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Abstract

Charge transfer in molecular systems occurs between molecules, atoms, or ions, collectively called

sites. Theories of charge transfer are fundamental to understanding both natural molecular systems,

such as photosynthesis, and artificial molecular systems, such as organic semiconductors or inorganic

coordination complexes. Charge transfer in many of these systems is, however, complicated by

the existence of delocalisation, where the coupling between sites causes the charge’s wavefunction

to extend over multiple sites, to the point where it becomes meaningless to describe the charge as

occupying any particular site.

While quantum-chemical computational techniques exist to calculate charge transfer rates between

these delocalised states, they can be computationally expensive (scaling up to exponentially with

system size), are inflexible (that is, any change to the system requires a complete recalculation), and

offer limited qualitative insight as to how the rate of charge transfer will change with various system

properties.

To overcome these limitations, this thesis presents a general theory of charge transfer between

delocalised molecular states, generalised Marcus theory. Generalised Marcus theory is computationally

cheap, flexible, and expressed in closed form. The closed-form nature of generalised Marcus theory

allows for qualitative understanding of how charge transfer between delocalised molecular states is

affected by changing the charge-transfer properties of the constituent molecules.

Importantly, generalised Marcus theory leads to a number of predictions: supertransfer, or the

enhancement of charge transfer through the constructive interference of delocalised charge transfer

pathways; reorganisation energy suppression, where the environmental impact on charge transfer is

somewhat mitigated by delocalisation; and the possibility of energetic tuning, where tuning energy

offsets or reorganisation energies can allow significant enhancement to the charge transfer rate.

This thesis applies generalised Marcus theory to a system in which delocalised charge transfer

occurs, the photosynthetic reaction centre, a dimeric pigment-protein complex consisting of two

monomeric branches. The reaction centre in photosynthetic organisms accepts excitons from an

antenna system and outputs electrons, serving to convert solar energy into chemical energy. Importantly,

excitons are transferred to a delocalised state where the two monomeric branches meet, a pair of

molecules called the special pair, and charge separation occurs from this delocalised state. Many

organisms only use a single monomeric branch for charge transfer, which raises an open question in

biology: why is the reaction centre dimeric?

This thesis compares the modern dimeric reaction centre, with delocalised exciton and charge

transfer occurring at the special pair, to a model of the ancestral monomeric reaction centre, which

lacks one half of the special pair and consequently does not experience exciton or charge delocalisation.

By using Sumi’s generalised Förster theory to describe exciton transfer, and generalised Marcus theory

to describe charge transfer, this thesis answers the question by showing that the evolution of the

reaction centre from a monomer to a dimer likely improved the overall reaction centre efficiency.
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Chapter 1

Introduction

Charge transfer (CT) is ubiquitous in the world around us, with CT reactions responsible for the

functioning of batteries, the rusting of iron, the metabolism of sugars, and much more. These reactions

are known as redox reactions, a portmanteau of reduction, the gain of electrons, and oxidation, the loss

of electrons.

While many reactions involve the making or breaking of chemical bonds, such as the combustion

of glucose (C6H12O6 + 6O2 −−→ 6H2O + 6CO2), there are many CT reactions where bonds are

neither formed nor broken, such as the ionisation of sodium in ammonia (Na−−→ Na+ + e– ), or the

self-exchange reaction between iron cations (Fe2+ + Fe3+ −−→ Fe3+ + Fe2+). This thesis discusses CT

in molecular systems, where charge is transferred from an atomic, molecular, or ionic donor, D, to a

charge acceptor, A without the formation or breaking of a chemical bond: D−+A→ D+A−.

This is complicated in molecular systems where there are multiple donors that are more strongly

coupled with each other than their environment, which we call an aggregate, transferring a charge to an

acceptor aggregate. A charge present on one donor or acceptor site will have its wavefunction spread

throughout the entire aggregate, at which point describing the charge as being on an individual site is

meaningless, since its wavefunction is—to some degree or another—spread across every site. We call

the transfer of charge from one aggregate to another delocalised charge transfer, as the charge cannot

be associated with a single site: (D1D2 . . .DN)
−+(A1A2 . . .AM)→ (D1D2 . . .DN)+(A1A2 . . .AM)−.

There are many systems where delocalisation of charge occurs, such as conductive metal-organic

frameworks, organic semiconductors, and inorganic coordination complexes. One such system that

we choose to examine is the photosynthetic reaction centre (RC). The RC is at the core of all light-

harvesting systems in photosynthetic organisms, converting energy absorbed from the sun into chemical

energy by initiating charge separation. It is a dimeric structure, but in most organisms CT is restricted

to one monomeric branch of the dimer. This raises the question: why is the RC a dimer at all?

The dimeric RC experiences both delocalised charge and exciton transfer, but a monomeric RC

would not, so understanding how dimerisation affects the RC requires both localised and delocalised

charge and exciton transfer theories.

As such, Section 1.1 provides an introduction to charge and exciton transfer in molecular systems.
1



2 CHAPTER 1. INTRODUCTION

Context for understanding RC dimerisation is presented in Section 1.2, where the field of quantum

biology and the structure of light-harvesting systems are introduced and discussed.

1.1 Charge and Energy Transport

1.1.1 Charge transfer

Early charge transfer theories

The physics of charge transfer can be traced back to the late 19th century, following the systematic

study of kinetics in chemical reactions1,2. James Clerk Maxwell3 and Ludwig Boltzmann4 proposed

the principle of detailed balance, which states that, at equilibrium, the reaction i→ j must occur at

the same rate as the reverse reaction, j→ i; if this were untrue, the population of i or j must change,

and hence the two populations would not be at equilibrium (a contradiction). At equilibrium, the

populations, Pi and Pj, and rate of transfer between them, ki→ j and k j→i, are related by

Piki→ j = Pjk j→i. (1.1)

The population of each state can be described as a Boltzmann distribution, Equation 1.1 becomes the

equilibrium equation
ki→ j

k j→i
= exp

(
−∆E ji

kBT

)
, (1.2)

where kB is the Boltzmann constant, T the temperature, and ∆E ji = E j−Ei, the energies of states i and

j. Importantly, this predicts that for any kinetic reaction, including CT, the rate of transfer between two

states should increase with the energy difference between them, −∆E ji. Conversely, the rate should

decrease as the energy difference does. A differential form of this temperature-dependent equilibrium

reaction was described by the van’t Hoff equation5,

d
dT

lnK =
∆H

kBT 2 , (1.3)

where the rate-constant K = ki→ j/k j→i, and ∆H is the change in enthalpy.

By analogy to equilibrium equations, in 1884 Jacobus van’t Hoff proposed that rate equations may

be written
d

dT
lnki→ j =

C
kBT 2 +D, (1.4)

for some reaction-specific constants C and D. However, with the data available, he was unable to

demonstrate that C was non-zero or that D was zero1. Building on this work, in 1889 Svante Arrhenius

assigned physical meaning to the constant C by arguing chemical reactions took place via an ‘activated’

species, which required some activation energy EA. As such, he proposed the rate equation6

ki→ j = c · exp
(
−EA

kBT

)
, (1.5)

where c is a constant depending on the particular reaction. Equation 1.5 is known as the Arrhenius rate

equation, and was used as the basis to derive subsequent CT rate equations.
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One example of such a rate equation is the Miller-Abrahams equation. In the early 1950’s,

experimentation with semiconductors indicated that, at high impurity concentrations, conduction of

charge did not take place in a delocalised band but via electron hopping7,8. In order to understand this

phenomenon, Miller and Abrahams derived an expression for the hopping rate9,

ki→ j =

ν0 exp(−γri j)exp(−∆E ji/kBT ) ∆E ji ≥ 0,

ν0 exp(−γri j) ∆E ji < 0,
(1.6)

which can be broken into three terms:

1. the hopping attempt frequency, ν0;

2. the tunneling term, exp(−γri j), where ri j is the distance between sites i and j, and γ is the

inverse localisation radius; and

3. the Boltzmann term, which is 1 for downhill transfer and exp(−∆E ji/kBT ) for uphill.

Note that this is very similar to the Arrhenius rate, Equation 1.5, with the activation energy the

difference in site energies as per Equation 1.2, and the rate constant c = ν0 exp(−γri j), although only

the uphill rate is temperature-dependent (i.e. for downhill transfer EA = 0), consistent with an electron

needing thermal energy from the environment to move uphill, but freely moving downhill.

Marcus theory

In 1956, Rudolph Marcus developed a theory to describe charge transfer in a dielectric medium10,

where a charge would be transferred from an atomic, molecular, or ionic donor, D, to an electron

acceptor, A, without the formation of a chemical bond: D−+A→ D+A−. If the solvent is initially

relaxed about the reactant state, charge transfer would result in the environment being out of equilibrium

with the product state, due to separation of timescales between nuclear and electronic motion. Since

the energy required to transfer the charge without solvent reorganisation is typically 0.1 eV to 1 eV,

significantly larger than kBT , the direct reaction cannot happen with the available thermal energy.

In order to resolve this issue, Marcus proposed that instead of transferring from a relaxed state,

thermal environmental fluctuations perturb the solvent from relaxation about the reactant state. At some

point, the solvent would reach a configuration where the reactant and product state are isoenergetic, at

which point charge transfer would occur (Figure 1.1). This theory is known as Marcus theory (MT),

and for its predictions Marcus received the 1992 Nobel Prize in Chemistry.

Derivation of energy surfaces

In MT, the solvent is taken to be a homogeneous, isotropic continuum dielectric (HID), allowing

us to write the identity D = ε0E+P, where D is the displacement field in an HID, E the electric field,

P the polarisation density, and ε0 the permittivity of free space.

Using E = ε−1D, we write P = (1− ε0/ε)D. Characterising the HID on two timescales—a fast

timescale for electronic behaviour and slow timescale for nuclear behaviour—we write P = Ps−P∞,
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Figure 1.1: Charge transfer in a polar solvent between a charge donor site (orange) and a charge acceptor site (blue): 1)
The charge is initially on the donor, and the solvent is arranged in equilibrium about this charge state; 2) Thermal energy
in the environment rearranges the solvent configuration; 3) Once the solvent has reached a configuration such that it is
isoenergetic for the charge to be on either the donor or acceptor, charge transfer occurs; 4) Solvent relaxes about the new
charge configuration. The transparent pathway shows direct charge transfer without solvent reorganisation, but doesn’t
occur due to the high energy cost.

where Ps is the polarisation due to the (slow) nuclear modes, and P∞ the polarisation due to the (fast)

electronic modes. This lets us write

P = Ps−P∞ (1.7)

= ε0

(
1

ε∞

− 1
εs

)
D, (1.8)

and by using the equilibrium energy expression for the solvent11,

Eeq =
1
ε0

∫
d3x′D ·P. (1.9)

If we assume that our charge distribution consists of a donor and acceptor, described by spheres

of radius RD and RA respectively, separated by a distance RDA� RD,RA, we can consider a small

change in the solvent polarisation, parametrised by x such that Px = PD + x(PA−PD), where PD and

PA are the polarisations of the solvent being relaxed about the reactant and product state respectively.

Evaluating Equation 1.9 with this displacement, we can write the reactant and product potential energy

surfaces (PES) as:

WR(x) = ER +q2
(

1
ε∞

− 1
εs

)(
1

2RD
+

1
2RA
− 1

RDA

)
x2, (1.10)

WP(x) = EP +q2
(

1
ε∞

− 1
εs

)(
1

2RD
+

1
2RA
− 1

RDA

)
(1− x)2, (1.11)

where we have used D = qx̂′/|x′|2 for the charge distribution over a sphere, and q is the amount of

charge transferred. By substituting Equation 1.8 into Equation 1.9, we also have

Eeq =

(
1

ε∞

− 1
εs

)∫
d3x′D2, (1.12)
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allowing us to write the energy required to transfer from solvent equilibrium in the reactant state to

solvent equilibrium in the product state without changing electronic state, λDA, as

λDA =

(
1

ε∞

− 1
εs

)∫
d3x′ (DA−DD)

2 (1.13)

= q2
(

1
ε∞

− 1
εs

)(
1

2RD
+

1
2RA
− 1

RDA

)
. (1.14)

This gives an important qualitative result that will help in our understanding of charge transfer: the

PES for charge transfer in an HID can be approximated as harmonic potentials in nuclear displacement

with the same curvature. This allows us to consider a simple model of charge transfer involving two

intersecting harmonic PES.

Classical picture of Marcus theory

Using the potential energy surfaces (PES) from Equations 1.10 and 1.11, we can draw a config-

urational diagram, plotting the nuclear co-ordinate x against energy (Figure 1.2). This allows us to

treat charge transfer classically, as a ball rolling in a potential, with charge transfer occurring when it

reaches the cross-over in the two potentials. To be general, we write12

WR(x) =
1
2

kx2 +
1
2

Ax+ εR, (1.15)

and

WP(x) =
1
2

kx2− 1
2

Ax+ εP. (1.16)

Here k is the harmonic force constant, A the relative displacement of the two PES in the nuclear

coordinate, and ε the PES energy displacement.

The minimum of the reactant PES is located at xR = −A
2k , with

WR(xR) =−
3A2

8k
+ εR

≡ ER, (1.17)

and the product PES minimum at xP = A
2k , with

WP(xP) =−
3A2

8k
+ εP

≡ EP. (1.18)

The difference in energy between these two points is ∆EPR = EP−ER = εP− εR.

The reorganisation energy, λ , is the energy required to move from xR to xP, or vice versa, while

remaining on the same PES,

λ =WR(xP)−WR(xR)

=
A2

2k
. (1.19)
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λ

-ΔE
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WP(xR)

Figure 1.2: Configurational diagram of the reactant (orange) and product (blue) potential energy surface (WR and WP
respectively) along the reaction nuclear coordinates. Labelled are the reactant minimum, (xR,ER), the product minimum,
(xP,EP), and the transition state (xT ,ET ), as well as the activation energy (Ea), the energy difference (∆E), and the
reorganisation energy (λ ).

The intersection of the PES occurs at xT, where WR(xT) =WP(xT). The energy required to move

from xR to xT along WR is called the activation energy, Ea =WR(xT)−WR(xR). Using Equations 1.17

to 1.19, we can write

Ea =
(∆EPR +λ )2

4λ
. (1.20)

This allows us to calculate the expected rate of charge transfer from the reactants to the products,

using the Arrhenius rate equation (Equation 1.5)

k = c · exp
(
−Ea

kBT

)
(1.21)

= c · exp
(
−(∆EPR +λ )2

4kBT λ

)
. (1.22)

This is the form presented in the original MT paper, with c the collision rate in solution10.

Initially, λ only included the behaviour of the solvent cf. Equation 1.14, known as outer-sphere

transfer, with

λO = q2
(

1
ε∞

− 1
εs

)(
1

2RD
+

1
2RA
− 1

RDA

)
. (1.23)

Later approaches included intra-molecular vibrations. This inner-sphere transfer, proposed and

developed by Hush13, λI, is added to the outer-sphere reorganisation energy of the initial MT to

find the total reorganisation energy, λ = λO + λI. Because of this major development, and other
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contributions to the underlying quantum mechanical theory, MT is sometimes known as Marcus-Hush

theory.

Regimes of Marcus theory

Equation 1.22 predicts three regimes of charge transfer (Figure 1.3): the activationless regime,

where ∆E =−λ and the rate is maximised; the normal regime, where ∆E >−λ and the rate increases

as the energy difference between product and reactant state increases; and the inverted regime, where

∆E <−λ , and increasing the difference between product and reactant results in a decreased transfer

rate.

a) b) c)

-ΔE

λ

-ΔE -ΔE

λ

λ

Normal
(λ>-ΔE)

Activationless
(λ=-ΔE)

Inverted
(λ<-ΔE)

Figure 1.3: The three regimes of Marcus theory. a) Normal regime: λ >−∆E. In this regime, increasing the energy gap
between the reactant state (orange) and product state (blue) will increase the rate of charge transfer. b) Activationless
regime: λ = −∆E. Due to the product state PES crossing the reactant state minimum, EA = 0, which allows electron
transfer to occur down to cryogenic temperatures. c) Inverted regime: λ <−∆E. In this regime, increasing the energy gap
between states decreases the rate of charge transfer, an ‘inversion’ of the normal regime.

Notably, the prediction of the inverted regime is an important prediction of MT, and it differentiated

MT from other theories such as Miller-Abrahms, which predicted a constant downhill rate. It was the

experimental detection of this regime that lead to the widespread acceptance of MT.

A fully quantum approach

Levich and Dogondaze calculated the collision rate in Equation 1.22 using Landau-Zener the-

ory, a semi-classical approach derived in 1932 independently by Landau, Zener, Stückelberg, and

Majorana14–17. By defining the Hamiltonian

Hab(x) =WR(x) |φR〉〈φR|+WP(x) |φP〉〈φP|+VRP |φR〉〈φP|+VPR |φP〉〈φR| , (1.24)

with VRP the electronic coupling between the reactant and product states, they were able to show that18

c =
2π

h̄
|Vab|2√

4πkBT λ
. (1.25)

Details of this derivation may be found in the appendix, Section 1.4.1.

While Landau-Zener theory was sufficient to describe charge transfer in harmonic potentials,

the Fermi golden rule (FGR) offers a more general approach. The FGR describes the transition rate

between two quantum states that are coupled by a weak perturbation, to second order in the perturbative
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coupling, and as is used frequently in describing charge and energy transfer. To understand FGR, we

must consider the microscopic behaviour of electrons and atoms.

