4 12.4 5.9 6.9 

Ca
ud

at
e 

∆𝒇𝒇7T (ppb) 9.6 -37.2 113.3  

SERM (%) 

 

SERP (%) ∆𝒇𝒇3T (ppb) 6.1 -62.9 165.8 

VF7T (%) 62.1 30.3 7.6 0.2 2.2 

VF3T (%) 79.2 16.5 4.3 0.2 6.1 

VFfixed (%) 53.2 36.4 10.4 0.3 8.4 

Pu
ta

m
en

 

∆𝒇𝒇7T (ppb) -13.7 13.5  

SERM (%) 

 

SERP (%) ∆𝒇𝒇3T (ppb) -12.0 28.8 

VF7T (%) 74.8 25.2 0.6 5.5 

VF3T (%) 81.1 18.9 1.8 8.6 

VFfixed (%) 66.3 33.7 1.7 11.1 

Pa
lli

du
m

 

∆𝒇𝒇7T (ppb) -17.6 18.3  

SERM (%) 

 

SERP (%) ∆𝒇𝒇3T (ppb) -85.0 6.8 

VF7T (%) 90.5 9.5 2.0 15.7 

VF3T (%) 87.3 12.7 4.7 19.9 

VFfixed (%) 71.2 28.8 1.7 16.3 

CS
F 

∆𝒇𝒇7T (ppb) -22.2 98.0  

SERM (%) 

 

SERP (%) ∆𝒇𝒇3T (ppb) -30.7 53.5 

VF7T (%) 80.0 20.0 2.2 4.6 

VF3T (%) 75.8 24.2 3.0 6.6 

VFfixed (%) 89.5 10.5 3.3 4.7 

Th
al

a

m
us

 ∆𝒇𝒇7T (ppb) -12.6 40.5  

SERM (%) 

 

SERP (%) ∆𝒇𝒇3T (ppb) -7.9 50.3 

Table 5.4  Signal compartment parameters computed based on the path-based data. Description of entries 

as per Table 5.3.  
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VF7T (%) 77.1 22.9 0.2 5.9 

VF3T (%) 96.1 3.9 0.6 9.3 

VFfixed (%) 88.2 11.8 0.9 10.0 

 

5.5 Discussion  

We studied echo time dependent non-linear frequency shifts in six human brain regions 

(corpus callosum, caudate, putamen, pallidum, CSF and thalamus). Frequency shifts were 

generated after data were processed using two different QSM pipelines. Our results 

suggest four key findings. Firstly, the temporal trend in frequency shift as a function of 

echo time varied across brain regions and the trend was observed at 7T and 3T. Secondly, 

frequency shifts computed from 7T GRE-MRI data had less variability than those obtained 

using 3T data. This is expected because the signal-to-noise ratio increases with scanner 

field strength. Thirdly, we found the compartment fitting was generally better at 7T as 

opposed to 3T. Finally, compartments can be found irrespective of the field strength and 

processing method used.  

5.5.1 Previous findings on echo time dependence 

Using GRE-MRI data, the frequency shift in white matter voxels varies as a function of 

echo time. It has been suggested that this reflects the influence of fibre orientation with 

respect to the scanner field on temporal signal formation (69). In a previous study that 

simulated the expected frequency shifts as a function of echo time for different white 

matter orientations with respect to the scanner field (80), the largest effect was observed 

when the fibre orientation was perpendicular to the scanner field. We segmented the 

corpus callosum near the mid-sagittal plane where fibre orientation is expected to be 

approximately perpendicular to the scanner field. The trend in the frequency shift curve is 

present and the overlap between 3T and 7T findings is suggestive of compartmental 

influences on 3T and 7T GRE-MRI signals.  

Studies have confirmed a non-linear relationship between the GRE-MRI phase signal 

and echo time (90,130,151). GRE-MRI data could provide information about the 

microstructure of the tissue in white matter by characterizing myelin, axonal and 

extracellular compartments on T2* values (78).  We recently showed echo time 

dependence of frequency shifts and observed different patterns in different brain structures 

including the corpus callosum, caudate, internal capsule, fornix, thalamus, putamen, 

pallidum, insula, red nucleus and substantia nigra (151). Others have observed a non-



104 
 

linear phase accumulation in the GRE-MRI signal (91). This contributes to temporal 

susceptibility trends since susceptibility is derived from phase.  

5.5.2 Signal compartments 

Echo time dependence has been explained in terms of signal compartmentalisation 

(69,78,80). These studies suggest the presence of multiple voxel constituents, which 

additively contribute to the complex voxel signal. Whilst myelin and iron have been 

identified as the largest contributors to variations in susceptibility, it has also been 

suggested that other microscopic contributions, such as packing and organisation, could 

affect frequency shift temporally (158).   

We used two and three compartment signal models based on previously established 

model selection criteria to assess quantitative differences between brain regions. The 

signal compartments obtained using the 7T data were able to explain echo time 

dependence in specific regions at 3T, suggesting that distinct frequency shifts influence 

temporal GRE-MRI signal formation in specific brain regions. For the corpus callosum and 

the caudate, three compartments provided a better fit, whereas for the putamen, pallidum, 

CSF and thalamus, two compartment signal models fit the data. This was observed 

irrespective of whether the Laplacian or path-based method was used.  

For the corpus callosum three distinct frequency shift compartments corresponding to 

axonal and extracellular water and myelin have been defined in the literature (85). Note 

that previous findings have reported myelin T2* values or around 10ms, and myelin has 

been shown to have the shortest T2*. Based on this value, we would expect a 53% myelin 

signal to be present at 6.29ms (first echo at 3T), 37% at 10ms and 14% at 20ms. Hence, 

the shortest T2* compartment should contribute to at least the first four echo points, which 

when up sampled, leads to contributions to 7 out of the 17 echo points.  

White matter regions and their compartments have been studied in three separate 7T 

experiments and they all used a different compartment as reference. This precludes a 

direct comparison of values, but it is still possible to compare the frequency shift difference 

between compartments. Van Gelderen et al. found compartment frequency shift 

separations of 35.8Hz and 7.0Hz in the splenium of the corpus callosum and 31.8Hz and 

5.9Hz in the posterior internal capsule (78). Sati et al.’s results have frequency shift 

separations of 35.9Hz and 6.1Hz (80), and Li et al. found 32.1Hz and 6.3Hz (85). At 7T the 

Laplacian method yielded separations of 28.2Hz (94.6ppb) and 12.8Hz (42.9ppb) and the 

path-based result produced separations of 24.0Hz (80.7ppb) and 13.5Hz (45.4ppb). 
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Thapaliya et al. investigated how frequency shifts across the mid-sagittal plane of the 

corpus callosum vary and found compartmental separations between 15Hz and 35Hz with 

a mean of around 25Hz, and -7Hz to -13Hz with a mean around -9Hz (159). The difference 

between our results and those previously published probably relates to differences in the 

white matter region assessed, and potentially to the compartment model. We segmented 

the corpus callosum between the genu and the splenium with a limited sagittal thickness 

(about 4mm), and it has been shown that compartment values can vary across the mid-

sagittal plane of the corpus callosum (159). Thapaliya et al. and this work used the same 

compartment model, i.e. one with background offset correction, whereas others did not 

use a term for background offset correction. The 3T and 7T Laplacian and path-based 

results were consistent, as implied by the fit when frequency shifts at 3T were fixed 

according to 7T frequency shifts (taking into account differences in field strength).  