The behaviour of a system of nuclei and electrons can be described using the Hamiltonian

H = (Tel +Vel(r))+(Tnuc +Vnuc(R))+Vel,nuc(r,R), (1.26)

where (Tel +Vel(r)) is the Hamiltonian of the electrons with co-ordinates r, (Tnuc +Vnuc(R)) the

Hamiltonian of the nuclei with co-ordinates R, and Vel,nuc(r,R) their interaction. To solve this

Hamiltonian, we recognise that the difference in mass between electrons and nuclei leads to a separation

of timescales for motion, with electronic motion significantly faster than nuclear. Taking the electronic

states to be independent of Ṙ allows us to separate nuclear and electronic states, an approximation

known as the Born-Oppenheimer approximation19. This allows us to write the eigenstates of H as

ψ(r,R) = φ(r,R)χ(R), (1.27)

with separate electronic, φ(r,R), and nuclear, χ(R), solutions.

An additional approximation is the Franck-Condon principle. Initially developed to describe

the absorption and emission of light, but extended to charge transfer, the Franck-Condon principle

describes transitions between electronic states at fixed nuclear coordinates, known as the Condon

approximation (Figure 1.4). The Franck-Condon principle can be illustrated by considering the

absorption cross-section of a photon, A,

A ∝ 〈ψ|µ |ψ ′〉 , (1.28)

where µ is the transition dipole moment operator coupling the two states |ψ〉 and |ψ ′〉. Using the

Born-Oppenheimer approximation, |ψ〉= |χ〉 |φ〉, we write

A ∝ 〈φ | 〈χ|µ |χ ′〉 |φ ′〉 , (1.29)

with |φ〉 and |χ〉 the electronic and nuclear modes respectively. With the Condon approximation, µ

only couples electronic states, not nuclear ones, meaning

A ∝ 〈χ|χ ′〉〈φ |µ |φ ′〉 . (1.30)

The term 〈φ |µ |φ ′〉 is the transition dipole moment between the two electronic states, while 〈χ|χ ′〉 is

the nuclear wavefunction overlap. For the absorption of a photon, the nuclear wavefunction overlap is

determined by vertically displacing the ground state potential energy surface (PES) by the energy of the

photon, known as the vertical Franck-Condon principle (Figure 1.4a). Charge transfer occurs between

isoenergetic states and so the PES are not displaced; this is known as the horizontal Franck-Condon

principle (Figure 1.4b).

To find the FGR rate, we consider the Hamiltonian H = HS +H ′, consisting of a system term, HS,

and a perturbative coupling term, H ′, connecting reactant states |ψR〉 = ∑i |χRi〉 |φR〉 to the product

states |ψP〉= ∑ f |χP f 〉 |φP〉. The system term HS = HR +HP consists of a reactant state Hamiltonian,



1.1. CHARGE AND ENERGY TRANSPORT 9

Nuclear Coordinate

En
er

gy
Excited
State

Ground
State

Reactant Product

Nuclear Coordinate

En
er

gy

a) b)

Figure 1.4: Franck-Condon principle. Since electronic states move faster than nuclear, any transition between electronic
states takes place at a fixed nuclear coordinate. (a) For transfer between states of different energies (e.g. due to photon
absorption), this is known as vertical transfer (black arrow). (b) In the case of states at the same energy, the transition rate
is determined through overlap of the reactant and product wavefunctions (plum), known as horizontal transfer.

HR, and a product state Hamiltonian, HP. While these Hamiltonians can be general, for the sake of

illustration we consider the case where there are no internal dynamics i.e. HR and HP are diagonal. As

such, we write

HR = ER |φR〉〈φR|+∑
i

ERi |χRi〉〈χRi| , (1.31)

HP = EP |φP〉〈φP|+∑
f

EP f |χP f 〉〈χP f | , (1.32)

where ERi and EP f are the energy of the ith vibrational mode on the reactant PES and the f th vibrational

mode on the product PES, respectively. The perturbative coupling is given by

H ′ =VRP |φR〉〈φP|+VPR |φP〉〈φR| . (1.33)

With the Hamiltonian defined, we can write the FGR rate

kR→P =
2π

h̄
| 〈ψR|H ′ |ψP〉 |2ρ (1.34)

=
2π

h̄
|VRP|2 F ; (1.35)

F = ∑
i, f

ρRi
∣∣〈χRi|χP f 〉

∣∣2 δ
(
−∆EPR +ERi−EP f

)
, (1.36)

where we have used the Condon approximation 〈ψR|H ′ |ψP〉= 〈φR|H ′ |φP〉〈χR|χP〉. Here F is known

as the Franck-Condon weighted density of states, which includes the density of states ρ along with the

overlap of nuclear wavefunctions. The density of states ensures energy is conserved with the delta

function. ∆EPR = EP−ER is the difference in energy between the two PES. The initial distribution of

states on the reactant, ρRi, is usually taken to be thermal.

By using the Fourier definition of the delta function, δ (x) =
∫

∞

−∞
dt exp(ixt)/2π , we can write

F =
1

2π h̄ ∑
i, f

∫
∞

−∞

dte−i∆EPRt/h̄
ρRi
∣∣〈χRi|χP f 〉

∣∣2 ei(ERi−EP f )t/h̄, (1.37)
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and using the completeness relation ∑ f |χP f 〉〈χP f |= 1̂, we write

F =
1

2π h̄

∫
∞

−∞

dte−i∆EPRt/h̄
∑

i
〈χRi|ρReiHRt/h̄e−iHPt/h̄ |χRi〉 . (1.38)

Equation 1.38 is exactly solvable in the case where HR and HP describe normal mode vibrations and

ρR is a thermal distribution. The Hamiltonians are displaced harmonic oscillators,

HR = ER +D†
RHvibDR (1.39)

D†
R = exp

(
∑
ξ

gR(ξ )(cξ − c†
ξ
)

)
(1.40)

Hvib = ∑
ξ

h̄ωξ

(
c†

ξ
c+1/2

)
, (1.41)

Where ER is the ground-state energy for the reactant PES, gR(ξ ) the coupling between the reactant

state and the ξ th vibrational mode, c†
ξ

and cξ are the creation and annihilation operators for the

ξ th vibrational mode respectively, and ωξ the frequency of the ξ th vibrational mode. The product

Hamiltonian is analogously defined by replacing the subscript R with P.

It can be shown that11

F =
1

2π h̄
e−G(0)

∫
∞

−∞

dte−i∆EPRt/h̄+G(t), (1.42)

where

G(t) = ∑
ξ

(gR(ξ )−gP(ξ ))
2 (e−iωξ t(1+n(ωξ ))+ eiωξ tn(ωξ )

)
, (1.43)

with n(ωξ ) the Bose-Einstein distribution

n(ωξ ) =
(

eh̄ωξ /kBT −1
)−1

. (1.44)

By recognising λ =∑ξ h̄ωξ (gR(ξ )−gP(ξ ))
2, we can evaluate Equation 1.42 in the high-temperature

limit (a detailed solution is available in Chapter 2 from Equation 2.16). We assume 1) that the spectral

density goes to zero beyond some cut-off frequency ωc and kBT � h̄ωc; and 2) that the vibrational

modes are faster than changes in the electronic energy gap due to nuclear motion, allowing us to

consider only the leading terms in the exponents of G(t). This enables us to approximate Equation 1.42

as

F =
1√

4πkBT λ
exp
(
−(∆EPR +λ )2

4kBT λ

)
. (1.45)

Substituting Equation 1.45 into Equation 1.35, we arrive at the expression for the rate of charge

transfer

kR→P =
2π

h̄
|VRP|2√
4πkBT λ

exp
(
−(∆EPR +λ )2

4kBT λ

)
. (1.46)

Note this expression is identical to Equation 1.22 with the coefficient defined in Equation 1.25.
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Bridge-mediated charge transfer

While we have so far considered two-state charge transfer, we can also consider the case where transfer

does not occur directly between the donor and acceptor but via an intermediary bridge of states.

There are two mechanisms by which bridge-mediated charge transfer may occur: sequential hopping,

involving charge hopping between sites, D−BA→ DB−A→ DBA−; and superexchange, where the

coupling between the donor and acceptor is extended by a delocalised bridge state, D−BA→ DBA−.

These are shown in Figure 1.5.

In both cases, we consider a bridge with N elements and nearest-neighbour coupling only, with

only the first bridge element coupling directly to the donor, and the Nth coupling to the acceptor. We

take the bridge to be energetically distinct, where the energy of the bridge sites, En is greater than that

of the donor ED or the acceptor EA, and the energy difference between elements of the bridge is small

compared to the average energy of the bridge Eb, i.e. |En−Eb| � En−ED,En−EA.

a)

b)

Donor (ED)
Acceptor (EA)

Bridge Element (En)

Average Bridge Energy (Eb)Eb-ED Eb-EA

Donor (ED)
Acceptor (EA)

Eb-ED Eb-EA

Charge
Transfer

Charge
Transfer

Delocalised Bridge State

Figure 1.5: Bridge-mediated charge transfer. a) In sequential hopping transfer, the charge engages in a series of hops
from the donor to each bridge element, before being transferred to the acceptor. b) In superexchange transfer, the charge
wavefunction is extended from the donor through a delocalised bridge state, and subsequently transferred to the acceptor.

In the case of sequential hopping bridge-mediated transfer, the process is a series of thermally-

activated charge transfers, with E1−ED,EN −EA & kBT , whose rates are calculated using Marcus

theory. The rate can be calculated by examining the rate of change of charge population on each site:

ṖD =−kD,1PD + k1,DP1 (1.47)

Ṗn =−(kn,n+1 + kn,n−1)Pn + kn+1,nPn+1 + kn−1,nPn−1 (1.48)

ṖA =−kA,NPA + kN,APN . (1.49)

The population of the donor, acceptor, and nth bridge element are PD, PA, and Pn respectively, and Ṗ

their rate of change, with km,n the rate of charge transfer from site m to site n. Following Boltzmann
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statistics20, we also have kn,n+1/kn+1,n = exp(En+1,n/kBT ), where En+1,n =En+1−En is the difference

in the site energies of the n+1th and nth site.

We can find the charge transfer rate kD,A by considering that at steady state, Ṗ = 0, and that the

flux into A must be equal to the rate at which charge is transferred from the donor to the acceptor i.e.

kN,APN = kD,APD. By taking kb to be the characteristic rate of charge transfer between bridge elements,

and treating A as a sink where PA = 0, we can write the simultaneous equation

0 =−k1,DP1 + kD,1PD− kN,APN (1.50)

0 = kbP1− kbPN− (N−1)kN,APN , (1.51)

by taking the first element and summing the last N−1 elements of P21. This simultaneous equation

allows for the calculation of a closed-form solution,

kD,A =
exp(−E1D/kBT )

k−1
N,A + k−1

1,D +(N−1)k−1
b

, (1.52)

the calculation of which may be found in section 16.13 of ref21.

The exponential sensitivity to the energy difference between bridge and donor is an Arrhenius rate,

with a barrier height E1D, while the denominator consists of three terms: the lifetime of an electron on

the Nth bridge state being transferred to the acceptor, k−1
N,A; the lifetime of an electron on the first bridge

state being backtransferred to the donor, k−1
1,D, and the lifetime of states on the bridge, (N−1)k−1

b . This

last term gives an overall rate that is inversely proportional to the length of the bridge for large N.

While sequential hopping bridge-mediated transfer involves the charge being transferred to the

bridge, in superexchange the effect of the bridge can be considered as a change to the effective

coupling between donor and acceptor, affecting the tunnelling rate between the two states. Again,

we consider a system consisting of a donor, a bridge consisting of N elements, and an acceptor. To

keep notation consistent, we define the donor-bridge-acceptor Hamiltonian H such that the diagonal

elements are H1,1 = ED, Hn,n = En−1 for 2 ≤ n ≤ N + 1, and HN+2,N+2 = EA. Using only nearest-

neighbour couplings, we define H1,2 =VD,1 = H?
1,D, Hn,n+1 =Vn−1,n = H?

n+1,n for 2≤ n≤ N +1, and

HN+1,N+2 =VN,A = H?
N+2,N+1, with all other elements zero.

Using H |ψ〉 = E |ψ〉, where E is the lowest energy eigenvalue and ψ is an eigenstate of the

Hamiltonian, we expand |ψ〉 explicitly as a vector,

(H−EI)(ψD,ψ1, . . . ,ψN ,ψA)
T = 0. (1.53)

Repeating this process on the bridge subspace, denoted with subscript b, we write

(Hb−EIb) |ψb〉=−(V1DψD,0, . . . ,0,VNAψA)
T , (1.54)

and consequently

|ψb〉= G(V1Dψ1,0, . . . ,0,VNAψN)
T , (1.55)
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where the Green’s function G = (EIb−Hb)
−1. This Green’s function is the solution to the coefficients

of the bridge subspace (ψ1 to ψN), allowing us to use Equation 1.54 to write the simultaneous equations

(ẼD−E)ψD +ṼDAψA = 0 (1.56)

(ẼA−E)ψA +ṼADψD = 0, (1.57)

with perturbed energies

ẼD = ED +VD1G11V1D, (1.58)

ẼA = EA +VANGNNVNA, (1.59)

and effective coupling

ṼDA =VD1G1NVNA. (1.60)

The rate of charge transfer with superexchange is given by

kD→A =
2π

h̄
|ṼDA|2√
4πkBT λ

exp
(
−(∆ẼAD +λ )2

4kBT λ

)
. (1.61)

A closed-form solution is generated by taking the coupling between bridge units to be identically Vb

and writing the characteristic bridge energy Eb. Then we may take the lowest order Dyson expansion

in G and write21

ṼAD =
VD1VNA

ED−Eb

(
Vb

ED−Eb

)N−1

. (1.62)

This solution holds for weak coupling, Vn,n+1� Eb−ED. For larger couplings, higher orders in the

Dyson expansion must be used.

Adiabatic charge transfer

In deriving Marcus theory, we made the assumption that the electronic coupling between sites was

weak relative to the coupling to the environment. This is known as the diabatic (or nonadiabatic)

regime, where the Hamiltonian describing the system has small off-diagonal terms in the site basis

relative to the diagonal terms.

In the adiabatic limit, this assumption no longer holds. Returning to the parabolas introduced in

Equations 1.15 and 1.16, we write the system Hamiltonian

H =WR(x) |ψR〉〈ψR|+WP(x) |ψP〉〈ψP|+VRP |ψR〉〈ψP|+VPR |ψP〉〈ψR| , (1.63)

where we have introduced VRP as the electronic coupling between |ψR〉 and |ψP〉. The PES generated

by the eigenvalues of this Hamiltonian are

W±(x) =
1
2

kx2 +
εR + εP

2
±
√

(∆EPR−Ax)2

4
+V 2

RP . (1.64)

Instead of having a reactant and a product PES, we now have an upper (W+) and a lower (W−) PES,

separated at the transition state by an energy gap of 2VRP, shown in Figure 1.6. Since the adiabatic
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Figure 1.6: Upper (W+, purple) and lower (W−, black) adiabatic surfaces created by the coupling between the reactant
(orange, dashed) and product (blue, dashed) states. At the closest approach (x = xT ) the distance between the surfaces is
2VRP, and away from this point W+ and W− converge with the reactant and product states.

PES are not diagonal in the site basis, adiabatic transfer involves charge delocalisation over the donor

and the acceptor in both the reactant and product states (to various degrees). The rate for adiabatic

charge transfer still follows an Arrhenius expression,

kadiabatic
ab ∝ e−ẼA/kBT , (1.65)

with adiabatic activation energy ẼA =W−(xT )−W−(xa). Derivation of this rate equation may be found

in the appendix, Section 1.4.1.

Delocalisation can be divided into three broad categories, using the Robin-Day classification

scheme22. While this system was initially developed to describe charge transfer in mixed-valence

metal ligands, it has since found broader application in both inorganic and organic mixed-valence

systems23. The three classes are Class I, Class II, and Class III, which represent charge transfer

between states that are localised, partially delocalised, and fully delocalised respectively, shown in

Figure 1.7.

Class I systems have small electronic coupling between reactant and product states relative to

the reorganisation energy for charge transfer. This leads to highly distinct states, and allows for the

approximations of diabatic charge transfer to be used.

In Class II systems, the electronic coupling is intermediate, 0 <V < λ/2. In these systems, there

is separation between the adiabatic ground and excited states, but there are still distinct reactant

and product wells, separated by some activation energy. In these systems adiabatic charge transfer

techniques can be used.

Class III systems are fully delocalised, with V ≥ λ/2. In this limit the adiabatic ground state forms

a single potential well, and the charge is fully delocalised between the donor and acceptor.

Instead of adiabatic charge transfer between donor and acceptor, we can imagine the delocalisation
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Figure 1.7: Robin-Day classification scheme. a) A class I system (V = 0) consists of two individual diabats, and can be
treated in the same manner as Figure 1.2. These diabats are included as dashed lines in Figure 1.7b and Figure 1.7c for
reference. b) A class II system (0 .V < λ/2) shows partial delocalisation due to the coupling between sites, separating
the PES into a lower (black) and upper (purple) energy states, with a closest-approach separation of 2V . Although the
barrier between the left and right potential wells has been reduced, the two wells remain independent. c) A class III system
(V ≥ λ/2) shows full delocalisation, with the coupling so strong that the two potential wells have merged.

taking place between two donors. This too would generate adiabatic ground and excited states à la

Class II and Class III systems, which raises a number of questions: how do we describe charge transfer

from such a donor to an acceptor? What if the acceptor also experiences similar delocalisation? What

if there are more than two sites? To describe such systems, we need a theory of delocalised CT.

We can gain inspiration for a CT theory by examining an analogous system where these questions

have been answered: exciton transfer.

1.1.2 Exciton transfer

In 1921, Klein and Rosseland pointed out that if an unexcited atom could be excited by collision with

an electron without emitting radiation, then the reverse process should also be possible24. This was

the beginning of studies into collisions of the second kind, any process in which excitonic energy

(energy from excited electrons still bound to their atoms/molecules) is transferred through collision,

unaccompanied by the creation or annihilation of a photon25. This was used to explain particle-

mediated excitation energy transfer (EET) in solids that could conduct electrons, but failed in those

that could not26. At the same time, studies into fluorescence examining chromophores (light-sensitive

molecules) in solution were unable to explain fluorescence quenching at a greater rate than predicted

by photon-mediated EET26. It was noted in the 1940s that a successful theory would also help explain

EET in plants and DNA26.

A solution to this problem was developed by Theodor Förster, who derived a theory of EET that

was mediated by neither the collision of matter nor the transmission of photons, but instead involved

quantum tunnelling of the excitation energy from donor to acceptor26 (Figure 1.8). This theory, Förster

resonance energy transfer (FRET), determines the rate of EET using the Fermi golden rule rate

k =
2π

h̄
|JDA|2F(EDA), (1.66)

where F(EDA) is the Franck-Condon factor, which describes the overlap of vibrational wavefunctions.

Fortunately, we have an easy way to describe these vibrational wavefunctions using the donor emission
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spectrum, LD(E), and the acceptor absorption spectrum, IA(E). Their overlap can be evaluated using

an overlap integral, allowing us to write Equation 1.66 as

k =
2π

h̄
|JDA|2

∫
∞

−∞

dE LD(E)IA(E), (1.67)

where J is the coupling between donor and acceptor, mediated by the Coulomb mechanism, and E is

the energy.
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Figure 1.8: Exciton transfer between a donor molecule and acceptor molecule via Förster resonance energy transfer
(FRET). a) FRET is caused by the overlap of donor and emission spectra, with the energetic overlap allowing an exciton
(electron-hole pair) to tunnel from donor to acceptor. b) The exciton is initially on the donor. During FRET, the donor
electron de-excites while simultaneously the acceptor electron excites, tunnelling the exciton from donor to acceptor. FRET
is not mediated by a photon, but the process can be seen as the transfer of a virtual photon27.

For distances greater than about 20 Å, JDA may be approximated by treating the donor and acceptor

as point dipoles28,

JDA =
1

4πεr3
DA

(dD ·dA−3(dD · r̂DA)(dA · r̂DA)) , (1.68)

where ε is the absolute permittivity of the medium, dD and dA are the transition dipole moments of D

and A respectively, and rDA the vector describing their relative positions, with rDA its magnitude and

r̂DA the unit vector. Equation 1.68 is the lowest-order term in the multipole expansion of the Coulomb

interaction29.

Immediately noticeable in Equation 1.68 is the r−3
DA dependence of JDA, leading to a rate that

is sensitive to the sixth power of distance, k ∝ r−6
DA. Writing the orientation factor κ = cos(θDA)−
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3cos(θRD)cos(θRA), where θab is the angle between a and b, we can express Equation 1.67 as

k =
κ2

8π h̄ε2r6
DA

∫
∞

−∞

dE L′D(E)I
′
A(E), (1.69)

where L′D(E) = d2
DLD(E) and I′A(E) = d2

AIA(E).

In the special case where the assumptions behind MT hold for EET, we can simplify this further

using similar techniques (e.g. Landau-Zener theory, FGR), resulting in the rate equation

k =
2π

h̄
|JDA|2√

2πkBT SDA
exp
(
−(∆EDA−SDA/2)2

2kBT SDA

)
, (1.70)

where SDA is the Stokes’ shift (difference between the peak of the maxima of the absorption and

emission spectra) between the donor and acceptor11.

Important to note are the similarities between Equation 1.70 and MT (Equation 1.46); since the

Stokes’ shift in FRET is twice the reorganisation energy, these two theories are identical in the slow

nuclear motion limit, with the exception of the coupling, which decays exponentially with distance in

MT and with the sixth power of distance in FRET. This suggests that mathematical tools developed to

describe EET could also be used to explore CT.

1.1.3 Transfer of delocalised excitons and charges

Strong inter-site coupling in molecular systems, relative to the environmental coupling, can cause

exciton or charge wavefunctions to extend over multiple molecules, called an aggregate, at which

the exciton or charge cannot be described as being on an individual site; we call such a charge or

exciton delocalised. Transfer of charge from a delocalised state on one aggregate to delocalised state

on another is called inter-aggregate charge transfer, and a closed-form description of inter-aggregate

charge transfer could prove useful in many systems, such as organic semiconductors, the reaction

centres of photosynthetic organisms, inorganic coordination complexes, and conductive metal-organic

frameworks.

Site A Site B

State 1

State 2

2JAB

Donor Acceptor

a) b)

Figure 1.9: a) Delocalised transfer from a donor aggregate (orange) to an acceptor aggregate (blue). The charge or exciton
to be transferred between aggregates is not located on an individual site, but its wavefunction extends across the entire
aggregate. b) Strong coupling between sites A and B leads to energetic splitting proportional to the coupling, JAB. The
resulting states 1 and 2 are delocalised, with their wavefunction extending over both sites, and any charge or exciton
transfer will take place from these delocalised states.

The problem of describing delocalised exciton transfer was first addressed with the development of

generalised FRET (gFRET) by Sumi30,31. Developed to describe exciton transfer in photosynthetic
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bacteria, this theory considers two aggregates of chromophores—the donor aggregate with ND sites

labelled |D j〉, and the acceptor aggregate with NA sites labelled |Ak〉—coupled to two separate phonon

baths. The electronic coupling between the chromophores is given by

JAD =
ND

∑
j

NA

∑
k
|Ak〉Jk j 〈D j| , (1.71)

which is weak relative to both the intra-aggregate coupling and the aggregate-bath coupling. The

Hamiltonian of this aggregate system is

H = H0
D +H0

A + JAD + JDA +HDE +HAE +HE , (1.72)

where H0
D and H0

A are the Hamiltonian of the donor and acceptor aggregates, HDE and HAE are

the couplings between the donor aggregate and the bath and the acceptor aggregate and the bath

(respectively), and HE = HED +HEA is the Hamiltonian of the environment, which can be divided into

donor and acceptor sub-systems. The lowest order perturbation in JAD gives a transfer rate of

k =
2π

h̄

∫
dE ∑

j
〈D j|JDAIA(E)JADLD(E) |D j〉 , (1.73)

where JDA = J†
AD, IA(E) is the acceptor absorption spectrum, and LD(E) is the donor emission spectrum.

The spectra are written

IA(E) = ∑
k

∑
k′
|Ak〉 Ikk′(E)〈Ak′| , (1.74)

LD(E) = ∑
j
∑
j′
|D j〉e−E/kBT I j j′(E)〈D j′| , (1.75)

Ikk′(E) = ckk′

∫
dF e−F/kBT TrE 〈Ak|δ (HAE −E−F) |Ak′〉δ (HEA−F), (1.76)

where ckk′ is a normalisation constant and TrE is the trace over the environmental modes. I j j′(E)

is analogously defined on the donor. We can write the eigenstates of H0
D and H0

A as |Dα〉 , |Aβ 〉,
which we refer to as the adiabatic basis. This allows us to write Jβα = 〈Aβ |JAD |Dα〉. If the initial

exciton population can be approximated as diagonal in the adiabatic basis on the donor aggregate,

Equation 1.73 becomes

k =
2π

h̄
|Jαβ |2

∫
dE 〈Aβ | IA(E) |Aβ 〉〈Dα |LD(E) |Dα〉 . (1.77)

This equation for gFRET illustrates that in the case that donor molecules are more strongly attracted

to each other than the acceptor molecules, and vice versa, we can stop seeing transfer as occurring

between individual donor and acceptor molecules but between a donor aggregate and an acceptor

aggregate. This delocalised transfer is important, because it allows for the constructive or destructive

interference between individual site transfer pathways. This can be illustrated by considering a system

of one donor (D) and two acceptors (A1 and A2); if the two acceptors have negligible coupling to each

other, we can write:

kFRET ∝
1
2
|JDA1|

2 +
1
2
|JDA2|

2, (1.78)
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i.e. the exciton has a 50-50 chance of being transferred to either acceptor at a rate proportional to their

coupling. If we take JDA1 = JDA2 = JDA, we can see k ∝ |JDA|2, identical to the rate of exciton transfer

from a donor to a single acceptor. However, if the acceptors are strongly coupled, transfer will occur

to a delocalised state:

kgFRET ∝

∣∣∣∣JDA1 + JDA2√
2

∣∣∣∣2 , (1.79)

and in the case of JDA1 = JDA2 = JDA, kgFRET = 2kFRET. Similarly, we could posit JDA1 =−JDA2 = JDA,

which would result in kgFRET = 0. When the transfer is enhanced in this manner, the process is known

as supertransfer, and when it is slowed, subtransfer.

Delocalised exciton transfer was further generalised into multi-chromophoric FRET (MC-FRET),

which includes time-dependent internal dynamics within the donor aggregates32,

k = ∑
j j′

∑
kk′

J jkJ j′k′

π h̄2

∫
∞

−∞

dω L j j′(t,ω)Ikk′(ω), (1.80)

Ikk′(ω) =
∫

∞

−∞

dt eiωt TrE eiHEA t/h̄ 〈Ak|e−iHAt/h̄ |Ak′〉ρA, (1.81)

L j j′(t,ω) = Re
∫ t

0
dτe−iωτ TrE e−iHEDτ/h̄ 〈D j|e−iHD(t−τ)/h̄ |E〉〈E|ρDe−iHDt/h̄ |D j′〉 , (1.82)

where HA = H0
A +HAE and HD = H0

D +HDE , ρA and ρD the initial state of A and D, and |E〉〈E| the

initial excitation of the donor aggregate, such as through a laser pulse. Equation 1.73 is the stationary

limit of Equation 1.80. A closed form expression for MC-FRET was developed in the high temperature,

slow bath limit33

k = ∑
αβ

ρα

2π

|Jαβ |2√
4πkBT Sαβ

e−(Sαβ+∆Eβα )
2/4kBT Sαβ , (1.83)

where Sαβ is the Stokes shift, and ρα is the initial exciton distribution on α . Being similar in form to

the MT rate equation, Equation 1.83 offers one immediate qualitative prediction, which has yet to be

experimentally verified: the existence of an inverted regime for multi-chromophoric exciton transfer.

While Equation 1.83 describes inter-aggregate exciton transfer, no such closed-form expression

existed for charge transfer, which would provide significant qualitative insight into the behaviour of

charge transfer in delocalised molecular systems, such as whether or not an inverted regime exists.

While quantum chemical simulations would allow aggregates to be treated as supermolecules to allow

the use of MT, this approach is computationally expensive (scaling up to exponentially with system

size) and inflexible (any modification of the system, such as the removal of a single molecule, would

necessitate a recalculation of the entire system). We introduce a theory of delocalised charge transfer

in Chapter 2.

One system where delocalisation occurs is the photosynthetic reaction centre (RC), which accepts

excitonic energy from an antenna system that absorbs light, and uses this energy for charge separation at

a pair of molecules known as the special pair (SP). The RC is a dimer, with each monomer contributing

one molecule to the SP, and the strong coupling between SP molecules ensures that the charge is

transferred from a delocalised state. However, in most organisms the charge proceeds down only

one branch of the RC34, leading to the question: why is the RC dimeric? In order to explore how

delocalisation contributes to charge transfer rate in the RC, we enter the field of quantum biology.
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1.2 Quantum Biology

Quantum biology is the field of study examining how biological systems exploit quantum physical

effects to function. While even early founders of quantum theory, such as Bohr35 and Schrödinger36,

recognised that quantum effects would play an important role in biological systems, the effects then-

recognised were trivial (e.g. molecules are described using quantum theory, biological systems are

made of molecules, ergo biological systems are described by quantum theory), or direct interactions

with light (photochemistry is an inherently quantum phenomenon)37, and by the 1960s the idea

that quantum physics played only a trivial role in biology was so common as to be considered

"pedestrian"38.

That isn’t to say that there were no investigations into non-trivial quantum effects into biology

before the 1960s: it was recognised as early as the 1930s and ’40s that quantum effects may be

important in systems such as energy transfer within photosynthetic structures and DNA26, or in

olfaction exploiting vibrational mechanisms39. With the advent of modern experimental tools and

techniques, quantum biology—the study of how biological systems exploit quantum physical effects to

attain or enhance functionality40—has begun to attract broader scientific interest41. This has included

research into features as disparate as quantum coherence in photosynthesis30,42,43, radical pairs in

magnetoreception44–46, inelastic tunnelling in olfaction47–49, and proton tunnelling in enzymatic

reactions50–52.

In some systems, it has been suggested that the hot (room temperature) and noisy (disordered)

nature of the environment and systems help, rather than hinder, quantum transport effects through a set

of mechanisms collectively known as environment-assisted quantum transport (ENAQT)53–56.

Perhaps the most studied systems in quantum biology have been the light-harvesting apparatus in

photosynthetic organisms, in which the photosynthetic reaction centre is buried.

1.2.1 Light-harvesting systems

Brief evolutionary overview

It is uncertain when photosynthesis first evolved, but light-harvesting organisms were among the

earliest forms of life57. Geological evidence points to the Archæan as the origin of photosynthesis,

with isotopic evidence of autotrophy (fixation of inorganic carbon) as far back as 3.8 Ga (giga annum,

or billion years ago)57,58, although dates for the origin of photosynthesis earlier than 3.5 Ga are highly

contentious59–61. Microfossil and stromatolite (fossilised bacterial biofilms) evidence suggests an

origin for photosynthesis 3.3 Ga to 3.5 Ga57–62. Evidence of oxygenic photosynthesis, in the form of

banded iron formations (BIFs), begin as early as 3.7 Ga, but these can also be explained by anoxygenic

ferrous-driven photosynthetic organisms58,63.

Unambiguous evidence of oxygenic photosynthesis from cyanobacteria dates from 2.7 Ga to 2.8 Ga,

coinciding with an increase in deposition of BIFs which likely served as a buffer to keep atmospheric

oxygen levels low58. Once the soluble iron had been oxidised, oxygen gradually started building in
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the atmosphere, reaching up to 2% by 2.0 Ga; by this date, molecular evidence for both cyanobacteria

and purple bacteria is established63.

Antenna

Reaction CentreSunlight

Exciton

Figure 1.10: A simplified model of a photosynthetic complex,

based on purple bacteria. Sunlight (yellow) is absorbed by

an antenna complex (green), creating an exciton (orange).

The exciton is transferred between antenna complexes until it

arrives at the reaction centre (purple). This transfer is highly

efficient, taking place with near-unity quantum efficiency64.

Sometime between 1.5 Ga to 1.8 Ga the

first photosynthesising eukaryotes appeared65,66.

This was due to an endosymbiosis event, whereby

a eukaryotic cell incorporated a cyanobacterium

into itself67,68, gaining the ability to photosyn-

thesise. As such, the fundamental nature of the

light-harvesting apparatus of plants, green algae,

and cyanobacteria are extremely similar63. Dif-

ferences have evolved over time, however, to such

a degree that cyanobacteria and eukaryotic light-

harvesting complexes cannot be considered inter-

changeable.

There are six major extant lineages of pho-

tosynthetic complex: cyanobacteria (including

plants and green algae), acidobacteria (phylum Acidobacteria), heliobacteria (family Heliobac-

teriaceae), green sulphur bacteria (phylum Chlorobi), filamentous anoxygenic phototrophs (FAPs)

(photosynthetic members of phylum Chloroflexi), and purple bacteria (photosynthetic members of

phylum Proteobacteria); all of which are differentiated by the structure of their light harvesting

complexes63,69–71 but despite their differences all function with near-unity quantum efficiency from

photon absorption to charge separation34,72 (although significantly lower thermal efficiency73, the

total energy output compared to the energy of the incident light). Light harvesting complexes consist

broadly of two components: an antenna, which absorbs photons to create electronic energy in the form

of excitons; and a reaction centre (RC), which converts excitons into chemical energy in the form of

an electron to perform reduction (Figure 1.10). These two structures vary significantly amongst extant

organisms (Table 1.1), and are described independently below.

Antennae

Antenna systems vary wildly between organisms, but all are pigment-protein complexes that employ

pigments known as chlorophylls (Chl) for cyanobacteria and eukaryotic organisms, and bacteriochloro-

phylls (BChl) for the remaining bacterial lineages. How these are arranged depends on the organism,

but can be divided into two classes: extrinsic antennae, which do not cross the organisms’ lipid bilayer

membrane; and integral antennae, which span the membrane and can be buried deep within it. The

integral membrane antennas can be further divided into two groups: peripheral antennae, which serve

to harvest light in organisms without an extrinsic antenna, and core antennae which can either be

separable from or fused to the reaction centre. Heliobacteria are unique amongst photosynthetic

organisms in that they completely lack both an extrinsic and a peripheral antenna complex, instead

relying on the fused core antenna for all light harvesting74.
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Integral Membrane Protein

Antenna Reaction Centre

Organism Extrinsic Antenna Peripheral Core Type I Type II

Acidobacteria Chlorosome, baseplate,
FMO

— Fused X —

Cyanobacteria Phycobilisome — CP43, CP47 X X

FAPs Chlorosome, baseplate — LH1 — X

Green sulphur
bacteria

Chlorosome, baseplate,
FMO

— Fused X —

Heliobacteria — — Fused X —

Purple bacteria — LH2 LH1 — X

Eukaryote — LHC-II CP43, CP47 X X

Table 1.1: Light-harvesting complexes of the photosynthetic lineages, divided into extrinsic (does not span the membrane)
and intrinsic membrane proteins. FAPs = filamentous anoxygenic phototrophs; FMO = Fenna-Matthews-Olson complex;
LH1 & 2 = light-harvesting complex 1 & 2 (bacteria); LHC-II = light-harvesting complex II (eukaryote). Details of the
antennae and reaction centres can be found in their respective sub-sections. Fused indicates that the core antenna complex
are subunits of the same protein structure that includes the reaction centre.