 Duyn et al. has demonstrated that field strength influences the visualization of 

anatomical details (11). Furthermore, it was shown that phase data contains intricate 

details which were not present in the magnitude information. Therefore, we decided to 

study the influence of field strength on the multi-compartmental model in different brain 

regions in six participants. We also planned to investigate frequency shift compartments 

using different methods. We expected to see better sensitivity at 7T and we observed a 

higher sensitivity at a higher field strength. We also observed that similar compartments 

that we found at both 3T and 7T. Methodological differences were also found to influence 

compartments.  

5.6 Conclusion 

We investigated frequency shifts as a function of echo time in six human brain regions 

using 3T and 7T GRE-MRI data, and by applying different methods (Laplacian and path-

based) in the QSM pipeline. We performed signal compartmentalisation to quantitatively 

characterise changes due to variations in the scanner field strength. In general, we found 

the compartment model to better fit the 7T data than the 3T data. We also found a good 

agreement between 3T and 7T compartment frequency shifts. Our results suggest that the 

method used to process the data can influence compartment frequency shifts, however 

consistent results can be generated using either method investigated. Signal 

compartmentalisation may lead to the identification of important biomarkers of brain 

diseases provided a consistent processing pipeline is used. 
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Chapter 6 Evaluation of multi-echo QSM in the brain cortex 
using ultra-high field  

We have advanced the GRE-MRI signal compartments to the human cerebral cortex in 

this chapter. As orientation is an important aspect in QSM pipeline, the effect of orientation 

is also explored in the chosen Brodmann areas. 

6.1 Abstract  

The cerebral cortex is formed of different cyto/myelo-architectural regions and, gradient 

recalled echo MRI data has been shown to be sensitive to tissue differences at the 

microscale. The potential use of multi-echo gradient recalled echo MRI data for cortical 

parcellation and the relationship between the derived frequency shift and cortical region 

has not been established. Multi-echo gradient recalled echo measurements were 

performed on a 7T MRI scanner. Four Brodmann areas were considered: BA6 (premotor 

cortex), BA4 (primary motor cortex), BAV1 (primary visual cortex) and BAV2 (secondary 

visual cortex). For each region and in six participants, frequency shift curves were 

generated using a multi-orientation quantitative susceptibility mapping method (i.e. TKD) 

and a single orientation quantitative susceptibility mapping method (i.e. iLSQR). The 

Fréchet distance between echo-time dependent frequency shift curves was measured 

across cortical regions, and curves were also parameterised using a multi-compartment 

signal model. We found echo time dependent frequency shift curves to differ between 

Brodmann areas when both multi- and single orientation reconstruction methods were 

used to generate curves. The frequency shift parameter of the signal model differentiated 

between cortical regions clearly. Our inter and intra-participant analyses suggest the 

potential of parcellating the human cerebral cortex using frequency shift based 

measurements derived from multi-echo gradient recalled echo MRI data.  

6.2 Introduction 

Gradient recalled echo (GRE)-MRI data forms the basis of quantitation of tissue T2* and 

magnetic susceptibility values. Whilst the former is generated from GRE-MRI magnitude 

images, the latter relies on corresponding phase images. With the increased availability of 

ultra-high field MRI scanners (i.e. 7T and above), ultra-high field MRI studies have focused 

on the evaluation of differences between magnitude and phase images. It has now been 
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established that 7T MRI phase images can delineate anatomical structures with superior 

image contrast to magnitude images (11,25). The exquisite phase image contrast 

achieved at 7T has been attributed to tissue composition and architecture in relation to 

proteins, lipids, non-heme tissue iron, and deoxyhemoglobin at cellular and subcellular 

levels (73). These tissue specific MRI image voxel inclusions have been associated with 

microscale spatial variations in magnetic susceptibility, which perturb the MRI scanner 

field. As GRE-MRI data is highly influenced by magnetic field effects, information on tissue 

microstructure and composition is reflected in the voxel signal (69,87,130,150). 

Since biological tissue is highly heterogeneous, and different tissues can have different 

packing and organisation of microstructural components, the orientation of the magnetic 

field of the scanner with respect to tissue orientation/structure induces an orientation 

specific change in the field. This has been confirmed through a demonstration of tissue 

orientation dependence in GRE-MRI data (69). As such, quantitative susceptibility 

mapping (QSM) methods using multiple (e.g. COSMOS (147); TKD (62)) and single 

orientation (e.g. iLSQR  (30), PDF (38), MEDI (50)) data have been developed. To date, 

multiple orientation methods form the standard in terms of mapping tissue susceptibility at 

a single echo time as they demonstrate the least dependence on the orientation of the field 

with respect to the tissue.   

The calculation of susceptibility maps through multiple orientation sampling (COSMOS) 

requires data to be acquired with a minimum of three orientations with 60o differences 

between rotations (147), and many more with head rotations with angles around 10o. 

Therefore, COSMOS is impractical for head imaging applications as data acquisition times 

become unreasonably long. Threshold-based k-space division (TKD), a method which can 

use as few as two or three head rotations, was developed to overcome scanning 

limitations associated with COSMOS (62). Whilst TKD does not perform as well as 

COSMOS, it provides an intermediate between single orientation methods and COSMOS. 

With single orientation QSM methods the biggest challenge is to address the ill-posed 

inverse problem associated with computing a magnetic susceptibility from measured field 

perturbations. The ill-posedness associated with missing data (i.e. under sampling) at the 

magic angle of 54.7o results in streaking artefacts in reconstructed susceptibility maps. 

New reconstruction methods which use regularisation, and magnitude image and tissue 

priors in the QSM pipeline have been developed to reduce streaking artefacts (40,50,54). 

Whilst a number of single orientation methods are able to produce comparable results, the 

iterative sparse linear and sparse least squares (iLSQR) method was shown to be robust 
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(90), and it is routinely used in neuroimaging studies. We should note that multiple 

orientation methods inherently oversample, and methods to correct for streaking artefacts 

are not needed.  

Studies have also investigated the information contained in multiple echo time GRE-

MRI data. It has been proposed that temporal information potentially reflects the 

underlying tissue arrangement or composition (87). Several modelling techniques have 

been implemented to parameterise the sub-voxel susceptibility effects in white matter 

(78,80,85) and grey matter (87). Multi-compartment GRE-MRI signal modelling has been 

investigated as a tool to parameterise the variations in tissue microstructure (87,160,161), 

and specific model parameters may directly link with distinct biological features of complex 

tissues (157). Recently, it was shown that the frequency shift parameter derived from the 

GRE-MRI signal model is likely to be informative about tissue composition (132,157).  

A major challenge in neuroscience is the parcellation of the cerebral cortex within 

individuals into different cyto43myelo-architectural regions (162). Based on existing 

findings on the influences on the multiple echo GRE-MRI signal, we decided to evaluate 

the utility of multiple echo time GRE-MRI data in differentiating between Brodmann areas 

using temporal frequency shift curves generated using multiple (i.e. TKD) and single (i.e. 

iLSQR) orientation quantitative susceptibility mapping pipelines. We also sought to 

establish how the frequency shift parameter generated using an existing multiple echo 

time GRE-MRI signal compartment model varies across specific Brodmann areas.  