Extrinsic antennae

Acidobacteria, green sulphur bacteria, and FAPs have chlorosome-based extrinsic antennae, which

is a sac-like organelle that contains a large number of BChl pigments, most of which are not bound by

proteins. When excited by a photon, the chlorosome funnels the energy (in the form of an exciton)

to the baseplate, a two-dimensional array of BChl in a protein matrix75. In FAPs, the energy is

then transferred directly to the core antenna, while in acidobacteria and green sulphur bacteria it is

transferred to the RC via the Fenna-Matthews-Olson complex (FMO), a trimer consisting of three

monomers each containing eight BChl supported by a protein scaffold76,77. From the FMO the exciton

is transferred to the RC.

Cyanobacteria also contain an extrinsic antenna, although rather than the sac-like chlorosome it’s

a protein-pigment structure called the phycobilisome63. This consists of rods of a pigment-protein

complex phycoerythrin (not present in all organisms) to absorb short-wavelength light; attached to the

base of these rods is a phycocyanin pigment-protein structure, which absors mid-wavelength light; and

connecting the rest of the antenna to the RC is the allophycocyanin, which absorbs long-wavelength

light. The respective absorption maxima helps the phycobilisome act like an energetic funnel, with

lower energies closer to the RC and higher farther away. Red algae, although they are eukaryotes, have

an antenna system similar to cyanobacteria34.

Peripheral antennae

Peripheral antennae are integral membrane protein-pigment complexes that collect light but do not

transport it to the RC, instead either transporting the energy between peripheral antenna structures or
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to the core antenna system.

Figure 1.11: Crystallographic structure of light-harvesting

complex 2 (LH2) of purple bacteria78. The B800 ring (purple)

absorbs light, and transfers the energy to the B850 ring (green)

in under 1 ps. The exciton is delocalised across the B850

ring due to tight coupling between the BChl molecules79.

Supporting structures and BChl tails removed for clarity.

In purple bacteria, the peripheral antenna con-

sists of light-harvesting complex II (LH2), which

consist of nine subunits of three BChl bound and

a carotenoid bound to a protein63. Each LH2

complex contains two rings of BChl: B800, con-

taining nine BCHl; and B850, containing eight-

een BChl. These rings are named after their peak

absorption wavelength (800 nm and 850 nm re-

spectively), and are stacked atop one another. As

the B800 ring is higher in energy, it transfers the

excitonic energy to the B850 ring, which then

transfers the energy edge-to-edge with either an-

other LH2 complex, or to the core antenna com-

plex.

The peripheral antenna of eukaryotes is a su-

percomplex containing light-harvesting complex

II (LHC-II) units. These units consist of twelve

Chl molecules which serve to act as an antenna to absorb light, and transport it to the core antenna

complex81.

Figure 1.12: Crystallographic structure of light-harvesting

complex II (LHC-II) trimer in plants80.

Core antennae

In FAP and purple bacteria, the RC is surroun-

ded by a ring of BChl called the light-harvesting

complex I (LH1). This ring consists of approxim-

ately sixteen subunits, each with two BChl pig-

ments supported by a protein and carotenoid63.

This ring surrounds the bacterial RC, and can ab-

sorb light directly or accept energy in the form

of an exciton from an LH2 unit, whereupon it

transfers the energy to the RC.

In eukaryotes and cyanobacteria, CP43 and

CP47 are the protein-pigment structures that act

as the core antenna. These sit on either side of

the reaction centre complex, and consist of ten to

twelve (CP43) or twelve to fourteen (CP47) Chl

molecules in a protein backbone. When energy

is transferred to CP43/47, the structure acts as an energetic funnel to direct the energy to the RC.

This structure is homologous to the fused core antennae of acidobacteria, green sulphur bacteria, and

heliobacteria, but are coded for in separate genes to the RC.
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Reaction centre

Figure 1.13: Crystallographic structure82 of a Type II pho-

tosynthetic reaction centre, with protein scaffold and tails

removed for clarity. The RC is a dimer consisting of

two monomers, each of which contains a special pair (bac-

terio)chlorophyll (orange), accessory (B)Chl (dark blue), and

(bacterio)phaeophytin (cyan). Type II RCs use quinones

(brown) as charge acceptors, while Type I use iron-sulphur

complexes.

All extant RCs are dimeric integral membrane

pigment-protein complexes, with the cofactor

dimer made of two monomers that couple at a

pair of (B)Chl known as the special pair (SP)34.

Excitons from the antenna are transferred to

SP, where they are delocalised across both con-

stituent molecules. The charge is then trans-

ferred from this delocalised state on the SP to

the primary acceptor (which may be a (B)Chl

or a (bacterio)phaeophytin (BPhe) depending on

organism), and from there it is transferred to

the ultimate charge acceptor. The delocalisation

across the SP molecules is universal in all light-

harvesting organisms, and the reason this evolved

is a mystery34.

RCs are divided into two classes, depending

on the nature of this ultimate acceptor: type I, or

iron-sulphur (FeS) type, reduce a ferrodoxin to

create chemical energy, while type II, or quinone

type (Q-type), reduce a quinone to a quinol. The structure of these RCs is shown in Figure 1.13.

In anoxygenic organisms, there is only one type of RC, as shown in Table 1.1, which provides

an electron to drive metabolic function. In oxygenic photosynthesis, the two different RCs perform

two different functions: the Type II RC uses the exciton’s energy to oxidise water (using a system

known as the oxygen-evolving complex (OEC)), and transfers the electron to the Type I RC (via the

cytochrome), where it is excited by another exciton and used to drive metabolism.

The two branches of the RC can be symmetric, as is the case in heliobacteria34,74,83, with identical

probability of charge transfer down either; however, in most organisms the RC is asymmetrical, with

charge preferably travelling down one branch, called the active branch34. This is accomplished by

by differences in electronic coupling between SP and the primary charge acceptor on each branch84,

and energetic asymmetries between the branches, which also has the effect of affecting the charge

delocalisation on SP—the charge ranges from fully delocalised across both (B)Chl in P84–86, to being

strongly asymmetrical87.

The fact that in many organisms charge transfer occurs down one branch only raises the question:

why is the RC dimeric? As delocalisation is an inherently quantum phenomenon, we must examine

quantum effects in photosynthesis.
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1.2.2 Quantum effects in photosynthesis

Delocalisation is a quantum effect that occurs in the RC and other photosynthetic systems. To better

understand how quantum effects affect the RC, we will first examine quantum effects known in other

light-harvesting systems.

Quantum effects in photosynthesis can broadly be divided into two categories: incoherent transfer,

first proposed in the 1940s26, and coherent transfer, proposed in the 1930s41,88. However, it was not

until a number of advances were made in EET and CT theory, new experimental tools and techniques

were developed, and the structure of light-harvesting structures were better understood that these

theories could be tested.

In the late 20th century, gFRET was developed to describe incoherent exciton transfer between the

two BChl rings in LH2 of purple bacteria and transfer to the SP from the LH1 ring30. The transfer

between delocalised states lead to supertransfer at a rate 20–30 times that predicted by FRET, due to

the interference of exciton-transfer pathways from different sites30,79,89. Further, the enhancement

is significantly greater than would be expected if the transition dipoles of the BChls in the ring were

randomly oriented, indicating that supertransfer may have been evolutionarily selected for90,91.

At the same time as gFRET was being used to describe incoherent transfer in the LH complexes

of bacteria, pump-probe spectroscopy was showing unusual oscillations in FMO. This was explained

by coherent superpositions of electronic states evolving in time92, and was supported in 2007 using

two-dimensional electronic spectroscopy (2DES) at cryogenic temperatures42, and again at room

temperature by two independent groups in 201089,93. This explanation proposed that wave-like

oscillations were important for the (near-unity) efficiency of excitonic transfer through the FMO.

Critics of this theory questioned whether such wave-like oscillations can occur in incoherent sunlight94,

whether the coherence serves to enhance exciton transfer95,96, and ultimately whether the transfer was

indeed between excitonic states43,97–100.

While it is now generally accepted that the oscillations in FMO are due to vibronic (vibrational and

electronic) coherences41,101, rather than electronic ones, the importance of these coherences are still a

matter of active study in both FMO40,96,102 and other light-harvesting systems41,96,101, especially the

bilisomes of marine algae101.

Research demonstrating that coherent excitonic states are not excited in vivo by incoherent sunlight,

but that stationary states (states that are diagonal or nearly diagonal in the energy basis) are94,103,104,

has still left open the possibility of quantum effects being important through incoherent transfer within

LH structures, between LH structures, and from LH structures to the RC. While the LH structures

of bacteria are highly ordered and symmetrical complexes, the antennae of many other organisms

are quasi-disordered to the point of almost appearing random41. Recent work has suggested that the

degree of delocalisation, determined by static disorder, is the dominant term in describing exciton

transfer in a number of photosynthetic systems96, including FMO. Since delocalisation of excitons

across multiple molecules is important in many photosynthetic systems, including energy transport to

the RC, supertransfer plays a role in enhancing transport94,96. Further, ENAQT can interrupt coherent

effects that localise the exciton (e.g. Anderson localisation), allowing the delocalisation to persist on
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exciton transfer timescales94.

With this established, we can now turn our attention to the RC. Coherent dynamics in the RC

is still an active area of investigation, due to the high efficiency and speed of charge separation

and transfer. The coupling of charge transfer states to nuclear modes was suggested to play a

functional role in the efficiency of charge transfer since the 1990s105,106, and recent work with

2DES has detected quantum beats at a number of frequencies that correlate with charge transfer,

exciton, and vibrational states at room temperature106–108. As such, vibronic coherences have been

suggested to play an active role in charge separation at physiological temperatures in both bacterial

and oxygenic photosynthesis43,98,106–109. Although the mere presence of quantum beating doesn’t

mean that coherence is playing a functional role in charge separation, this is an active field study that

is currently seeing much activity.

1.3 Thesis Outline

We have now isolated two key problems: (1) how does delocalisation in molecular systems affect

charge transfer; and (2) why did the photosynthetic reaction centre dimerise? Chapter 2 will answer

the first question by introducing generalised Marcus theory, which offers a way to calculate the

rate of transfer of delocalised charges between aggregates of molecules using the known charge

transfer properties of the constituent molecules. Chapter 3 will answer the second question by using

generalised Marcus theory from Chapter 2 to demonstrate dimerisation diminished charge transfer

within the reaction centre but enhanced excitonic transfer to the reaction centre, likely improving

overall efficiency. Future research opportunities offered by the results of these chapters are discussed

in Chapter 4.

1.4 Appendix

1.4.1 Derivation of Landau-Zener rate

To derive the Landau-Zener rate, we start from Equation 1.24,

Hab(x) =Wa(x) |φa〉〈φa|+Wb(x) |φb〉〈φb|+Vab |φa〉〈φb|+Vba |φb〉〈φa| , (1.84)

with initial population entirely in state |φa〉. At the transition state x = xT , Wa =Wb; away from the

transition state, |Wa(x)−Wb(x)| � |Vab|. In order to understand what happens at this transition, we

examine the potential energy surface near the transition point,

Wa(x) =Wa(xT )+
∂Wa(x)

∂x

∣∣∣∣
x=xT

(x− xT ), (1.85)

and similarly for Wb(x). We note two things about this situation: first, that a particle trying to cross

between the surfaces will experience an effective force on surface a of Fa = − ∂Wa(x)
∂x

∣∣∣
x=xT

(and

similarly for b), and since the probability of transition decreases exponentially with barrier height (cf.



1.4. APPENDIX 27

Equation 1.5, the Arrhenius rate), the transition occurs only when x− xT is small, and so we write

x−xT ≈ vT t, where vT is the velocity (crossing attempt frequency per unit time) at the transition point.

This allows us to write the time-dependent Hamiltonian

Hab(xT , t) =−FavT t |φa〉〈φa|−FbvT t |φb〉〈φb| . (1.86)

We can use Equation 1.86 to construct a time-evolution operator, U(t, t ′) from Hab(t)+Vab |φa〉〈φb|+
Vba |φb〉〈φa|,

U(t, t ′) =U0(t, t ′)S(t, t ′), (1.87)

where the unitary operator, U0(t, t ′), and the scattering matrix, S(t, t ′), are defined through perturbation

expansions:

U0(t, t ′) = T exp
(
−i
h̄

∫ t

t ′
dτ Hab(τ)

)
; (1.88)

S(t, t ′) = T exp
(
−i
h̄

∫ t

t ′
dτ U†

0 (t, t
′)V̂U0(t, t ′)

)
, (1.89)

where V̂ =Vab |φa〉〈φb|+Vba |φb〉〈φa|, and T is the time-ordering operator.

As Hab(xT , t) consists of two terms that commute, Equation 1.88 evaluates to11

U0(t, t ′) = eivT Fa(t2−t ′2)/2h̄ |φa〉〈φa|+ eivT Fb(t2−t ′2)/2h̄ |φb〉〈φb| , (1.90)

which allows the evaluation of S(t, t ′).

The probability of remaining on the reactant state is Pa(t = ∞). Assuming that the population

was initially (t =−∞) on the reactant state, we can use the time evolution operator, Equation 1.87 to

evaluate Pa = | 〈φa|U(−∞,∞) |φa〉 |2 = e−Γ, where the Massey parameter

Γ =
2π

h̄
|Vab|2

1
vT |Fa−Fb|

∣∣∣∣
x=xT

. (1.91)

The probability of crossing from |φa〉 to |φb〉 at the transition state with velocity vT for a single crossing

attempt is 1− e−Γ.

At this point it is useful to find Hab(xT ). The two eigenvalues of the Hamiltonian are

W±(x) =
Wa(x)+Wb(x)

2
±
√
|Vab|2 +

1
4
(Wa(x)−Wb(x))2 , (1.92)

and since Wa(xT ) =Wb(xT ), we can write

W±(xT ) =Wa(xT )±|Vab|. (1.93)

Since the probability of crossing from the lower state, W−(x), to the upper state, W+(x), is Pa for a

single crossing attempt, we can calculate the probability of ending up in the reactant side of the W−(x).

Once on the upper surface, the probability of crossing back to the reactant side of the lower state in a

single attempt is Pa, meaning there’s a 1−Pa chance of staying on the upper surface. This means that

the probability of a second attempt occurring is (1−Pa)
2 which has a Pa chance of success, since the
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particle has to fail to cross to the lower barrier twice before another attempt is made. As such, we can

write the probability of transitioning from the reactant to product sides of W−(x) as

Pab = 1− e−Γ(e−Γ +(1− e−Γ)2e−Γ +(1− e−Γ)4e−Γ + · · ·) (1.94)

= 1− e−2Γ. (1.95)

We examine the case where Wa(x) and Wb(x) are harmonic potentials, Wa(x) = maω2
a (x− xa)

2/2

and Wb(x) = mbω2
b (x− xb)

2/2, and share the same curvature, maω2
a = mbω2

b = mω2
vib, as per Equa-

tions 1.10 and 1.11. If we consider the distribution of transition velocities, P(vT ), to be thermal, we

can express P(vT ) as a Boltzmann distribution

P(vT ) = Q−1e−mv2
T /2kBT ·Z−1e−ẼA/kBT , (1.96)

where we have defined the adiabatic activation energy, ẼA =W−(xT )−W−(xa), and Q and Z are the

partition functions,

Q =
∫

∞

−∞

dvT e−mv2
T /2kBT (1.97)

=

√
2πkBT

m
(1.98)

Z =
∫ xT

−∞

dxe−ẼA/kBT (1.99)

=

√
πkBT

2mω2
vib

(
1+ erf

(
ẼA

kBT

))
, (1.100)

where erf(z) is the Gauss error function. In the limit where ẼA is large relative to kBT , the error

function in Equation 1.100 approaches 1 and so we can write

P(vT ) =
mωvib

2πkBT
e−mv2

T /2kBT · e−ẼA/kBT . (1.101)

With Pab and P(vT ) defined, we can write the transition rate

kab =
∫

∞

0
dvT vT P(vT )Pab. (1.102)

While this cannot be expressed with a closed-form solution, we can examine two limits: adiabatic (large

Vab such that Γ� 0) and diabatic (small Vab such that Γ≈ 0). In the adiabatic limit, Γ increases much

faster than any other term, and so we can approximate Pab = 1−e−Γ ≈ 1. In this limit, Equation 1.102

is:

kadiabatic
ab =

ωvib

2π
e−ẼA/kBT , (1.103)

In the diabatic limit, we expand Pab to first-order in Γ before evaluating Equation 1.102,

kdiabatic
ab =

2π

h̄
|Vab|2√
πkBT

√
mω2

vib/2

|Fa−Fb|x=xT

e−EA/kBT , (1.104)



1.4. APPENDIX 29

where the diabatic activation energy EA =Wa(xT )−Wa(xa). Since we now have expressions for Wa(x)

and Wb(x), we can evaluate |Fa−Fb|x=xT = mω2
vib|xa− xb|. The energy required to go from Wa(xa) to

Wa(xb) is Wa(xb)−Wa(xa) = mω2
vib(xb− xa)/2≡ λ . This lets us write Equation 1.104:

kdiabatic
ab =

2π

h̄
|Vab|2√

4πkBT λ
e−EA/kBT . (1.105)





Chapter 2

Generalised Marcus Theory

The following publication has been incorporated as Chapter 2, with minor modifications:

Generalised Marcus theory for multi-molecular delocalised charge transfer, Chem. Sci., 9, 2942

(2018), DOI: 10.1039/C8SC00053K110.