6.3 Materials and Methods 

6.3.1 MRI data acquisition  

Imaging protocols were approved by University of Queensland human ethics committee 

and informed written consent was obtained from six female participants aged 31, 30, 31, 

36, 36, and 34. The ages were chosen based on the brain maturing by the age of 27 (163), 

and females in general have thicker cortices than males with a higher number of voxels in 

each region (164). A homogeneous cohort was chosen for a cortical study as the cortical 

thickness varies with gender and age. Measurements were made with a non-flow 

compensated 3D 𝑇𝑇2∗-weighted gradient recalled echo (GRE) sequence on a 7T ultra-high 

field whole-body MRI research scanner (Siemens Healthcare, Erlangen, Germany) with a 

32 channel dedicated head coil (Nova Medical, Wilmington, USA). A 𝑇𝑇1-weighted 

MP2RAGE sequence was also acquired for the same participants with the following 

parameters: TE1 = 3.44ms, TR = 4.3s, voxel size = 0.75mm × 0.75mm × 0.75mm, TI1 = 
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840ms, TI2 = 2.37s, α1 = 5o, α2 = 6o, matrix size = 300 × 320 × 256, bandwidth 250 Hz/Px, 

acquisition time = 6m 54s, and PAT mode = GRAPPA, acceleration factor = 3. We used  

monopolar readouts for 7T acquisitions. 

GRE-MRI data for two different fieldsofview (i.e. slabs across the brain in axial and 

coronal orientation) were acquired, as in Figure 6.1. The acquisition parameters were: TE1 

= 4.5ms, echo spacing = 4.5ms, 10 echoes, TR = 49ms, α = 12, voxel size = 

0.5mm × 0.5mm × 0.5mm, matrix size = 316 × 320 × 96, bandwidth 620 Hz/Px, acquisition 

time = 9m 50s, and parallel acquisition techniques (PAT) mode = Generalized 

autocalibrating partial parallel acquisition (GRAPPA), acceleration factor = 2. For each 

slab, data were acquired four times: two normal (normal1 and normal2), one backward and 

one forward tilts of the head. We aimed to achieve the maximum comfortable head 

rotations (~ 10o) with respect to the normal orientation. Padded neck and head supports 

were used to keep the head held in position in each orientation. Scanner generated data 

were stored as the magnitude and phase images for each channel, and converted to NIfTI 

format via MATLAB® (The MathWorks, Inc., Natick, Massachusetts, United States) scripts.   

6.3.2 Single orientation susceptibility mapping 

The MP2RAGE dataset was used to segment the brain using Freesurfer. The MP2RAGE 

sequence was used as a good quality T1-weighted image is required for processing 

procedures in Freesurfer (156). T1-weighted MPRAGE or MP2RAGE can be used for 

Freesurfer segmentation, however a better GM/WM contrast is observed in MP2RAGE as 

compared to MPRAGE which is important for segmentation (165). MP2RAGE acquires 

data rapidly at two points during inversion recovery, and then it combines two volumes to 

cancel bias fields, therefore making it useful at an ultra-high field strength (7T).  

For cortical reconstruction recon-all command is used in Freesurfer. There are several 

steps involved in the reconstruction using recon-all. With the recon-all command, all 

reconstruction can be performed in one step or step-wise processing can be done. The 

steps involved in recon-all are: Motion Correction, NU (Non-Uniform) Intensity Correction, 

Talairach, Normalization, Skull Strip, Automatic Subcortical Segmentation, EM(GCA) 

Registration, CA Normalize, CA Register, Remove Neck, EM Registration, with skull, CA 

label, Aseg stats, Normalization2, WM segmentation, Cut/Fill, Tessellation, Orig Surface 

Smoothing, Inflation, QSphere, Automatic Topology Fixer, Final Surfaces, Cortical Ribbon 

Mask, Spherical Inflation, Ipsilateral Surface Registration, Contralateral Surface 

Registration, Average Curvature, Cortical Parcellation, and Parcellation Statistics. 
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MP2RAGE data at 7T can cause a bias field and hence Talairach failures. The Talairach 

processing steps are therefore not useful and the directive -notal-check can be used to 

remove Talairach processing. Another method is to use the bias field correction at 7T 

(166). 

To create susceptibility maps, phase data were first background phase corrected then 

converted to susceptibility maps. Magnetic susceptibility ( χ ) maps were generated using 

iLSQR (30) before they were scaled to a frequency shift using 0f Bγχ∆ = , where 

6 -142.577 10 HzTγ = ×  and 0B  is the scanner field strength measured in units of Tesla. Note 

that we opted to compute frequency shifts from susceptibility values by first processing raw 

data using the QSM pipeline. This is in view of Wu et. al.’s recent findings that by using the 

QSM pipeline a more robust fitting of the signal can be achieved (90). Background phases 

were removed using the iHARPERELLA (i.e. Harmonic phase removal using the Laplacian 

operator) method (7), and susceptibility maps were generated using the iLSQR method 

(61). The STI Suite version 2 implementations of iHARPERELLA and iLSQR were used 

(30). Data from each channel was processed separately and susceptibility maps were 

combined using selective combine (167,168). Selective combination of channel data has 

been shown to lead to high quality data. The approach was applied to data from each slab 

in each orientation.  

6.3.3 Multiple orientation susceptibility mapping 

Susceptibility maps were also computed using TKD with three different thresholds: 0.06, 

0.12 (default) and 0.24 (62). The first echo time susceptibility maps of normal2, backward 

and forward orientations in each slab and for each participant were registered onto 

normal1 orientation using MIPAV (46). The registration matrix was applied to all other echo 

time susceptibility maps. Susceptibility maps (in ppm) were converted to frequency shift 

maps (in Hz) at each echo time by multiplying susceptibility images by γB0, where γ = 

42.577MHzT-1 and B0 = 7T in our study. The mapping of frequency shift images from 

susceptibility maps instead of the mapping of frequency shifts directly from background 

phase corrected phase images was justified recently (90). To address method related 

baseline differences in phase offsets, the first echo time frequency shift image was 

subtracted from each subsequent echo time frequency shift image using MATLAB®.  
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6.3.4 Cortical areas 

Four different Brodmann Areas (BA) were chosen based on their microstructural 

differences. The premotor cortex (BA6) and primary motor cortex (BA4) are agranular 

brain regions, whereas the primary visual cortex (BAV1) and secondary visual cortex 

(BAV2) are granular brain regions. Whilst granular regions have a well-developed layer IV, 

agranular regions do not develop this layer. Brain regions were segmented using the 

Brodmann labels available in Freesurfer (156). Figure 6.2 shows the extent of these 

regions throughout the brain. The FreeSurfer Brodmann labels were converted into 

volumetric regions-of-interest (ROIs) and transformed to the native MP2RAGE space 

using mrilabel2vol. Each region was eroded to reduce any partial volume effects, and then 

binarised to form a region mask. The ROIs (obtained after mrilabel2vol) in MP2RAGE 

space were then registered onto the normal1 GRE space data using MIPAV (46). For the 

purpose of presenting the results, a weighted mean frequency shift value across 

participants was computed (since the number of image voxels in a specific region varied 

Figure 6.1 Illustration of the Brodmann areas (i.e. regions-of-interest) and orientations of the two slabs with 

respect to the scanner field, B0. In (a) cortical regions BA6, BA4, BAV1 and BAV2 are shown over an inflated 

brain surface, (b) middle slice of the slab acquired in the axial orientation covering the primary motor cortex, 

BA4, and premotor cortex, BA6. Similarly, in (c) the middle slice of the coronal slab used for data acquisition, 

covering the primary visual cortex, BAV1, and secondary visual cortex, BAV2, is shown.  
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across participants) and standard deviations were pooled across participants. Differences 

between temporal frequency shift curves were established using the Fréchet distance 

(169,170). The Fréchet distance is based on the location and ordering of the points of two 

curves. A value closer to zero suggests curves to be more similar, whereas large Fréchet 

distances imply deviation of curves.    

 

6.3.5 GRE-MRI signal compartment fitting  

Parameterisation of echo time dependent signals (S) was performed using an existing 

multi-compartment model (171): 
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where tE is echo time, and 𝐴𝐴𝑛𝑛 are water fractions, 𝑇𝑇2,𝑛𝑛
∗  are relaxation times and ∆𝑓𝑓𝑛𝑛  are 

frequency shifts associated with each compartment. Here, residual background effects not 

removed using the susceptibility pipeline are accounted for by ∆𝑓𝑓𝑏𝑏𝑏𝑏 and 𝑁𝑁 defines the 

number of signal compartments in the model. Values of 𝐴𝐴𝑛𝑛 are presented as a fraction of 

the total signal. The computed frequency shifts were multiplied 1/3, which is the Lorentzian 

Figure 6.2 ROIs (premotor cortex BA6, primary motor cortex BA4, primary visual cortex BAV1, and 

secondary visual cortex BAV2) shown on different slices in (a) coronal, (b) axial, and (c) sagittal orientation. 
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sphere correction (73). We resampled our 10 echo point data to 19 echo points using the 

interp1 function in MATLAB®, simply to aid the convergence rate of the lsqnonlin 

optimisation algorithm also in MATLAB®. Differentiability of the data collected can be 

assumed at any echo point collected, since magnitude and frequency shifts evolve 

smoothly as a function of echo time. Nam et al. computed 𝐴𝐴𝑛𝑛’s based on data with 16, 24 

and 32 echo points, and found 16 echo points to be adequate for a three (i.e. N = 3) 

compartment model (81). 

6.4 Results 

An example of the ten echo point GRE-MRI data collected within each of the two slabs are 

depicted in Figure 6.3. Any residual phase errors in the cortex were corrected by 

calculating phase offsets with the model used by Nam et al. (171). Shown are the 45th slice 

magnitude images, TKD and normal1 orientation based frequency shift images in both 

slabs. The images confirm the expected loss in signal amplitude in magnitude images with 

echo time, and both TKD and single orientation frequency shift maps elucidate variations 

with echo time. Based on such data in six participants, we analysed temporal trends in 

frequency shift curves in BA6, BA4, BAV1 and BAV2, we measured distances between 

curves to establish how systematically curves change within participants and across 

regions, and performed signal compartmentalisation to be able to describe how 

compartment model parameters vary as a function of region and magnetic field orientation.   
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Figure 6.3 Shown are representative images from the 45th slice of the axial slab in the first participant. 

Depicted are echo time dependent (A) magnitude images and (B) tissue phase images in the axial slab, and 

similarly (C,D) depict the images from the coronal slab.        
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6.4.1 Trends in temporal frequency shift curves in cortical regions   

Figure 6.4 provides the frequency shift plots as a function of echo point based on multi 

(TKD) and single orientation (normal1, normal2, backward and forward) data. We set three 

different threshold values in the TKD method. A higher TKD threshold value results in 

lower frequency shift values, but the curves as a function of echo time retain a similar 

shape. In fact, their shape is also consistent across brain regions but the curve height is 

region dependent. The variation, as measured using the pooled standard deviation across 

participants, is relatively high for short echo times and then decreases irrespective of the 

TKD threshold set or the region investigated. These results suggest that the longer echo 

time TKD results become more consistent across participants.  

In terms of the single orientation frequency shift curves, the curves as a function of 

echo number tend to vary both as a function of orientation and region. In addition, the 

variation across regions is non-systematic, e.g. a forward head rotation leads to a 

decrease in frequency shift curve height in BA4 and an increase in BAV1 with respect to 

other curves. Whilst these curves show a level of spreading with echo point, both in terms 

of the mean and standard deviation, their general trend is consistent within each brain 

region. The pooled standard deviation is relatively low for small echo points and increases 

with echo time. However, in the case when standard deviations are scaled by the 

corresponding echo point means (i.e. coefficient of variation; curves not shown), in BA6 we 

consistently obtain a variation in the range of 30% to 50% and larger values occur at larger 

echo points. In BA4 the coefficient of the variation as a function of echo point is in the 

range of 30% to 40% and for BAV1 and BAV2 the ranges increases to 60% to 120%. 

Notably, each region is of different size (i.e. different number of voxels) with different levels 

of complexity defined by the amount of cortical folding. In particular, BA6 is the largest 

region and an averaging out effect may explain a reduced coefficient of variation. The 

statistical significance of these results is established via differences in the signal 

compartment model parameters to follow. 

Figure 6.4 Weighted average frequency shift curves and corresponding pooled variances (both in Hz) as a 

function of echo number are shown for BA6, BA4, BAV1 and BAV2. Plots have been generated based on 

three different thresholds (0.06, 0.12 – default, 0.24) in the TKD method, and using four head positions 

(normal1, normal2, backward, forward) with the single orientation data reconstruction pipeline. 
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6.4.2 Difference measure between temporal frequency shift curves  

Figure 6.5 provides the result based on the distance between frequency shift curves in 

individual participants. Two general observations can be made about these results. Firstly, 

irrespective of the participant, the Fréchet distance across regions follows the same trend. 

This suggests that curves are specific to brain regions investigated. Secondly, the trend in 

the Fréchet distance is consistent across participants. That is, frequency shift curves are 

systematically different for each participant and greater than zero.  

We may also make some more specific observations based on the different 

approaches and orientations used to generate frequency shift curves. The largest changes 

Figure 6.5 Plots of the Fréchet distance between frequency shift curves for each of the six participants (P1-

P6). The regions between which the Fréchet distance  calculated are shown on the horizontal axes. Results 

are provided for three TKD thresholds (0.06, 0.12 – default, 0.24) and for three orientations (normal1, 

backward and forward). Note that, normal2 results were consistent with normal1 results.  
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in the Fréchet distance were obtained using a TKD threshold of 0.06. However, both the 

0.12 and 0.24 TKD threshold frequency shift curves of regions are differentiable. In the 

case of the single orientation data, the Fréchet distance is always larger than zero, and the 

orientation has a large impact on curve separability (e.g. compare normal1 with   Figure 

6.5). In addition, the trend across regions is different to those obtained using the TKD 

result. With respect to the TKD approach, the most similar frequency shift curves are BA6 

and BAV2, and based on single orientation data it is consistently BA6 and BAV1. 

However, irrespective of the processing approach, the result suggests that frequency shift 

curves are different for the four brain regions investigated. 

 

 

 

 

 

 

  

Figure 6.6 T2* and frequency shift parameter results obtained using a single (N = 1) signal compartment 

model based on the TKD data. Depicted are results for the three different TKD thresholds (0.06, 0.12 – 

default, 0.24) of  the four regions. Error bars represent one standard deviation from the mean. Significant 

differences are summarised in Table 6.1. 
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6.4.3 Test of signal compartment model parameters across cortical regions  

Based on an information criterion assessment, as used previously (157), a one signal 

compartment model was able to explain the trend in the TKD frequency shift curves and, 

two signal compartments were required for each of the single orientation frequency shift 

curves. In the case of the results shown in Figure 6.6, the TKD threshold was found to 

influence both the T2* and frequency shift values. The trend in both parameters as a 

function of region remained the same regardless of the TKD threshold. From the t-test 

results in Table 6.1 we conclude that T2* is unable to differentiate between all regions and 

a higher TKD threshold results in less differentiation. However, the frequency shift 

Figure 6.7 Results of a two compartment (N = 2) model fitting of single orientation frequency shift curves for 

each of the regions. Shown are the volume fractions corresponding to each compartment, and 

corresponding T2* and frequency shift parameter values. Error bars correspond to one standard deviation 

from the mean; 1 and 2 on the horizontal axes refer to the two signal compartments. Significant differences 

have been summarised in Table 6.2.  
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parameter could be used to differentiate between regions investigated, except when the 

TKD threshold was 0.24 (see p-value = 0.059 corresponding to BA4-BAV1).   