Natasha B. Taylor1 and Ivan Kassal1,2.
1Centre for Engineered Quantum Systems and School of Mathematics and Physics, The University of

Queensland, Brisbane, Queensland 4072, Australia

2The University of Sydney Nano Institute and School of Chemistry, The University of Sydney, New

South Wales 2006, Australia

2.1 Abstract

Although Marcus theory is widely used to describe charge transfer in molecular systems, in its

usual form it is restricted to transfer from one molecule to another. If a charge is delocalised across

multiple donor molecules, this approach requires us to treat the entire donor aggregate as a unified

supermolecule, leading to potentially expensive quantum-chemical calculations and making it more

difficult to understand how the aggregate components contribute to the overall transfer. Here, we

show that it is possible to describe charge transfer between groups of molecules in terms of the

properties of the constituent molecules and couplings between them, obviating the need for expensive

supermolecular calculations. We use the resulting theory to show that charge delocalisation between

molecules in either the donor or acceptor aggregates can enhance the rate of charge transfer through

a process we call supertransfer (or suppress it through subtransfer). The rate can also be enhanced

above what is possible with a single donor and a single acceptor by judiciously tuning energy levels

and reorganisation energies. We also describe bridge-mediated charge transfer between delocalised

molecular aggregates. The equations of generalised Marcus theory are in closed form, providing

qualitative insight into the impact of delocalisation on charge dynamics in molecular systems.
31

http://pubs.rsc.org/en/Content/ArticleLanding/2018/SC/C8SC00053K
http://dx.doi.org/10.1039/C8SC00053K
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2.2 Introduction

Theories of charge-transfer rates underpin our understanding of a wide variety of chemical reactions and

charge-transport processes, not only in chemistry, but also in biology and materials science11,111–113. In

most of the well-studied cases, the charge is being transferred from one molecule to another. However,

in many systems—including organic semiconductors114,115, the reaction centres of photosynthetic

organisms116,117, inorganic coordination complexes118, and conductive metal-organic frameworks

(MOFs)119—the charge to be transferred is delocalised across multiple donor molecules (or is to be

received by states delocalised over multiple acceptor molecules). The usual theoretical approaches can

be applied to these cases if the donor or acceptor aggregates are treated as single supermolecules, but

doing so is often computationally prohibitive, requires a complete re-calculation if any part is changed,

and, most importantly, offers limited qualitative insight into how the component molecules and the

interactions between them affect the inter-aggregate charge transfer.

Although delocalisation in charge transfer has been studied extensively, most studies have focused

on cases of delocalisation between the donor and acceptor, as opposed to delocalisation within donor or

acceptor aggregates. In particular, donor-acceptor delocalisation is critical to understanding adiabatic

electron transfer, as first emphasised by Hush120,121, and extended by numerous authors since122–124.

For example, intervalence transitions in mixed-valence compounds are a clear manifestation of

delocalisation between two molecules125.

Here, we study the problem of charge transfer from one delocalised molecular aggregate to another.

In order to be able to speak of two distinct aggregates, we assume that the coupling between the

aggregates (i.e., between any donor molecule and any acceptor molecule) is small compared to the

strength of their coupling to the environment. Furthermore, to ensure that charges within either

aggregate (or both) are delocalised among the constituent molecules, we assume that the couplings

between the molecules are stronger than their coupling to the environment.

Because the overall donor-acceptor coupling is weak, the charge transfer will be incoherent, i.e.,

with no coherence between the donor and acceptor states. Apart from the delocalisation within the

aggregates, this situation is described by non-adiabatic electron transfer, which we take as our starting

point. Although we will follow convention in calling it Marcus theory10 (MT), the standard expression

for non-adiabatic charge transfer between one donor D and one acceptor A was derived by Levich and

Dogonadze18:

kD→A =
2π

h̄
|VDA|2√

4πkBT λDA
exp
(
−(∆EDA +λDA)

2

4kBT λDA

)
, (2.1)

where, at temperature T , three parameters control the transfer rate: the donor-acceptor electronic

coupling, VDA, determined by the overlap of their electronic wavefunctions; the reorganisation energy,

λDA, which is the energy required to reorganise the environment from equilibrium about the reactant to

equilibrium about the product without changing the electronic state; and the energy difference between

the final and initial states, ∆EDA.

Here, we show that it is possible to generalise non-adiabatic MT to describe charge transfer between

molecular aggregates in terms of the properties of individual molecules and couplings between them.
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Donor Aggregate

Acceptor Aggregate

D1

D2

D3
A1

A2
A3

vD13

vA12
QD3

QA3

VD2A1

  vDjj’ ,vAkk’ >>  QDj ,QAk >>  VDjAk

Figure 2.1: The model system for generalised Marcus theory. The model describes charge transfer between two delocalised
aggregates if the couplings v between molecules constituting the donor (or acceptor) are strong compared to the coupling
to the environment Q, while the couplings V between molecules in the donor with those in the acceptor are relatively weak.

Our theory is both computationally cheap – avoiding the need for supramolecular quantum-chemical

simulations – and offers intuitive insight into how the charge transfer rates are affected by changes to

molecules in either aggregate.

Our approach is inspired by developments in Förster resonance energy transfer (FRET), which

describes the exciton transfer rate between two chromophores and is, like MT, derived from second-

order perturbation theory in the donor-acceptor coupling. Sumi developed generalised FRET (gFRET)

to describe the transfer of excitons between delocalised aggregates in photosynthetic antenna com-

plexes30,31, and his approach has since been used to study exciton transfer in a wide range of molecular

aggregates90,91,126. Following Sumi, we name our theory ‘generalised Marcus theory’ (gMT).

MT also allows a description of bridge-mediated charge transfer, where the donor and acceptor

are not directly coupled, but a coupling between them is mediated by intervening ‘bridge’ molecules,

whose states are sufficiently high in energy to prevent actual charge transfer from the donor to

the bridge11,111,112. A bridge enables charge transfer to occur over longer distances, although the

rate typically decreases exponentially with the number of bridge elements. After deriving gMT in

Section 2.3.1, we show that it is also easily extended to describe bridge-assisted charge transfer

between delocalised aggregates in Section 2.3.2.
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2.3 Results

2.3.1 Generalised Marcus theory

We generalise Marcus theory by considering an aggregate of ND donor molecules and an aggregate of

NA acceptor molecules, with each molecule coupled to an independent environment of thermalised

harmonic oscillators. Three approximations make it possible to define two distinct aggregates (Fig-

ure 2.1): first, the coupling between molecules in each aggregate is much stronger than their coupling

to the environment, ensuring that the delocalised eigenstates of each aggregate are the appropriate

basis for perturbation theory; second, the system-environment coupling is much stronger than the

inter-aggregate coupling, implying that inter-aggregate charge transfer is incoherent (hopping); and

third, because we assume each site is coupled to its own environment, no environmental mode connects

a donor and an acceptor molecule. Where applicable, we follow the derivation of multi-chromophoric

FRET (MC-FRET)32, which reduces to generalised FRET in the appropriate limit. While gFRET can

also be derived using Fermi’s golden rule127, we used a time-dependent derivation because some of

our intermediate results may be useful in more general contexts.

The full Hamiltonian is H = H0
D +H0

A +HC +HDE +HAE +HE , and we introduce each term here

as well as in Figure 2.1. The donor-aggregate and acceptor-aggregate Hamiltonians are, respectively,

H0
D =

ND

∑
j=1

E j |D j〉〈D j|+ ∑
j 6= j′

v j j′ |D j〉〈D j′| , (2.2)

H0
A =

NA

∑
k=1

Ek |Ak〉〈Ak|+ ∑
k 6=k′

vkk′ |Ak〉〈Ak′| , (2.3)

where |D j〉 and |Ak〉 are the states where the charge is localised on molecules D j and Ak respectively.

Throughout this work we index donor sites with j and acceptor sites with k: ∑ j should be read as a

sum over only the donor sites, and ∑k only over acceptors. The donor and acceptor molecules have

site energies E j and Ek, and intra-aggregate couplings are v j j′ (in the donor) and vkk′ (in the acceptor).

We refer to the eigenstates of H0
D and H0

A as the aggregate basis, being, respectively, |Dα〉 =
∑ j cα j |D j〉 and |Aβ 〉= ∑k cβk |Ak〉, with energies Eα and Eβ . Similar to site indices j and k, index α

is consistently used to denote only donor eigenstates, and β acceptor eigenstates.

Inter-aggregate coupling is described by the Hamiltonian

HC =
ND

∑
j=1

NA

∑
k=1

Vjk
(
|D j〉〈Ak|+ |Ak〉〈D j|

)
, (2.4)

where Vjk is the coupling between the jth donor and kth acceptor molecules.

The environment is described by a set of harmonic oscillators:

HE = ∑
ξ

h̄ωξ (b
†
ξ

bξ +1/2), (2.5)

where ωξ is the frequency of the ξ th environment mode, with creation operator b†
ξ

. We can also write

HE = HED +HEA , with the environment modes partitioned between those that couple to donor and

acceptor molecules.
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The donor-environment and acceptor-environment interaction Hamiltonians are, respectively,

HDE =
ND

∑
j=1

Q j |D j〉〈D j| , (2.6)

HAE =
NA

∑
k=1

Qk |Ak〉〈Ak| , (2.7)

with Q j = ∑ξ h̄ωξ g jξ (bξ +b†
ξ
), where g jξ is the dimensionless coupling of the ξ th environment mode

to the charged jth donor molecule, relative to the uncharged state. Qk is defined analogously. The

assumption of a local environment means that, for a fixed ξ , only one of g jξ can be non-zero.

The charge-transfer rate is the rate of change of the charge population on the acceptor,

kD→A(t) =
d
dt

TrE ∑
k
〈Ak|ρ(t) |Ak〉 , (2.8)

where ρ(t) is the density matrix of the system, and TrE is the trace over the environmental modes. As

detailed in the Appendix, kD→A can be calculated using second-order perturbation theory in HC and,

because we assumed separable environments, generates a time-dependent transfer rate

kD→A(t) = ∑
j, j′

∑
k,k′

VjkVj′k′

h̄2 ·2Re
∫ t

0
dτ TrE

(
〈Ak|e−i(H−HC)(t−τ)/h̄ |Ak′〉〈

D j′
∣∣e−i(H−HC)τ/h̄

ρ(0)ei(H−HC)t/h̄ ∣∣D j
〉)

. (2.9)

To proceed, we consider the rate in the aggregate basis. The requirement that Vjk be weaker than

all other couplings means that the donor aggregate will relax to a thermal state faster than the charge

transfer. In other words, we assume that the initial density operator of the system ρ(0) will, before

charge transfer takes place, relax to a state ρth in which both the donor and acceptor aggregates are in

equilibrium with their own environments (see Appendix for details). This gives a time-independent

transfer rate,

kD→A = ∑
α,β

|Vαβ |2

2π h̄2

∫
∞

−∞

dω Dαα
D (ω)A ββ

A (ω), (2.10)

where

Vαβ = ∑
j,k

c∗α jcβkVjk, (2.11)

Dαα
D (ω) =

∫
∞

−∞

dt e−iωtTrED

(
e−iHED t/h̄ 〈Dα |eiHDt/h̄

ρD |Dα〉
)
, (2.12)

A ββ

A (ω) =
∫

∞

−∞

dt eiωtTrEA

(
eiHEA t/h̄ 〈Aβ

∣∣e−iHAt/h̄ ∣∣Aβ

〉
ρA
)
, (2.13)

and where ρth is split into donor and acceptor components, ρth = ρD⊗ ρA. Because the donor-

environment coupling is weak, the thermal state of the donor will approximately factorise to ρD =

(∑α ραα |Dα〉〈Dα |)⊗ρED , where ραα = exp(−Eα/kBT )/(∑α exp(−Eα/kBT )) is the electronic pop-

ulation distribution, and the thermal environment is ρED = exp(−HED/kBT )/TrED(exp(−HED/kBT )).

The thermal state of the acceptor is ρA = ρEA = exp(−HEA/kBT )/TrEA(exp(−HEA/kBT )). Finally, we

have also written HD = H0
D +HDE +HED , and similarly for HA.
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Equations 2.10–2.13 are analogous to the MC-FRET treatment of delocalised exciton transfer32.

In particular, the rate of MC-FRET depends on the (weighted) overlap of the donor emission spectrum

with the acceptor absorption spectrum, which resembles the form of Equation 2.10. However, in gMT,

Equation 2.12 describes the spectrum of charge disassociation from the donor and Equation 2.13 the

charge association spectrum for the acceptor. Furthermore, the inter-aggregate coupling in Equation

2.10 is determined by the overlap of electronic wavefunctions, while in MC-FRET the couplings are

from the interactions of transition dipole moments.

Evaluating Equations 2.12–2.13 for independent harmonic environments gives (see Appendix for

details)

Dαα
D (ω) = ραα

∫
∞

−∞

dt e−iωteiEα t/h̄+Gα (t)−Gα (0), (2.14)

A ββ

A (ω) =
∫

∞

−∞

dt eiωte−iEβ t/h̄+Gβ (t)−Gβ (0), (2.15)

with the lineshape function

Gα(t) = ∑
ξ

g2
αξ

(
cos(ωξ t)(1+2n(ωξ ))− isin(ωξ t)

)
, (2.16)

and Gβ (t) analogously defined. For a thermally populated environment, the occupation of environ-

mental modes is given by the Bose-Einstein distribution n(ν) = (exp(h̄ν/kBT )−1)−1.

The preceding equations are appropriate at a wide range of temperatures and environmental spectral

densities. Although we could stop here, to obtain a clear comparison with MT, we now make two

additional approximations that are also made in deriving ordinary Marcus theory. To do so, we assume

that the spectral density J(ω) = ∑ξ g2
αξ

δ (ω−ωξ ) goes rapidly to zero beyond a cut-off frequency ωc.

Then, we first assume the high-temperature limit kBT � h̄ωc, so that n(ν)≈ kBT/h̄ν � 1, giving

Gα(t) = ∑
ξ

g2
αξ

(
2kBT
h̄ωξ

cos(ωξ t)− isin(ωξ t)
)
, (2.17)

Second, MT also assumes the slow-nuclear-mode limit, in which the charge-transfer occurs faster than

the characteristic timescales of the environment: t � 1/ωc / 1/ωξ . With ωξ t � 1, we expand the

trigonometric functions in Equation 2.17 to leading order:

Gα(t) = ∑
ξ

g2
αξ

(
2kBT
h̄ωξ

−
t2kBT ωξ

h̄
− iωξ t

)
. (2.18)

We now define the reorganisation energy for the donor sites as λ j = ∑ξ h̄ωξ g2
jξ , and similarly

for the acceptor sites, λk. The change of basis gαξ = ∑ j |cα j|2g jξ gives the reorganisation energy of

aggregate eigenstates

λα = ∑
ξ

h̄ωξ g2
αξ

= ∑
ξ

h̄ωξ

(
∑

j
|cα j|2g jξ

)(
∑
j′
|cα j′|2g j′ξ

)
. (2.19)

Since each site has an independent environment, no mode ξ couples to two different sites (g jξ g j′ξ =

g2
jξ δ j j′), giving

λα = ∑
ξ

h̄ωξ ∑
j
|cα j|4g2

jξ , (2.20)



38 CHAPTER 2. GENERALISED MARCUS THEORY

and similarly for λβ .

Substituting Equations 2.18 and 2.20 into Equations 2.14-2.15 we find

Dαα
D (ω) = ραα

2π h̄√
4πkBT λα

exp
(
−(Eα − h̄ω−λα)

2

4kBT λα

)
, (2.21)

A ββ

A (ω) =
2π h̄√

4πkBT λβ

exp
(−(Eβ − h̄ω +λβ )

2

4kBT λβ

)
. (2.22)

Consequently, the overlap integral in Equation 2.10 becomes

kD→A = ∑
α,β

2π

h̄
ραα |Vαβ |2√
4πkBT λαβ

exp
(−(∆Eαβ +λαβ )

2

4kBT λαβ

)
, (2.23)

where ∆Eαβ = Eβ −Eα and λαβ = λα +λβ , demonstrating that gMT takes the same form as MT,

with all parameters defined analogously to—and expressible in terms of—their site-basis counterparts.

These results are also summarised in Table 2.1, and in the limit of a single-molecule donor and

single-molecule acceptor, Equation 2.23 reduces to the ordinary MT rate, Equation 2.1. The ability to

recast gFRET in a form analogous to Equation 2.2333 further illustrates the deep similarities between

charge and exciton transfer.