Similarly,  Figure 6.7 summarises the two signal compartment model parameter results 

and Table 6.2  depicts findings based on the t-test. Overall, the frequency shift parameters 

show lower orientation dependence than volume fractions and T2* values. The data 

suggest a shorter and a longer T2* compartment with the short T2* compartment having a 

larger volume fraction. Both volume fraction and T2* values are affected by head rotation. 

The frequency shift parameter is mostly affected only in the BA4 region, and other regions 

remain consistent across orientations. These results are confirmed by the statistical tests 

(see Table 6.2). The results suggest that the volume fraction and T2* could not differentiate 

all brain regions, whereas the frequency shift parameter is able to distinguish between all 

brain regions. Whilst the frequency shift curves in Figure 6.4 are qualitatively different 

across cortical regions studied, they can potentially be differentiated using a signal 

compartment model based on either multiple or single orientation GRE-MRI data.  

 

  𝐓𝐓𝟐𝟐∗ (p-value) ∆𝒇𝒇 (p-value) 

TKD-threshold 0.06 0.12 0.24 0.06 0.12 0.24 

BA6/BA4 0.014 0.016 0.021 4E-06 1E-05 0.005 

BA6/BAV1 0.009 0.009 0.009 0.017 3E-04 0.006 

BA6/BAV2 0.004 0.004 1E-06 0.003 0.010 0.004 

BA4/BAV1 2E-07 0.491 0.253 4E-05 4E-04 0.059 

BA4/BAV2 0.058 0.273 0.115 8E-06 3E-05 0.001 

BAV1/BAV2 0.117 0.702 0.127 5E-04 1E-06 6E-04 

 

                                                                                           Volume Fraction (p-value) 

ORIENTATION  BA6 BA4 BAV1 BAV2 

Normal1 
BA6  0.780 2E-04 0.003 

BA4 0.767  0.001 0.024 

Table 6.1 Two-tailed t-test p-values for the T2* and frequency shift (∆𝑓𝑓 ) parameters obtained using the 

single (N = 1) compartment model applied to the TKD data. Non-significant values have been italicised.  

Table 6.2 Two-tailed t-test p-value results for the T2* and frequency shift (∆𝑓𝑓) parameters obtained using the 

signal compartment model applied to the single orientation data. The row and columns define the regions 

tested. The p-values in the grey shaded region correspond to the first signal compartment parameters, and 

the white shaded boxes correspond to the second signal compartment parameters. Non-significant values 

have been italicised.  
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BAV1 2E-04 0.001  0.106 

BAV2 0.003 0.024 0.106  

Normal2 

BA6  0.009 1E-05 0.039 

BA4 0.009  4E-05 0.007 

BAV1 3E-04 2E-04  0.126 

BAV2 0.039 0.007 0.041  

Backward 

BA6  0.132 1E-05 0.035 

BA4 0.132  9E-05 0.060 

BAV1 1E-05 1E-04  0.003 

BAV2 0.035 0.061 0.003  

Forward 

BA6  3E-04 5E-04 0.002 

BA4 3E-04  0.120 0.619 

BAV1 5E-04 0.120  0.276 

BAV2 0.002 0.617 0.277  

T2* (p-value) 

Normal1 

BA6  0.387 0.164 0.300 

BA4 2E-06  0.091 0.182 

BAV1 7E-07 7E-05  0.619 

BAV2 2E-06 0.002 5E-05  

 

Normal2 

 

BA6  0.047 0.324 0.111 

BA4 6E-06  0.142 0.722 

BAV1 2E-08 1E-04  0.418 

BAV2 5E-06 0.003 0.001  

Backward 

BA6  0.647 7E-05 0.457 

BA4 9E-05  0.003 0.315 

BAV1 5E-09 0.023  0.008 

BAV2 2E-05 0.003 0.023  

 

Forward 

 

BA6  0.980 0.980 0.015 

BA4 7E-07  0.673 0.050 

BAV1 4E-06 2E-06  0.018 

BAV2 6E-05 0.001 0.610  

∆𝒇𝒇 (p-value) 

Normal1 

BA6  4E-04 1E-05 6E-06 

BA4 0.010  2E-05 1E-05 

BAV1 1E-07 5E-05  7E-06 

BAV2 2E-07 3E-05 8E-06  

Normal2 

BA6  0.009 3E-06 2E-06 

BA4 0.010  0.009 5E-05 

BAV1 4E-06 2E-05  5E-06 

BAV2 5E-07 5E-06 5E-07  



123 
 

Backward 

BA6  5E-04 2E-04 5E-06 

BA4 0.002  2E-04 1E-06 

BAV1 2E-07 0.001  3E-06 

BAV2 2E-07 2E-04 3E-04  

Forward 

BA6  4E-04 2E-04 8E-06 

BA4 2E-05  6E-04 3E-06 

BAV1 7E-06 2E-04  9E-06 

BAV2 2E-07 3E-05 3E-04  

 

6.5 Discussion  

We investigated the potential use of temporal frequency shift curves generated using 

multiple and single orientation QSM pipelines for the purpose of parcellating cortical 

regions. We found frequency shift curves generated using TKD, the multi-orientation 

approach, were able to differentiate between the four Brodmann areas investigated (BA6, 

BA4, BAV1 and BAV2). The frequency shift parameter generated from the TKD-based 

frequency shift curves using signal compartmentalisation was also specific to brain 

regions. The best results were obtained using TKD thresholds of 0.06 and 0.12. We 

performed the same analysis on four different head position GRE-MRI data and 

reconstructed frequency shift curves using a single orientation quantitative susceptibility 

mapping pipeline. Our single orientation method was also able to differentiate Brodmann 

areas, both in terms of frequency shift curves and through the frequency shift parameters 

obtained from signal compartment modelling of the temporal GRE-MRI signal. Our 

analysis suggests that multi-echo GRE-MRI data with signal compartment modelling of 

frequency shifts can potentially lead to cortical parcellation.      

MRI produces rich soft tissue contrast as signals are a function of multiple factors, 

including tissue relaxation times. Studies have investigated the use of T1  (172), a 

combination of T1 and T2 (162) and T2* (173) relaxation times to parcellate the cerebral 

cortex. Other methods, based on brain connectivity derived from MRI diffusion 

measurements have also been applied (174). In general, current methods provide 

insufficient sensitivity to be able to parcellate the brain robustly in individuals. Notably, a 

recent large-scale effort did result in excellent cortical parcellation in the human brain 

(162), however multi-modal data was used in a group study. Thereby, how to parcellate 

cortical regions based on individual participant in vivo MRI data remains an open question. 

Our frequency shift curve results (refer to Figure 6.4 and  6.5) suggest that multi-echo 

GRE-MRI data may lead to cortical parcellation of the human brain in individuals.  
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6.5.1 Echo time dependent trends in frequency shift curves 

It has been shown that 7T GRE-MRI frequency shift maps exhibit contrast due to 

variations in cortical layering, resulting in an induction in magnetic field changes due to 

spatial variations in magnetic susceptibility (2, 30, 31). Based on physical models and 

GRE-MRI signal formation, the inclusion of magnetic susceptibility constituents within a 

voxel have been proposed to result in non-linear trends in phase evolution with echo time. 

Specifically in white matter, the differences in the properties between the extra-cellular, 

axonal and myelin spaces have been shown to result in characteristic changes which are 

influenced by microstructural variations and orientation with respect to the static field of the 

magnet (69,73,78,81). In a different study it was shown that the corpus callosum 

microstructure influences frequency shift curves in characteristic ways (159) and in 

multiple sclerosis frequency shift curves are affected by lesion formation and potentially 

form a biomarker of disease (152). We previously investigated echo time dependence in 

quantitative susceptibility mapping in the human brain in general, and found unique curves 

for different brain regions (87). Findings of existing studies motivated us to investigate the 

existence of unique frequency shift curves in cortical gray matter regions of known 

cyto/myelo-architecture differences. Our findings suggest the presence of different 

temporal frequency shift curves for different cortical regions. In terms of parcellating the 

cerebral cortex, we have shown that a measurement of curve difference (see Figure 6.5) 

or  parametrising the curves (see Figure 6.6 and Figure 6.7) can potentially advance the 

field of in vivo cortical parcellation using GRE-MRI data.  

6.5.2 Signal compartment model parameter variations 

Whilst we have shown using the Fréchet distance (see Figure 6.5) that the four Brodmann 

areas had different characteristic frequency shift curves, they cannot be interpreted in a 

straightforward manner. Signal compartment model parameters provide a mechanistic 

approach of evaluating differences in frequency shift curves. Previous studies have 

demonstrated signal compartment model parameter variations across the human brain 

(81,87,157), which were reported to be influenced by variations in tissue microstructure 

and voxel constituents. We have previously established, based on single orientation multi-

echo GRE-MRI data, variations in the frequency shift parameters when regions such as 

the substantia nigra, pallidum and insula are sub-segmented into sub-regions of different 

cyto-architecture (87). Based on such existing findings, we hypothesized that the 

differences in cortical cyto/myelo-architecture lead to differences in signal compartment 

model parameters. Figure 6.6, generated using multi-orientation data, and Figure 6.7 
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based on four different single orientation data, suggest changes in the frequency shift 

parameter with cortical region.  

Our findings imply the frequency shift parameters are able to best discriminate regions 

in comparison to volume fractions and T2* values. Hence, for cortical parcellation, the focus 

should be on mapping spatial variations in frequency shifts. The challenge for the single 

orientation approach, however, will be to decide which frequency shift belongs to which 

signal compartment (note, two signal compartment models give two frequency shifts for 

each voxel). Our results imply a larger and a smaller volume fraction signal compartment, 

a potentially useful observation in associating frequency shifts with signal compartments 

(refer to Figure 6.7). The T2* value may not be as beneficial in defining compartments, 

since BA6 has two relatively small T2* value compartments whilst other regions have a 

pronounced difference in T2* values between signal compartments. We should also point 

out that compartment models have been shown to be affected by T1 influences (176), 

which is not accounted for in the signal compartment model defined in Equation (6.1). T1 

effects not modelled may perturb volume fractions along with T2* values, but frequency 

shifts remain unaffected.       

6.5.3 Multiple versus single orientation data 

We considered the use of a practically applicable multiple orientation method (i.e. TKD) 

and a commonly used single orientation susceptibility mapping method to generate 

frequency shift curves. It has previously been shown that single orientation data is 

influenced by the orientation of the static magnetic field of the scanner with respect to, for 

example, white matter fibre bundles (80) (69,81). In addition, multiple orientation methods 

have been shown to be more robust as the magnetic susceptibility inverse problem based 

on a field change is well-posed (12). Nonetheless, it is important to investigate the use of 

single orientation methods as data only has to be acquired in one orientation, whereas we 

used four data acquisitions in this study for the TKD approach. Note that in other multi-

orientation approaches, such as COSMOS, an even larger number of orientations are 

needed when head rotations are limited to about 10o differences (147). Essentially, in this 

study the single orientation approach tested required data to be acquired for 9m 50s for a 

single slab. The TKD data took four times this amount plus a 6m 54s MRP2RAGE whole 

brain scan for registration of the multiple field orientation slabs. With the potential adoption 

of a single orientation pipeline, multi-echo GRE-MRI data could be acquired over the entire 

brain under 10 minutes (assume 1mm3 isotropic resolution with a repletion time of 45ms 

and 10 echo points).     
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6.5.4 Methodological considerations 

We should note that both the TKD method and the single orientation QSM pipeline are 

post-processing approaches applied to complex GRE-MRI data. In essence, they perform 

filtering and mapping of the data to a new space, i.e. spatially resolved maps of magnetic 

susceptibility for the voxel, which we then directly convert to an induced frequency shift. 

With this in mind, we may consider our comparison as the comparison of two post-

processing methods, which produce different outputs (compare individual curves in Figure 

6.4). With this in mind, a previous study suggested that post-processing influences the 

trends in the frequency shift curves (177). In our case, this is unlikely to be a problem, 

since we sought differences across brain regions, and a consistency in the processing was 

maintained. The TKD-based frequency shift plots were able to be fitted using a single 

compartment model, and two compartments were needed for the single orientation data 

(see Figure 6.6 and Figure 6.7). It is also plausible that the TKD approach loses out on an 

extra signal compartment simply due to how the data are processed (note that existing 

theoretical work suggests GRE-MRI data are influenced by microstructural variations, 

leading to multiple signal compartments for voxels (55)). However, this would have to be 

evaluated, which is not within the immediate scope of our work. Whilst studies have used 

phase images for the direct generation of frequency shift maps (81,152,159), two works 

have pointed out the benefits of using quantitative susceptibility maps and then converting 

them to frequency shift maps (111,178). We opted for the later approach based on existing 

evidence. 

It is established that orientation plays a major role in the computation of susceptibility 

maps. It was planned to use two methods to study a multi-compartment model in the 

cerebral cortex to confirm the existence of compartments in the cortex and how they are 

influenced by orientation. One method included orientation information and the other 

method used single orientation data. We found that compartments exist in the cerebral 

cortex and they are influenced by orientation. Interestingly, we also found that frequency 

shifts can differentiate different cortical regions. A very homogeneous group of six 

participants was chosen for the cortical study. A variation in results is expected when more 

participants are involved (both male and female). 
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6.6 Conclusion 

We set out to investigate the potential use of multiple echo time GRE-MRI data for the 

parcellation of the cerebral cortex. We evaluated and compared frequency shift curves 

derived from the data in four Brodmann areas and found them to differ across the cortical 

regions investigated. In addition, using a signal compartment model, we parameterised the 

curves and found the frequency shift parameter to be most differentiating for regions, in 

comparison to the MRI voxel volume fractions and T2* values. Our findings suggest that 

multiple echo time GRE-MRI data, with the processing of frequency shifts, can potentially 

lead to the parcellation of the cerebral cortex in individuals.    
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Chapter 7 Conclusions and Future directions 

This thesis focussed on how temporal GRE-MRI signals can inform us about tissue 

microstructure and composition. In Chapter 3, it was shown that susceptibility curves over 

echo time were specific for each brain region investigated. A multi-compartmental GRE-

MRI signal model was used to assess influences on the GRE-MRI data. The compartment 

values may possibly indicate the underlying tissue’s composition and microstructure. 