2.3.2 Generalised bridge-mediated charge transfer

Like MT, gMT can be expanded to include the case where the coupling between the donor and the

acceptor aggregates is not direct, but is instead mediated by a bridge consisting of higher-lying states

of intervening molecules. We consider a bridge of N molecules, each modelled as a single site, where

the donor molecules only couple to the first bridge state, B1, the acceptor molecules only couple to the

last bridge state, BN , and each bridge molecule only couples to its two nearest neighbours in the chain,

as shown in Figure 2.2. Usually, the bridge site energies EBl are considered energetically distinct from

the donor and acceptor aggregates, i.e.,

(EBk−EBl), |VBlBl+1| � EBl −Eα/β , (2.24)

where VBlBl+1 are the intra-bridge couplings and Eα/β is the characteristic energy of donor and acceptor

eigenstates (for concreteness, it could be taken as the highest eigenvalue of either H0
D or H0

A).

We define the donor-bridge-acceptor Hamiltonian HDBA = HB +H0
D +HDB +H0

A +HAB using H0
D

and H0
A as above and adding the bridge Hamiltonian HB and the coupling of the bridge to the donor,

HDB, and acceptor, HAB,

HB =
N

∑
l=1

EBl |Bl〉〈Bl|+
N−1

∑
l=1

VBlBl+1 |Bl〉〈Bl+1|+h.c., (2.25)

HDB = ∑
j

VjB1

∣∣D j
〉
〈B1|+h.c., (2.26)

HAB = ∑
k

VkBN |Ak〉〈BN |+h.c., (2.27)
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Figure 2.2: Generalised bridge-assisted charge transfer, shown with two donor molecules, D1 and D2, two acceptor
molecules, A1 and A2, and N bridge molecules, B1 . . . BN . a) The eigenstates of each aggregate are calculated. b) The
energies of these eigenstates are then perturbed by the coupling to the bridge (perturbation of the bridge levels is neglected,
see text). c) Charge transfer occurs directly between donor and acceptor aggregate eigenstates, assisted by virtual bridge
states.
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where |Bl〉 is the state of a charge being located on bridge site Bl .

Instead of thinking of B1 and BN as coupling to donor and acceptor sites, we can also consider

them as coupling to the aggregate eigenstates. In the aggregate basis, HDBA becomes

HDBA = HB +∑
α

(
Eα |Dα〉〈Dα |+VαB1 |Dα〉〈B1|+h.c.

)
+∑

β

(
Eβ

∣∣Aβ

〉〈
Aβ

∣∣+VβBN

∣∣Aβ

〉
〈BN |+h.c.

)
, (2.28)

where VαB1 = ∑ j cα jVjB1 and VβBN = ∑k cβkVkBN .

We calculate the rate of charge transfer from each donor eigenstate |Dα〉 to each acceptor eigen-

state |Aβ 〉 independently, using the mathematics already established for single-site bridge-mediated

transfer21. In other words, instead of considering the entire donor-bridge-acceptor system, we consider

separately the subspace of each donor and acceptor eigenstate with the bridge,

HDBA(α,β ) = HB +Eα |Dα〉〈Dα |+VαB1 |Dα〉〈B1|+h.c.

+Eβ

∣∣Aβ

〉〈
Aβ

∣∣+VβBN

∣∣Aβ

〉
〈BN |+h.c. (2.29)

We denote the lowest-eigenvalue eigenvector of HDBA(α,β ) as dDBA = (dα ,dB1, . . . ,dBN ,dβ ), with

eigenvalue EDBA.

Since (HDBA(α,β )− IEDBA)dDBA = 0, we find that

(Eα −EDBA)dα +VαB1dB1 = 0, (2.30)

(Eβ −EDBA)dβ +VβBN dBN = 0. (2.31)

The values of dB1 and dBN can be found by considering the bridge subspace, (HB− IEDBA)dB =

−(VB1αdα ,0, . . . ,0,VBNβ dβ ) where dB consists of the bridge elements of dDBA in the same order.

The solution of this equation is dB = GB(VB1αdα ,0, . . . ,0,VBNβ dβ ), using Green’s function GB =

(IEDBA−HB)
−1.

By substituting this solution for dB1 and dBN into Equations 2.30 and 2.31, we find

(Êα −EDBA)dα +V̂αβ dβ = 0, (2.32)

(Êβ −EDBA)dβ +V̂βαdα = 0, (2.33)

where Ê are the perturbed energies of aggregate eigenstates due to coupling with the bridge,

Êα = Eα +VαB1G11
B VB1α , (2.34)

Êβ = Eβ +VβBN GNN
B VBNβ , (2.35)

and V̂ is the effective coupling between the donor and acceptor eigenstates, mediated by the bridge,

V̂αβ =VαB1G1N
B VBNβ . (2.36)
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To find the Green’s function, we expand GB in terms of a Dyson series. Because |VBlBl+1| is small

(see Equation 2.24), we keep only the lowest-order term21,

G1N
B = (EDBA−EB1)

−1VB1B2(EDBA−EB2)
−1VB2B3× . . .

× (EDBA−EBN−1)
−1VBN−1BN (EDBA−EBN )

−1. (2.37)

While EDBA is an eigenvalue of the entire donor-bridge-acceptor system, we are only interested in

the donor/acceptor subspace. Because EBl −Eα/β is large relative to inter-site couplings and energy

differences (Equation 2.24), we can approximate EDBA−EBl ≈ Eα/β −EB, for average bridge energy

EB. This allows us to simplify Equation 2.36 using the geometric mean of the bridge couplings VBB,

V̂αβ =
VαB1VBNβ

Eα/β −EB

(
VBB

Eα/β −EB

)N−1

. (2.38)

As in ordinary bridge-assisted charge transfer, the effective coupling decays exponentially with bridge

length because VBB < Eα/β −EB (Equation 2.24). Substituting Equations 2.34–2.37 into Equation

2.23, we have the rate of bridge-assisted gMT:

kD→A = ∑
α,β

2π

h̄
ραα |V̂αβ |2√
4πkBT λαβ

exp
(−(∆Êαβ +λαβ )

2

4kBT λαβ

)
. (2.39)

2.4 Discussion

The summary of results in Table 2.1 shows that gMT—whether bridged or not—follows the same

functional form as ordinary Marcus theory. This allows intuition gained from studying MT to continue

to be useful when studying aggregates instead of single molecules (provided that the parameters are

redefined as shown in Table 2.1). Further, gMT allows known values of relevant parameters (couplings,

energy differences, and reorganisation energies) of individual molecules to be used to calculate the

effective parameters for aggregates, saving computational time by avoiding expensive supramolecular

quantum-chemical simulations.

However, the presence of delocalisation in aggregates leads to significant differences between MT

and gMT. We can analyse the influence of delocalisation on charge transfer by separating its impact on

the electronic and nuclear components of the MT rate.

The gMT electronic coupling factor |Vαβ |2 = |∑ j,k cα jc∗βkVjk|2 includes a coherent sum involving

electronic amplitudes in each of the donor and acceptor aggregates, allowing both constructive and

destructive interference to affect the transfer rate. If the interferences is constructive, leading to

enhanced transfer rates, we call the effect supertransfer, and if it is destructive, subtransfer, borrowing

terminology from the similar problem of MC-FRET128.

For illustration, we consider an aggregate of two identical coupled donors, D1 and D2, with a

charge delocalised between them in the |Dα〉= (|D1〉+ |D2〉)/
√

2 state. The donors are coupled to

a single acceptor A with strengths VD1A and VD2A respectively. If we were to apply Marcus theory

between each donor and the acceptor independently, we would expect a transfer rate proportional to the
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Figure 2.3: Example of generalised Marcus theory (gMT) and supertransfer, showing only the impact of electronic
component |Vαβ |2 on the charge transfer rate. a) Geometric arrangement of two donors and one acceptor, changing from
collinear (θ = 0) to an isosceles triangle (θ = π/2). b) Rates of charge transfer from the donors to the acceptor are displayed
as ratios of the rate that would be found if only donor D1 were present and the charge initially localised on it. Black and
orange lines indicate, respectively, geometries with RA = 3RD or RA = RD (at a constant RA = 5Å). In both cases, the rates
are computed for three initial donor states: the bright state (|D1〉+ |D2〉)/

√
2 (solid), the dark state (|D1〉− |D2〉)/

√
2

(dot-dashed), and the fully mixed state of |D1〉 and |D2〉 (dashed). These three states are obtained as ground states of the
donor Hamiltonian by assuming VD1D2 =−100meV (bright), VD1D2 = 100meV (dark), or VD1D2 = 0meV (mixed). The
transfer rates are independent of RA and RD when θ reaches π/2, where both donors are equidistant from the acceptor.
At that point, constructive interference ensures that the transfer from the bright state is twice as fast as it would be from
either site alone, while transfer from the dark state is completely suppressed by destructive interference caused by the
opposite signs of the wavefunction at D1 and D2. The difference between the two geometries is apparent at smaller θ .
When RD is large compared to RA (orange), the rate is half the single-site rate for all initial states, indicating that the
acceptor is interacting primarily with D1 until θ becomes considerable. By contrast, when both donors are close enough to
the acceptor to interact with it strongly (black), supertransfer and subtransfer can occur at all values of θ , resulting in rate
enhancements different from 0.5 at all angles. Other calculation parameters: VDA(r) = 50meVexp(1− r/2Å).

square of each coupling, kMT ∝
1
2 |VD1A|2 + 1

2 |VD2A|2, with the factors of 1/2 indicating the population

on each donor. However, this naive approach fails to include coherent effects of the superposition.

These are treated correctly by gMT, which predicts a transfer rate of kgMT ∝ |(VD1A +VD2A)/
√

2 |2.

The presence of rate-enhancement due to supertransfer is apparent if VD1A = VD2A, which implies

kgMT = 2kMT . In contrast, if the two transfer pathways interfere destructively, VD1A =−VD2A, gMT

predicts subtransfer with kgMT = 0. We refer to states that enhance the charge-transfer rate through

supertransfer as bright, while those that retard it as dark, in analogy to the terms used in the literature

on superradiance129. The relative populations of the bright and dark states will strongly influence the

rate of charge transfer in delocalised systems.
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Supertransfer is also sensitive to the system’s geometry. Changing the distance and orientations

between donors and acceptors will affect the electronic wavefunction overlaps due to the exponential

decay of electronic wavefunctions with distance, consequently modifying the electronic couplings.

To explore the consequences of this geometric sensitivity, we consider a model consisting of two

donor molecules transferring a unit of charge to an acceptor molecule, shown in Figure 2.3. These

calculations demonstrate that rate enhancement/retardation is weakest when the acceptor is co-linear

with the donors. This is because the farther donor is so far away that the acceptor is only affected by

the nearer donor. The impact is most significant when the acceptor is equidistant from the two donors,

where supertransfer from the bright state amplifies the transfer rate by a factor of two, while the dark

state provides no transfer.

We can compare these results with gFRET, the analogous theory of excitation-energy transfer

between molecular aggregates32. Bright and dark states also exist in gFRET, but exciton transfer

is not as sensitive to small changes in the separation between molecules. While the transfer rate

in gMT is determined by the overlap of electronic wavefunctions, which decay exponentially with

distance, the MC-FRET rate depends on the coupling of transition dipole moments, which decays

with the cube of the distance. In addition, both gMT and gFRET are strongly affected by the relative

orientations of the molecules. The orientational dependence of gFRET is easier to predict, especially

in the large-separation limit where it can be represented by the interaction of two dipoles. By contrast,

the orientational dependence of electronic couplings depends on the shape of the orbitals, which varies

from molecule to molecule. Given that the geometric dependence of gFRET can lead to substantially

different outcomes in light-harvesting complexes90,91, the stronger dependence of gMT on geometry

provides an opportunity to engineer molecular systems that perform charge transfer better than single

sites.

The nuclear factor in gMT (also referred to as the Franck-Condon weighted density factor),

(4πkBT λαβ )
−1/2 exp(−(∆Eαβ + λαβ )

2/4kBT λαβ ), has several features in common with ordinary

MT. For example, for a fixed λαβ , the nuclear factor is maximised when −∆Eαβ = λαβ , and the

inverted regime is possible when −∆Eαβ > λαβ . However, the nuclear term also possesses features

not predicted by ordinary MT, allowing for both enhancement or retardation of the transfer rate.

The nuclear factor depends on two energies, ∆Eαβ and λαβ , which are affected by delocalisation

in different ways. On the one hand, ∆Eαβ is the difference between eigenvalues of H0
D and H0

A. If the

extent of delocalisation in, say, the donor is increased, Eα will not change dramatically, remaining

close (up to several times the intermolecular coupling) to a value of typical site energies. On the

other hand, λαβ is reduced by delocalisation. Since λα = ∑ j |cα j|4λ j, for a state purely localised on j,

λα = λ j. However, in a fully delocalised state (cα j = 1/
√

ND ) of ND identical donors (λ j = λ ), the

reorganisation energy is decreased ND-fold:

λα =
ND

∑
j=1

∣∣∣∣ 1√
ND

∣∣∣∣4λ j =
λ

ND
. (2.40)

In general, the reduction is by a factor equal to the inverse participation ratio IPR = (∑ j |cα j|4)−1. A

reduction in λ leads to an exponential narrowing of both Dαα
D (ω) and A ββ

A (ω). Therefore, because
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Figure 2.4: Tuning energy offsets and reorganisation energies can enhance charge-transfer rates beyond what is possible
with either donor site alone. a) Two donors and one acceptor in a collinear geometry, with different colours (orange/red)
indicating inequivalent donors. b) Energetic detuning: the charge transfer rate from the aggregate to the acceptor (solid line)
is compared to the rate if only D1 (dashed red) or D2 (dashed orange) were present, as a function of the energy difference
between D1 and D2. Even with the effects of supertransfer removed (the aggregate rate is shown divided by the electronic
supertransfer enhancement of 1.42), energetic tuning can make the aggregate transfer faster than would be possible with
either donor alone. In particular, the presence of D2, which itself is weakly coupled to A, can enhance the transfer rate above
the rate from D1 alone. c) Reorganisation energies: plot as in b), but the rates are shown as a function of the difference in
reorganisation energies between D1 and D2. Here as well, adding D2 with a favourable reorganisation energy can enhance
the rate above what is possible with either donor alone. Calculation parameters: VD1D2 = −37meV, VD1A = 18meV,
VD2A = 2.5meV, λA = 200meV, λD1 = 150meV, ED1 = 700meV, EA = 0meV, kBT = 25meV. In addition, b) uses
λD2 = 150meV and c) has ED2 = 600meV.

the charge-transfer rate depends on the overlap of the two spectra (Equation 2.10), the reduction in

λ will reduce the transfer rate between most pairs of eigenstates, the exception being ones where

∆Eαβ =−λαβ .
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The presence of different processes affecting the nuclear factor means that delocalisation can have

a complicated effect on the charge-transfer rate, even apart from supertransfer. Critical to the rate

is the relative size of ∆Eαβ and λαβ , because of the rate’s exponential sensitivity to (∆Eαβ +λαβ )
2.

The different effects are illustrated with another example, shown in Figure 2.4a, where acceptor A is

strongly coupled to donor D1, whose site energy and reorganisation energy are such that the transfer

from D1 to A is very slow (−∆ED1A� λD1A). Another donor D2 is then introduced, but is weakly

coupled to A due to its distance. A naive application of classical MT might suggest that, because

D2 hardly interacts with A, it would serve to only steal charge density from D1, reducing the already

slow transfer rate. Generalised MT, however, shows that it is possible to choose the energy and

reorganisation energy of D2, as well as its coupling to D1, so that a coherent superposition between D1

and D2 will enhance the total transfer rate above what is possible with either D1 or D2 alone. This

is true even if supertransfer is neglected, as shown in Figures 2.4b and c. Indeed, for two donors,

supertransfer can enhance the rate by at most a factor of two, while there is no limit to how much the

nuclear factor can be enhanced by judiciously tuning ∆Eαβ and λαβ to minimise (∆Eαβ +λαβ )
2. This

result shows that even if an unfavourable donor must be used in a donor-acceptor system (for whatever

reason), another donor can be added to tune the nuclear term’s contribution to the charge transfer rate.

Our results also extend gMT to treat bridge-mediated charge transfer, showing that the usual

equations still apply when considering delocalised aggregates. Indeed, including the effects of bridge-

mediated charge transfer on gMT does not qualitatively change the effects of supertransfer and

energetic tuning, except that the coherent effects depend on the geometry of the donor aggregate with

respect to the first bridge molecule, and the acceptor aggregate with respect to the last. In particular,

the results shown in Figures 2.3 and 2.4 would remain unchanged if the couplings were mediated by a

bridge.

2.5 Conclusion

The theory presented in this work is the first description of charge transfer between delocalised

molecular aggregates. Therefore, we anticipate that it will have broad applications in fields where

charge transfer and electronic coherence intersect, including organic photovoltaics, photosynthesis,

and inorganic complexes.

The major prediction of gMT is that delocalisation within an aggregate can significantly affect

charge transfer rates through two mechanisms: supertransfer and nuclear tuning. The first is a

consequence of the constructive interferences of charge-transfer pathways, while the latter is the ability

of a charge-transfer rate to be modified by adjusting effective energy levels and reorganisation energies

by delocalising electronic states over different molecules.