Therefore, parameterisation of image voxel susceptibility compartments may possibly lead 

to biologically meaningful measures in both health and disease. This study was published 

in Magnetic Resonance in Medicine (87). In this work individual channel data were 

processed individually before images were combined. Bollmann et al. has referred to our 

work and stated that our approach leads to improved quality of susceptibility maps (168). 

Another research group has also cited our work and explained how channel-by-channel 

processing preserves details in individual channel phase data (179). Hence, the phase 

becomes more sensitive to microstructural changes. We have demonstrated that nonlinear 

phase evolution may contain information on tissue properties. A recent study has also 

confirmed the nonlinear phase evolution hypotheses over the echo time (180). Referring to 

our work, Thapaliya et al. also used signal compartments at voxel level in the GRE-MRI 

phase signal in white matter and demonstrated that GRE-MRI compartments indicate 

tissue microstructure (159).  

In Chapter 5 we investigated how GRE-MRI signals vary as a function of field strength, 

and processing pipeline. The frequency shift computed from susceptibility maps exhibited 

a good correspondence between 3T and 7T data, however a higher variation in frequency 

shifts was present at 3T. We also demonstrated that the data processing pipeline 

influences the multi-compartment results, but the results had the same trends.  

In Chapter 6 we examined the influence of orientation on the GRE-MRI signal. 

Frequency maps from single orientation temporal GRE-MRI data were compared to 

frequency maps from TKD, which used data from three different orientations. Although 

there were differences in the frequency shift compartments calculated from a single 

orientation and TKD, distinct frequency shift compartments were found for structurally 

different areas. 

The primary work from Chapters 3 to 6 led to a collaborative work titled ‘Frequency 

shifts in mGRE-MRI signal compartments reflect underlying tissue microstructure in the 

brain’ (159). We used a data driven method to determine the number of compartments and 
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frequency shifts within distinct brain structures studied in Chapter 3. There were five major 

frequency shift signal compartments identified across the nine human brain regions. It was 

also analysed whether similar compartments exist in different brain regions. As Figure 7.1 

shows, five major frequency compartments (-27.5Hz, -8.4Hz, 4.6Hz, 17.5Hz, and 29.5Hz) 

were found in gray and white matter regions and CSF. It can be seen in Figure 7.1  that 

gray matter structures such as the insula, caudate, putamen, and substantia nigra share 

17.8Hz and 4.6Hz frequency compartments, and the white matter structures such as the 

internal capsule, corpus callosum and fornix share the -27.5Hz and -8.4Hz frequency shift 

signal compartments. Frequency shift compartments in all brain regions reflected their 

biophysical origin such as axonal water, proteins, iron concentration, ferritin and transferrin 

bound iron. It strengthens our findings that frequency shifts are indicative of varying tissue 

microstructure. Therefore, our GRE-MRI signal compartment work is expanding and could 

be more sensitive with improved modelling and processing techniques.  

 

Figure 7.1 A connection map of compartment frequency shifts and volume fractions for all ROI. The akaike 

information criterion (AIC) -based centroids identified using a cluster analysis are shown on the frequency 

axis, and the size of the compartments represented using different sized circles are presented vertically. 

Each region has been connected to their respective compartment frequency shift values. The regions have 

been arranged in an order which minimizes the number of overlapping lines, simply to assist with the 

visualization of signal compartment volume fractions and their frequency shifts. 
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Multi-echo gradient echo sequences have been already implemented in assessing 

myelin, axonal and extracellular compartments in white matter architecture and the 

compartments have shown to be affected by orientation and tissue microstructure 

(70,73,181). Myelin is the main constituent of white matter and variations in myelin have 

been associated with neurodegenerative diseases such as Alzheimer’s disease, traumatic 

brain injury and multiple sclerosis (182–184). Myelin sheath consists of lipids and proteins 

and they induce specific susceptibilities as lipids have higher magnetic susceptibility than 

proteins (158,185,186). Hence, tissue specific susceptibilities contribute to induced 

magnetic susceptibility in the GRE signal. Largely, magnetic susceptibility is known to be 

contributed by iron and myelin (12,65). QSM has been successfully applied in measuring 

variation in tissue iron stores (53,102). The induced susceptibility is thus reflected by 

composition and structures captured using the GRE-MRI data acquisition. Hence, our work 

can potentially be extended to characterize iron deposition, myelin composition, and 

vasculature in neurodegenerative and psychiatric diseases.  

Another future application of GRE-MRI signal compartments is in the assessment of 

the layering of cortical structures in the human brain. Referring to our abstract titled 

“Contribution of cortical layer cytoarchitecture to quantitative susceptibility mapping” 

(presented in Organization for Human Brain Mapping (OHBM), 2016), the human cortical 

structure exhibits a contrast within the cortical layers which is contributed by varying 

cytoarchitecture, myeloarchitecture  and iron content (92,187). Studies have shown that 

using the gradient echo sequence at 7T, susceptibility based imaging (SWI) can assess 

the laminar structure of the cortex (188,189). Advancing the SWI based study, we 

analysed cortical microstructural influences in quantitative susceptibility distribution across 

multiple echo time from gradient recalled data acquired at 7T. The results demonstrated 

that heterogeneity in cortical layered structures influences quantitative susceptibility 

mapping. This analysis could potentially give an insight into the cortical laminar structure 

related disorders. 

We identified distinct temporal quantitative susceptibility mapping trends as a function of 

the gradient recalled echo MRI echo time in human brain regions and, a compartmental 

model was used to interpret the trends in the regions. It was demonstrated that GRE-MRI 

signal compartments exist in the human brain regions studied, and model parameters vary 

with region. We demonstrated the presence of signal compartments in both 3T and 7T 

GRE-MRI data. The methods were applied to elucidate the potential of parcellating the 

human cerebral cortex into cyto-myelo-architecturally different regions. In conclusion, we 

https://www.sciencedirect.com/topics/neuroscience/myelin
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established that GRE-MRI signal compartments are present and are indicative of 

underlying variations in tissue microstructure in the human brain. This work could provide 

a framework for non-invasively assessing tissue microstructure integrity.  
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Appendices 

Appendix 1.  
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Supporting Figure I The Three-compartment model fit across echo time to acquire data for the ten brain 

regions over echo times: (a) fornix, (b) caudate, (c) red putamen (d) internal capsule (e) corpus callosum (f) 

red nucleus  (g) thalamus (h) insula (i) pallidum and (e) substantia nigra. The Solid line is the fitted curve and 

dots represent the measured data. 

Supporting Figure II. The Three-compartment model fit across echo time to acquire data for segmented sub-

regions of the (a) compact substantia nigra (b) reticular substantia nigra, (c) internal pallidum, (d) external 

pallidum, and (e) anterior insula, and (f) posterior insula over echo times. The Solid line is the fitted curve 

and dots represent the measured data. 
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Supporting Figure III. Magnitude images and quantitative susceptibility maps at three different echo times 

(TE). 
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Appendix 2. 
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Appendix 3. 

It is hypothesized that phase data is non-linear across echo time. The data from Chapter 5 

is used to perform linear regression in six regions and at both 3T and 7T. The R2 (R 

Square) and y=mx+b (formula for best fitting or regression line, where m is the slope and b 

is the intercept) are also computed. R-square is a measure of how close the data is to the 

fitted regression line. 

Corpus callosum 3T 

 

 

 

 

 

 

 

 

 

 

 

Corpus callosum 7T 

Supporting Figure IV(a). Blue dots represent the data points and the dashed blue line is the linear 
regression. R2 = 0.59 and y = 3.24x-6.33 
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CSF 3T 

 

 

CSF 7T 

Supporting Figure IV(b). Blue dots represent the data points and the dashed blue line is the linear 
regression. R2 = 0.32 and y= 2.8x-19.77 

Supporting Figure V(a). Blue dots represent the data points and the dashed blue line is the linear regression. 
R2 = 0.97 and y= -4.9x+0.81 
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Caudate 3T 

 

 

 

  

Caudate 7T 

Supporting Figure V(b). Blue dots represent the data points and the dashed blue line is the linear regression. 
R2 = 0.96 and y= -11.57x+3.74 

Supporting Figure VI(a). Blue dots represent the data points and the dashed blue line is the linear 
regression. R2 = 0.97 and y= 16.46x-27.09 
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Putamen 3T 

 

 

Putamen 7T 

Supporting Figure VI(b). Blue dots represent the data points and the dashed blue line is the linear 
regression. R2 = 0.94 and y=15.01x-32.01 

Supporting Figure VII(a). Blue dots represent the data points and the dashed blue line is the linear 
regression. R2 = 0.39 and y= -3.51x+14.06 
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Pallidum 3T 

 

 

Pallidum 7T 

Supporting Figure VII(b). Blue dots represent the data points and the dashed blue line is the linear 
regression. R2 = 0.98 and y= -8.69x+6.22 

Supporting Figure VIII(a). Blue dots represent the data points and the dashed blue line is the linear 
regression. R2 = 0.95 and y= -37.16x+58.75 
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Thalamus 3T 

 

 

Thalamus 7T  

Supporting Figure VIII(b). Blue dots represent the data points and the dashed blue line is the linear 
regression. R2 = 0.99 and y= -25.89x+21.81 

Supporting Figure IX(a). Blue dots represent the data points and the dashed blue line is the linear 
regression. R2 = 0.90 and y= -21.15x+43.33 
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Supporting Figure IX(b). Blue dots represent the data points and the dashed blue line is the linear 
regression. R2 = 0.97 and y= -13.28x+23.91 
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Appendix 4. 

As it is already explained in Section 5.3.2 to assist convergence to an optimal solution, we 

up sampled our nine echo point complex signal to 17 echo time points (i.e. inserted one 

echo time point between all measurements) using the interp1 function in MATLAB®. Nam 

et al. (81) computed myelin water fraction maps using 16, 24 and 32 echo time points, and 

found 16 echo time points were able to produce consistent fitting as measured by 

parameter variations. To further support our findings, the 30 echo data from the study in 

Chapter 3 was reduced to 15 echo monopolar data by removing every second echo. 

Susceptibility maps were computed for the 15 echoes. 7 more middle echoes were 

removed from the 15 echo data set reducing it to an 8 echo data set. An eight echo data 

set was up sampled to a 15 echo data set with interp1 function in Matlab®. This up 

sampled data is compared to the monopolar data computed earlier. With the assumption 

from Nam et al., we found the data evolves smoothly as a function of echo time. We found 

up sampled points are highly similar to the monopolar points. The up sampling is 

performed in the caudate, internal capsule, red nucleus, corpus callosum, thalamus, 

pallidum, substantia nigra, putamen, fornix, and insula as shown below in the figures: 

 



158 
 

 

 

 

 Supporting figure X(a) shows averaged susceptibility across five participants (black solid line-circle data 
points) and standard deviation (red dashed line) in the Caudate for 15 echoes reduced from 30 echo data by 
removing every second echo. 

Supporting figure X(b) shows averaged susceptibility across five participants (black solid line-circle data 
points) and standard deviation (red dashed line) in the Caudate for 15 echoes up sampled from 8 echoes. 



159 
 

 

 

 

Supporting figure XI(a) shows averaged susceptibility across five participants (black solid line-circle data 
points) and standard deviation (red dashed line) in the internal capsule for 15 echoes reduced from 30 echo 
data by removing every second echo. 
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Supporting figure XI(b) shows averaged susceptibility across five participants (black solid line-circle data 
points) and standard deviation (red dashed line) in the internal capsule for 15 echoes up sampled from 8 
echoes.. 

Supporting figure XII(a) shows averaged susceptibility across five participants (black solid line-circle data 
points) and standard deviation (red dashed line) in the red nucleus for 15 echoes reduced from 30 echo data 
by removing every second echo. 

. 
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Supporting figure XII(b) shows averaged susceptibility across five participants (black solid line-circle data 
points) and standard deviation (red dashed line) in the red nucleus for 15 echoes up sampled from 8 echoes. 
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Supporting figure XIII(a) shows averaged susceptibility across five participants (black solid line-circle data 
points) and standard deviation (red dashed line) in the corpus callosum for 15 echoes reduced from 30 echo 
data by removing every second echo. 

Supporting figure XIII(b) shows averaged susceptibility across five participants (black solid line-circle data 
points) and standard deviation (red dashed line) in the corpus callosum for 15 echoes up sampled from 8 
echoes. 
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Supporting figure XIV(a) shows averaged susceptibility across five participants (black solid line-circle data 
points) and standard deviation (red dashed line) in the thalamus for 15 echoes reduced from 30 echo data by 
removing every second echo. 
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Supporting figure XIV(b) shows averaged susceptibility across five participants (black solid line-circle data 
points) and standard deviation (red dashed line) in the thalamus for 15 echoes up sampled from 8 echoes. 

Supporting figure XV(a) shows averaged susceptibility across five participants (black solid line-circle data 
points) and standard deviation (red dashed line) in the pallidum for 15 echoes reduced from 30 echo data by 
removing every second echo. 
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Supporting figure XV(b) shows averaged susceptibility across five participants (black solid line-circle data 
points) and standard deviation (red dashed line) in the pallidum for 15 echoes up sampled from 8 echoes. 
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Supporting figure XVI(a) shows averaged susceptibility across five participants (black solid line-circle data 
points) and standard deviation (red dashed line) in the substantia nigra for 15 echoes reduced from 30 echo 
data by removing every second echo. 
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Supporting figure XVI(b) shows averaged susceptibility across five participants (black solid line-circle data 
points) and standard deviation (red dashed line) in the substantia nigra for 15 echoes up sampled from 8 
echoes. 

Supporting figure XVII(a) shows averaged susceptibility across five participants (black solid line-circle data 
points) and standard deviation (red dashed line) in the putamen for 15 echoes reduced from 30 echo data by 
removing every second echo. 
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Supporting figure XVII(b) shows averaged susceptibility across five participants (black solid line-circle data 
points) and standard deviation (red dashed line) in the putamen for 15 echoes up sampled from 8 echoes. 
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Supporting figure XVIII(a) shows averaged susceptibility across five participants (black solid line-circle data 
points) and standard deviation (red dashed line) in the fornix for 15 echoes reduced from 30 echo data by 
removing every second echo. 

 

Supporting figure XVIII(b) shows averaged susceptibility across five participants (black solid line-circle data 
points) and standard deviation (red dashed line) in the fornix for 15 echoes up sampled from 8 echoes. 
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Supporting figure XIX(a) shows averaged susceptibility across five participants (black solid line-circle data 
points) and standard deviation (red dashed line) in the insula for 15 echoes reduced from 30 echo data by 
removing every second echo. 
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Supporting figure XIX(b) shows averaged susceptibility across five participants (black solid line-circle data 
points) and standard deviation (red dashed line) in the insula for 15 echoes up sampled from 8 echoes. 
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