Both of these predictions are suited to being tested experimentally. The simplest approach would be

to construct covalently linked donors and acceptors in geometries that approximate those in Figures 2.3

and 2.4. Tuning the couplings and energy levels through chemical modification would permit the

adjustment of the parameters relevant for gMT, allowing the theory to be tested.
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In this work, we restricted ourselves to deriving the delocalised generalisation of the simplest

Marcus-theory formula. We are confident that many of the subsequent advances that have occurred in

charge-transfer theory can also be incorporated as extensions to gMT. Indeed, our derivation is more

general than the final result, and some of the approximations needed to derive an MT-like equation

(e.g., high temperature, slow environmental modes) can be omitted and more general intermediate

results used directly (e.g., Equations 2.10–2.13). Although it is not clear whether a simple, closed-

form expression could be derived, a number of improvements to gMT can be envisaged, including

adiabatic charge transfer, quantum-mechanical vibrational corrections130, coherent multistep charge

transfer131, shared intra-aggregate environmental modes132, and off-diagonal system-environment

couplings. Inspiration could also be taken from advances in MC-FRET to obtain generalisations able

to treat system-environment entanglement or other parameter regimes outside the approximations used

here127,133,134.

2.6 Appendix

Here we give the full derivation of Equations 2.14–2.15 from Equation 2.8, indexing the sum with k′′

for future convenience:

kD→A(t) =
d
dt

TrE ∑
k′′
〈Ak′′ |ρ(t) |Ak′′〉 . (2.41)

Since the inter-aggregate coupling HC is weak compared to all other terms in H, we take it as

a perturbation. Taking H0 = H −HC, and using tildes to denote the interaction picture, we write

H̃C(t) = eiH0t/h̄HCe−iH0t/h̄ and express ˙̃ρ(t) to second order in perturbation theory:

˙̃ρ(t)≈− 1
h̄2

∫ t

0
dτ TrE

[
H̃C(t),

[
H̃C(τ),ρ(0)

]]
, (2.42)

where [·, ·] is the commutator, and TrE is the trace over the environment degrees of freedom. Substitut-

ing into Equation 2.41,

kD→A(t) =−
1
h̄2 ∑

k′′
〈Ak′′|

∫ t

0
dτ TrE

[
H̃C(t),

[
H̃C(τ),ρ(0)

]]
|Ak′′〉 (2.43)

=− 1
h̄2 ∑

k′′
〈Ak′′|

∫ t

0
dτ TrE

(
H̃C(t)H̃C(τ)ρ(0)+ρ(0)H̃C(τ)H̃C(t)

− H̃C(τ)ρ(0)H̃C(t)− H̃C(t)ρ(0)H̃C(τ)
)
|Ak′′〉 . (2.44)

Since the charge is initially on the donor aggregate, ρ(0) |Ak′′〉= 〈Ak′′ |ρ(0) = 0, the first two terms

vanish, giving

kD→A(t) =
1
h̄2 ∑

k′′
2Re〈Ak′′|

∫ t

0
dτ TrE

(
H̃C(τ)ρ(0)H̃C(t)

)
|Ak′′〉 (2.45)

=∑
j, j′

∑
k,k′,k′′

VjkVj′k′

h̄2 ·2Re
∫ t

0
dτ TrE

(
〈Ak′′|eiH0τ/h̄ |Ak′〉〈

D j′
∣∣e−iH0τ/h̄

ρ(0)eiH0t/h̄ ∣∣D j
〉
〈Ak|e−iH0t/h̄ |Ak′′〉

)
. (2.46)
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Using the cyclic property of the trace gives

kD→A(t) = ∑
j, j′

∑
k,k′

VjkVj′k′

h̄2 ·2Re
∫ t

0
dτ TrE

(
〈Ak|e−iH0(t−τ)/h̄ |Ak′〉〈

D j′
∣∣e−iH0τ/h̄

ρ(0)eiH0t/h̄ ∣∣D j
〉)

. (2.47)

Defining τ ′ = t− τ , we can write

kD→A(t) = ∑
j, j′

∑
k,k′

VjkVj′k′

h̄2 ·
∫ t

−t
dτ
′TrE

(
〈Ak|e−iH0τ ′/h̄ |Ak′〉〈

D j′
∣∣eiH0(τ

′−t)/h̄
ρ(0)e−iH0(τ

′−t)/h̄eiH0τ ′/h̄ ∣∣D j
〉)

. (2.48)

To simplify further, we consider the term eiH0(τ
′−t)/h̄ρ(0)e−iH0(τ

′−t)/h̄, which describes the time-

evolution of the donor aggregate (because H0 induces no donor-acceptor transitions). Because the

aggregate-environment coupling is much stronger than the inter-aggregate coupling, the donor aggreg-

ate will thermalise with the environment on timescales much shorter than the charge-transfer timescale.

Therefore, for times t much longer than the donor thermalisation time (but much shorter than the

charge-transfer time), we can consider the long-time limit,

lim
t→∞

eiH0(τ
′−t)/h̄

ρ(0)e−iH0(τ
′−t)/h̄ = ρth, (2.49)

where for a large, weakly coupled environment, the state ρth = ρD⊗ ρA, of donor and acceptor

aggregates independently thermalised with their own environments, is independent of ρ(0). In this

limit, we may also extend the limits of integration in Equation 2.48 to infinity to give a time-independent

rate:

kD→A = ∑
j, j′

∑
k,k′

VjkVj′k′

h̄2 ·
∫

∞

−∞

dτ
′TrE

(
〈Ak|e−iH0τ ′/h̄ |Ak′〉

〈
D j′
∣∣ρtheiH0τ ′/h̄ ∣∣D j

〉)
. (2.50)

Writing HD = H0
D +HDE +HED and HA = H0

A +HAE +HEA and using Plancherel’s theorem, we

can rewrite Equation 2.50 as

kD→A = ∑
j, j′

∑
k,k′

VjkVj′k′

2π h̄2

∫
∞

−∞

dω D j j′
D (ω)A kk′

A (ω), (2.51)

D j j′
D (ω) =

∫
∞

−∞

dt e−iωtTrED

(
e−iHED t/h̄ 〈D j′

∣∣eiHDt/h̄
ρD
∣∣D j
〉)

, (2.52)

A kk′
A (ω) =

∫
∞

−∞

dt eiωtTrEA

(
eiHEA t/h̄ 〈Ak|e−iHAt/h̄ |Ak′〉ρA

)
, (2.53)

where we have renamed τ ′ to t. Changing to the aggregate basis, Equation 2.51 becomes

kD→A = ∑
α,β

∑
α ′,β ′

VαβVα ′β ′

2π h̄2

∫
∞

−∞

dω Dαα ′
D (ω)A ββ ′

A (ω), (2.54)

Dαα ′
D (ω) =

∫
∞

−∞

dt e−iωtTrED

(
e−iHED t/h̄ 〈Dα ′|eiHDt/h̄

ρD |Dα〉
)
, (2.55)

A ββ ′

A (ω) =
∫

∞

−∞

dt eiωtTrEA

(
eiHEA t/h̄ 〈Aβ

∣∣e−iHAt/h̄ ∣∣Aβ ′
〉

ρA
)
, (2.56)
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Equation 2.54 reduces to Equation 2.10 if Dαα ′
D and A ββ ′

A can be assumed to be diagonal in

the aggregate basis. In general, this is not the case, because HDE and HAE do not commute with

H0
D and H0

A respectively. However, it is an appropriate approximation in the limit, assumed here, of

weak system-environment coupling, where the environment does not significantly perturb the thermal

equilibrium of the system. The same approximation was considered and discussed in detail in the

context of MC-FRET32,127, where it can be used to reduce the excitonic analogue of Equation 2.54 to

a diagonal version. Of course, Equation 2.54 can be used directly, at the cost of intuitive parallels with

MT being obscured.

Equations 2.12–2.13 can be evaluated in the particular case of a thermalised environment of

independent harmonic oscillators to yield Equations 2.14–2.15. Assuming that Dαα ′
D and A ββ ′

A are

diagonal is equivalent to assuming that the electronic Hamiltonians commute with the environmental

ones, meaning that exp(iHDt/h̄) = exp(iH0
Dt/h̄)exp(i(HDE +HED)t/h̄), so that Equation 2.12 becomes

Dαα
D (ω) =

∫
∞

−∞

dt e−iωteiEα t/h̄
ρααTrED

(
e−iHED t/h̄ 〈Dα |ei(HDE+HED)t/h̄ |Dα〉ρED

)
. (2.57)

The Hamiltonian HDE +HED can be diagonalised using the polaron transformation, which describes

the displacement of the environment oscillators by the presence of a charge:

〈Dα |ei(HDE+HED)t/h̄ |Dα〉= S†
αeiHED t/h̄Sα , (2.58)

where Sα = exp
(

∑ξ gαξ (bξ −b†
ξ
)
)
. Using this fact in Equation 2.57 gives

Dαα
D (ω) =

∫
∞

−∞

dt e−iωteiEα t/h̄
ρααTrED

(
e−iHED t/h̄S†

αeiHED t/h̄SαρED

)
. (2.59)

In Equation 2.59, the contributions of different aggregate eigenstates are explicitly uncoupled, meaning

that the equation takes, for a particular α , the same form that occurs in the derivation of ordinary,

single-site MT. Therefore, the trace can be evaluated for a harmonic environment using standard

techniques (e.g., section 6.8.1 of ref.11), giving Equation 2.14.
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Chapter 3

Evolution of Dimerism in the Photosynthetic
Reaction Centre

The following publication has been incorporated as Chapter 3, with minor modifications:

Why are photosynthetic reaction centres dimeric?, Chem. Sci., 10, 9576, (2019), DOI:

10.1039/C9SC03712H135.

Natasha B. Taylor1 and Ivan Kassal2.

1Centre for Engineered Quantum Systems and School of Mathematics and Physics, The University of

Queensland, Brisbane, Queensland 4072, Australia

2The University of Sydney Nano Institute and School of Chemistry, The University of Sydney, New

South Wales 2006, Australia

3.1 Abstract

All photosynthetic organisms convert solar energy into chemical energy through charge separation in

dimeric reaction centres. It is unknown why early reaction centres dimerised and completely displaced

their monomeric ancestors. Here, we discuss several proposed explanations for reaction-centre

dimerism and conclude—with only weak assumptions about the primordial dimerisation event—that

the most probable explanation for the dimerism is that it arose because it enhanced light-harvesting

efficiency by deepening the excitonic trap, i.e., by enhancing the rate of exciton transfer from an

antenna complex and decreasing the rate of back transfer. This effect would have outweighed the

negative effect dimerisation would have had on charge transfer within the reaction centre. Our argument

implies that dimerisation likely occurred after the evolution of the first antennas, and it explains why

the lower-energy state of the special pair is bright.
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Figure 3.1: Photosynthetic reaction centres (RCs). All extant RCs are dimeric, comprising special pair chlorophylls,
accessory chlorophylls, secondary chlorophylls or phaeophytins, and quinones. Bacteria use bacteriochlorophyll and
bacteriophaeophytin instead. Shown are crystallographic structures82,137, with chlorophyll tails and supporting protein
removed for clarity.

3.2 Introduction

Photosynthetic energy conversion takes place in reaction centres (RC), where energy from the absorbed

light drives charge separation. In all photosynthetic architectures, light is absorbed by an antenna

complex to form an exciton, which is transferred to the RC. All extant RCs are dimeric pigment-protein

complexes, the arrangement of whose core pigment cofactors is strongly conserved34,136. The most

important feature of RC dimerism is that the monomers interact strongly at the special pair (P), a pair

of tightly coupled (bacterio)chlorophylls, which is both the exciton acceptor and the primary charge

donor34 (Figure 3.1).

The ancestor of modern RCs is thought to be a monomeric pigment-protein complex containing

the core RC cofactors57, which we call the primordial RC. Prior to dimerisation, the primordial RC

may have been photosynthetic, or it may have been appropriated from another membrane protein role,

such as UV protection138 or energetic metabolism139. Whatever its original purpose, the primordial

RC dimerised, creating a homodimeric RC coded for by a single gene57. The homodimer gradually

diverged into the ancestors of the modern RCs, all of which retain its general structure60,140,141.

Our aim is to survey possible explanations for the dominance of RC dimerism and, especially, for

the strong coupling between the two pigments in the special pair. As with any attempt to reconstruct

reasons for long-ago evolutionary change, we cannot offer definite answers. Evolution rarely has an un-

ambiguous explanation, with large differences in phenotype usually being end results of an undirected

and disorderly process influenced by many kinds of selection pressures. More generally, evolutionary

reasoning is often abductive, trying to find the best explanation (which may be a combination of

multiple reasons) for a set of observations. Abductive conclusions are never logically certain and

should be qualified as “most likely” or “best available”, and they may change in light of new evidence.

So, to be more precise, our goal is to identify the most likely explanation(s) of the RC dimerism and of

the strong coupling in P, given the current evidence.

This goal is hampered by over three billion years of evolutionary distance from the primordial
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dimerisation event. Because there is little certainty about any detail of the primordial RC, our

discussion and models are qualitative. We only seek general trends that hold across a broad range of

possibilities about the primordial RC. Even so, we are able to conclude that the most likely explanation

of dimerisation (or, at least, of the strong coupling in P) is that it improved exciton transfer from an

antenna to the RC, possibly by a large margin, despite having a deleterious influence on charge transfer.

On balance, the improvement to exciton transfer was likely more significant, leading to an overall

increase in RC performance.

3.3 Possible explanations of reaction-centre dimerism

3.3.1 Evolutionary background

We reconstruct the primordial dimerisation event based on features of modern RCs. The generally

accepted evolutionary relationships are shown in Figure 3.2. A monomeric RC dimerised to a

homodimer, which diverged into several variants, some of which underwent gene duplication, allowing

them to replace the homodimer with a heterodimer57,60,74,140.

As a result, there is considerable diversity among modern RCs. A basic distinction is based on the

final electron acceptor: in type I RCs, it is a ferredoxin, whereas in type II RCs, it is a quinone. Many

organisms have only a single type of RC, but cyanobacteria, green algae, and plants have both type I

and type II, present in photosystem I (PSI) and photosystem II (PSII), respectively. Type I RCs can

be either homodimeric (e.g., in heliobacteria) or heterodimeric (e.g., PSI), unlike type II RCs, all of

which are heterodimeric.

Despite differences in the final electron acceptor, the structures mediating initial exciton- and charge-

transfer steps are remarkably conserved across all extant RCs. All RCs are dimeric, with two branches

that only interact at a strongly coupled special pair (P) of chlorophyll (Chl) or bacteriochlorophyll

(BChl) molecules. P is the dominant acceptor of excitons from antenna complexes and the primary

charge donor142–144. From P, the charges are transferred down either branch in homodimeric RCs

(such as heliobacteria74,83) or down only one branch in heterodimers. The pigments involved in the

initial charge-transfer step always come from a small set of closely related tetrapyrroles (Chl, BChl, or

(bacterio)phaeophytin, (B)Phe).

We emphasise that the purpose of discussing modern RCs is only to reconstruct features of the

primordial one—we make no claims about the subsequent evolution and diversification, including the

rise of heterodimers.

3.3.2 Candidate explanations

We group proposed explanations for RC dimerism into six categories.

1. Explanation 1 is that that dimerisation was simply a random, fitness-neutral event that became

fixed by genetic drift. We think this is unlikely, because fixation of a particular fitness-neutral
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Figure 3.2: Evolution of reaction centres (RC)34. The primordial RC was monomeric, likely comprising three BChls
(X0, X1, X2) and a quinone (X3). An antenna (Ant.) would transfer an exciton to X0, which would also serve as the charge
donor. The charge would transfer through X1 and X2 before arriving at X3. The monomeric RC dimerised, producing a
homodimer with two identical copies of the monomer, connected at the special pair (P). Excitons from the antenna could
delocalise over P before charge separation, with charge transfer occurring along either branch. The homodimer subsequently
diverged into type I and type II RCs, some of which experienced gene duplication events that led to heterodimerism. In
modern type I RCs, each branch consists of three (B)Chls (P, A, and A0) and a quinone (A1). In heterodimeric PSI, charge
transfer occurs exclusively down one branch, while in homodimeric systems (such as heliobacteria) charge can move down
either branch with equal probability. In modern type II RCs, each branch consists of two (B)Chls (P and B), a phaeophytin
(H) and a quinone (Q). Charge travels down one branch before being transferred to the inactive-branch quinone.
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mutation is very improbable in large populations145, such as those of bacteria. In other words, if

dimerisation were fitness neutral, it would be difficult to explain the complete extinction of all

competing, monomer-carrying organisms.

In contrast to Explanation 1, the remaining explanations assume that the initial dimerisation event

conferred a fitness advantage. They differ in the proposed mechanism for this advantage, the central

question being what can a dimer do that a monomer cannot.

2. Explanation 2 is that dimerisation served a structural purpose. For example, by altering the

structure of the supporting protein, it could have aided in assembly or in finding a particularly

favourable packing of transmembrane helices136. This explanation, however, does not account

for the strong coupling within P; similar large-scale structural changes could presumably have

occurred even without the two P pigments coming into extremely close contact. It is possible

that protein dimerisation occurred first and the strong coupling within P evolved later. If so, the

problem is moved one step down the evolutionary timeline, and the interesting question becomes

why the two weakly interacting branches of the dimer eventually evolved to have a strongly

coupled P.

3. Explanation 3, offered in the context of Type II RCs, is that the presence of two quinones

allows them to have different potentials and to stabilise the electron by transfer from Qa to Qb

(see Figure 3.2)146. Transfer between quinones, however, is evolutionarily recent, requiring a

heterodimeric RC. In the primordial dimer, the two quinones were symmetric (as in modern

heliobacteria83), meaning that the quinones cannot explain the primordial dimerisation event74.

Unlike the explanations above, the remaining explanations all assume that the strong coupling

within P served an evolutionary purpose.

4. Explanation 4 is that the coupling within P shifted its absorption peak to the red (see below),

allowing it to harvest longer wavelengths. An organism with this mutation could survive in

an environment where all shorter wavelengths were harvested by monomeric organisms. This

mechanism would be particularly relevant if the primordial organisms lacked antennas and

relied on RCs for light absorption as well. This explanation, however, does not account for

the extinction of monomeric RCs; the success of dimeric organisms in the long-wavelength

niche is consistent with the continuation of monomers using shorter wavelengths. Similarly,

modern organisms with apparent long-wavelength adaptations (such as chlorophyll f 147) have

not displaced dominant species.

Explanation 4 could only account for universal dimerism if the initial spectral-niche dimerism

enabled a subsequent evolutionary advantage that allowed the dimers to displace the monomers.

Although this sequence of events cannot be ruled out, it requires the conjunction of three

circumstances, each of which appears quite uncertain: a) there were no antennas in the primordial



56 CHAPTER 3. EVOLUTION OF DIMERISM IN THE PHOTOSYNTHETIC REACTION CENTRE

RC, b) the dimers arose to occupy the long-wavelength niche, and c) there was some future

advantage, which could not have evolved directly.

5. Explanation 5 proposes that the coupling within P increased its redox potential Em, improving

performance of donor-side electron transfer by making it easier for P+ to be re-reduced. In

oxygenic organisms, an increased Em might facilitate water oxidation and reduce oxidative stress

through the decreased lifetime of P+ 146. The primordial RC, however, was not oxygenic, and,

like modern anoxygenic RCs, did not need a particularly high redox potential. Most importantly,

the coupling within P would have actually hindered the re-reduction of P+. The re-reduction

occurs in the ground state, Pg, which is split by the coupling into two states, the higher-lying

Pg+ and the lower-lying Pg−. In the P+ state that is to be re-reduced, the hole occupies the

higher-energy state Pg+, i.e., the full state P+ has a doubly occupied Pg− and a singly occupied

Pg+. Because the coupling increases the energy of Pg+, there is a smaller driving force for

electron transfer from the re-reductant to the dimer compared to the monomer, making the

processes both kinetically and thermodynamically less favourable in the dimer.

6. Explanation 6 is that dimerisation directly improved one of the two central functions of the RC.

The first of these is the RC’s role as an exciton acceptor, accepting optically generated excitations

from pigments in the antenna. The second is charge separation, separating the electron and the

hole onto separate pigment. The overall efficiency of the RC is the probability that an antenna

exciton gives rise to charge separation before it is lost to recombination, and an improvement

in the efficiency would confer a fitness advantage on the dimeric organism compared to the

monomeric competition.

For the reasons given above, we view Explanations 1–5 as unlikely to explain the origin of RC

dimerism or, at least, of the strong coupling in P. Therefore, this chapter examines the plausibility

of Explanation 6, which is considerably more complicated than the others. Readers unconvinced by

our arguments against Explanations 1–5 can read the rest of this chapter as an examination of how

dimerism and the strong coupling in P affected the efficiency of the RC, an effect that would have

contributed to RC performance even if one of Explanations 1–5 were the dominant reason for the

dimerisation.

Analysing Explanation 6 requires understanding how the dimerisation affected the exciton- and

charge-transfer functions in the RC. Intriguingly, the constituent pigments within P are the only

ones in the RC close enough to influence each other, meaning that the part of the RC most affected

by dimerisation is also both the ultimate acceptor of excitonic energy and the location of charge

separation142–144. Therefore, to understand the role of dimerisation, we must consider how both

exciton transfer to P and charge transfer out of it would have been affected by dimerisation.
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Figure 3.3: Energy and charge transfer pathways for (a) monomeric and (b) homodimeric reaction centres. Both diagrams
show excitation energy transfer (orange) between the antenna and X0/P, charge transfer (blue) between X0/P and the
primary electron acceptor XA, subsequent charge transfer to XS (pink), and exciton recombination (green). Rates found in
modern systems are shown in parentheses, and the distribution of oscillator strengths in modern P is shown as percentages.
The energy of an electron on XA in the dimer is destabilised compared to the monomer due to the weaker electrostatic
attraction to the delocalised hole on P.

3.4 Model

In the following, we model the primordial monomeric RC and the homodimer formed by the initial

dimerisation, before studying how the dimerisation affected exciton transfer, charge transfer, and the

overall efficiency. As the exact properties of the primordial RC are unknown, our model is necessarily

general and qualitative. We are not looking for precise predictions of efficiencies, but for strong trends

that hold across a broad parameter range.

3.4.1 Modelling the primordial dimerisation event

As the positions and orientations of the cofactors are well conserved across all RCs, we assume that

the primordial homodimer had a similar structure to modern RCs. Therefore, the pigments of each

branch are assumed to be too distant to strongly perturb each other, apart from the two composing P.

The precise identity of the pigments in the primordial RC are not important to our argument, and

we agnostically refer to them as X0 through X3 in Figure 3.2. That said, these cofactors were most

likely BChls, which is probably the most primitive of the modern RC tetrapyrroles59,68,148, although

this is not universally accepted61.

We also make no assumptions about which pigment was the primary electron acceptor. In modern

RCs, X1 is either an electron acceptor itself or a bridge for transfer to X2
83,149,150. We only assume

that one of the pigments is the primary acceptor—which we call XA—and that it is lower in energy

than P; whether charge transfer involves intermediate bridging states does not affect our argument.

We also assume an antenna (Ant.) that transfers excitons to P. The great diversity of modern antenna

complexes34 means we cannot say anything definitive about the structure of primordial antenna(s), so

we treat them quite generally.
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Finally, we assume the primordial monomer to be simply one half of the homodimer just described.

Its antenna is assumed to be the same as the homodimer’s.

We model the monomeric and dimeric RCs as multi-level systems governed by the rate processes

shown in Figure 3.3. The rates for the monomer and dimer carry superscripts “mon” and “dim”,

respectively, and include the rate kEET of excitation energy transfer (EET) from the antenna to X0/P

and the rate kdetrap of the reverse detrapping process. Charge transfer (CT) from P to the charge acceptor

XA is at rate kCT, while the reverse process, exciton re-formation, occurs at rate kreform. Subsequent

transfer out of XA to subsequent state(s) XS occurs at rate kST and is assumed to be irreversible.

We also include exciton recombination to ground at rate kmon
rec ; in modern organisms, this rate is

small (∼ 1ns−1)151, and without knowing the structure of the primordial exciton donor, we take the

modern value as representative.

The homodimer model also includes excitonic coupling JP between the two X0 molecules in P,

resulting in two excitonic states, P+ and P−, which are respectively JP higher and lower in energy

than X0 (Figure 3.4a). For modern plants, about 90% of the oscillator strength is in the lower state

P− 152. We assume that the relaxation from P+ to P− is faster than any other process, occurring at a

rate of (25fs)−1 143. Therefore, even if P+ is excited, rapid internal conversion to P− ensures that all

subsequent EET and CT take place from P−.

3.4.2 Light-harvesting efficiency as figure of merit

The RC converts excitons into charges, and if dimerism increased fitness, it would have done so by

increasing the efficiency of this fundamental process. As further CT from the primary charge XA

acceptor is identical in both the monomer and the dimer, we define the efficiency as the probability

that an antenna exciton yields an electron on XS, as opposed to being lost to recombination.

The efficiency is maximised by having forward transfer rates kCT, kEET, and kST that are large

relative to krec, kdetrap, and kreform. Slow recombination implies high efficiency because recombination

is the only way for the exciton to be lost, while slow detrapping ensures that the exciton, once it reaches

P, has a chance to drive CT.

For both the monomer and the dimer, state populations obey a set of rate equations (superscripts

“mon” and “dim” omitted from the rates):

Ȧ(t) = X0(t)kdetrap−A(t)(kEET + krec), (3.1)

Ẋ0(t) = A(t)kEET +XA(t)kreform−

−X0(t)(kdetrap + krec + kCT), (3.2)

ẊA(t) = X0(t)kCT−XA(t)(kreform + kST), (3.3)

ẊSA(t) = XA(t)kST, (3.4)

where A(t), X0(t), XA(t), and XSA(t) are the populations of antenna excitons, X0 excitons, XA charges,

and XSA charges, respectively. The efficiency is the long-time (t→ ∞) population of XSA, given an
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Figure 3.4: a) The coupling JAB between two sites, A and B, gives rise to two delocalised (orange shading) eigenstates,
1 and 2, with an energetic splitting between them. In the RC, the two molecules in P couple to create a lower state, P+,
and an upper state, P−. b) Example of exciton transfer and supertransfer, showing donors (purple), acceptors (green),
and their transition dipole moments (arrows). Transfer from a single site to a single acceptor occurs at rate k, while
transfer to delocalised acceptor states occurs at rate 2k (supertransfer from the bright state) or 0 (subtransfer from the dark
state). Super- and subtransfer also occur in charge transfer, except that it is mediated by wavefunction overlap and not
transition-dipole coupling.

initial antenna exciton (i.e., A(0) = 1 and X0(0) = XA(0) = XSA(0) = 0),

η =
kCTkEETkST

kreformkrec(kdetrap + kEET + krec)+ kSTkEETkCT + kSTkrec(kCT + kdetrap + kEET + krec)
. (3.5)

The monomer and dimer efficiencies ηmon and ηdim are calculated by placing the superscripts “mon”

or “dim” on the rates in Equation 3.5.

We will generally calculate the relative efficiency ηdim/ηmon, which indicates whether dimerisation

improved or diminished the light harvesting. The following sections survey how dimerisation would

have affected the relative efficiency through changes in EET and CT.
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3.4.3 Dimerism enhances excitation energy transfer (EET) to the special pair

The effect of EET on the relative efficiency ηdim/ηmon is determined by how the EET rates in

Equation 3.5 are affected by dimerisation. For high efficiency, kEET should be large relative to kdetrap

and krec, to allow the exciton to stay in X0/P for as long as possible and increase the chance for CT to

occur.

Coupling between RCs and their antennas is weak, meaning that both EET and detrapping can

be described perturbatively, by Förster resonant energy transfer (FRET)94,153. If either the donor

or the acceptor (or both) feature excitonic delocalisation, FRET should be replaced by generalised

FRET (gFRET)30, which describes EET in delocalised systems and has been widely used to describe

photosynthetic systems30,90,91,126. In particular, it is necessary to use gFRET for modelling the dimeric

RC because the excitonic states of P are delocalised. The gFRET transfer rate is

kgFRET = ∑
α,β

2π

h̄
|Jαβ |2

∫
dE Lα(E)Iβ (E), (3.6)

where Lα(E) is the emission spectrum of the α donor state, Iβ (E) the absorption spectrum of the β

acceptor state, and Jαβ the excitonic coupling between donor state α and acceptor state β .

Dimerisation can affect gFRET rates by two mechanisms: supertransfer and the creation of an

energetic trap. The former affects the |Jαβ |2 factor in Equation 3.6, and the latter the spectral overlap

integral.

The first effect, supertransfer, is the enhancement of EET due to increases in |Jαβ |2 in Equation 3.6,

arising from the constructive interference between EET pathways, as discussed in Section 1.1.3. For

example, in EET between a single donor D and a single acceptor A, the EET rate ksingle is proportional

to |JDA|2. By contrast, multi-site gFRET occurs between the delocalised eigenstates of the donor

and the acceptor, rather than as a sum of rates between individual sites (Figure 3.4b). With two EET

acceptors, supertransfer can accelerate EET up to a factor of two; if the transition dipoles of the donor

and the acceptors are parallel, the acceptor state is fully delocalised over the two acceptor molecules,

meaning that the donor couples to an effective acceptor transition dipole that is larger by a factor of
√

2 , giving a gFRET rate of

kdelocal ∝

∣∣∣∣ 1√
2
(JDA1 + JDA2)

∣∣∣∣2 ∝ 2ksingle. (3.7)

The same enhancement factor of 2 can occur if there are two donor molecules with complete delocal-

isation between them, as would happen for exciton de-trapping back to the antenna. In cases where the

two acceptor transition dipole moments are not perfectly parallel, the enhancement, which we denote γ ,

is less than 2. A reduction in γ can also occur due to environmental fluctuations or asymmetry between

the two acceptor sites, either of which could partially localise the exciton. As we discuss in more detail

below, we assume that γ in the primordial special pair was between 1.5 and 1.8, which we take as the

supertransfer enhancement factor for both kEET and kdetrap.

The second way that dimerisation affects EET is the creation of an energetic trap, which enters

Equation 3.6 through the overlap integral. The coupling JP between X0 molecules in P means that P−
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is energetically stabilised relative to a single X0. This energy shift affects EET in two ways: forward

EET is accelerated by dimerisation because of the larger driving force and detrapping is slowed down

because of the greater activation energy. Although the precise magnitude of these effects could be

calculated using Equation 3.6 and a microscopic model, we focus only on the dominant effect, which

is the change in detailed balance due to the energy shift. To do so, we assume the simplest case, that

forward EET and detrapping are affected symmetrically, i.e., that forward EET is accelerated by a

factor of exp(JP/2kBT ), while detrapping is slowed down by a factor of exp(JP/2kBT ). Our results

would not be significantly different if, say, only forward EET were accelerated by exp(JP/kBT ) or only

detrapping slowed down by exp(JP/kBT ). Finally, this approach is valid if, as is the case in all RCs,

JP is small compared to the widths of absorption and emission peaks; a very large JP could eventually

lead to a decrease in the overlap integral in Equation 3.6, but this is not biologically relevant.

We can combine the effects of supertransfer and energetic trapping to calculate the overall effect of

dimerisation on EET rates and the efficiency. Dimerisation enhances the forward EET,

kdim
EET = γ exp(JP/2kBT )kmon

EET. (3.8)

By contrast, the detrapping rate is affected by both supertransfer and increased trapping, becoming

kdim
detrap = γ exp(−JP/2kBT )kmon

detrap, (3.9)

which can be more or less than kmon
detrap, depending on γ and JP. However, the ratio of forward to

backward EET is enhanced by dimerisation, kdim
EET/kdim

detrap = exp(JP/kBT )kmon
EET/kmon

detrap, a feature that

enhances the overall dimer efficiency.

3.4.4 Dimerism diminishes charge transfer (CT) from the special pair

For high efficiency, kCT should be high compared to kdetrap and krec. The smaller kCT is relative to

kdetrap, the longer the exciton spends in the antenna, offering more chance of recombination, while if

krec is large, recombination can occur in P itself.

It is not clear what is the best theoretical model for CT in the primordial RCs. Unlike with EET—

which always has weak antenna-RC couplings, making FRET the safe choice—CT couplings between

modern special pairs and the primary charge acceptors are not weak, although they could have been in

the past. The uncertainty in the strength of the primordial CT couplings translates to an uncertainty

about the best theoretical description of primordial CT. The two extremes of CT are diabatic CT (also

known as Marcus theory, and applicable for weak CT couplings) and adiabatic CT (applicable for

strong CT couplings). Our approach is to carry out the calculations with both approaches; fortunately,

it turns out that the final conclusions are not significantly affected by the choice.

First, we consider the diabatic limit. Just as describing EET in delocalised systems requires gFRET,

diabatic CT in delocalised systems is described using our recently described generalised Marcus theory

(gMT)110, Chapter 2 of this thesis, which predicts a CT rate of

kgMT = ∑
α,β

2π

h̄
|Vαβ |2√

4πkBT λαβ

exp

(
−(∆Eαβ +λαβ )

2

4kBT λαβ

)
, (3.10)
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where Vαβ is the electronic coupling between the α th delocalised state on the donor and β th delocalised

state on the acceptor, λαβ = λα +λβ is the reorganisation energy, and ∆Eαβ = Eβ −Eα is the energy

difference.

Like gFRET, gMT allows for supertransfer through constructively interfering pathways110. How-

ever, it is more sensitive to geometry than gFRET because CT is mediated by wavefunction overlaps,

which decay exponentially with distance110. In modern systems, the X0 molecule that is more distant

from the acceptor is so far away that its CT coupling to XA would be negligible compared with the

nearer X0. Consequently, |VP−,XA |2 = |VX0,XA |2/2, leading to a halving of the CT rates.

Also similarly to gFRET, transfer from P to XA is affected by changes in energy levels upon

dimerisation, of which there are two kinds. Firstly, the coupling inside the special pair decreases the

energy difference between P− and XA by JP. Secondly, delocalisation also affects the electrostatics:

since the two charges are closer together in the monomer state X0
−XA

+ than in the corresponding

dimer state P−+XA
−, the latter has weaker Coulomb binding and, therefore, a higher energy. This

electrostatic energy difference also decreases the driving force for charge separation by an amount we

call ∆ECoul,A. Together, the two contributions imply that ∆EP−,XA = ∆EX0,XA +∆ECoul,A + JP.

It is not immediately clear how energy changes affect the rates, because the Franck-Condon factor

in Equation 3.10 also depends on the reorganisation energy, which is also affected by delocalisation: a

donor (or acceptor) aggregate consisting of N molecules, each with reorganisation energy λ , has, in a

fully delocalised state, λα = λ/N 110. For the RC, this implies λP−,XA = λX0/2+λXA . Assuming that

λX0 ≈ λXA , we have λP−,XA = 3/4 ·λX0,XA , where λX0,XA is the reorganisation energy for CT between

X0 and XA.

Overall, the CT rate for the dimer becomes

kdim
CT,gMT =

1√
3

kmon
CT exp

(
(∆EX0,XA +λX0,XA)

2

4kBT λX0,XA

−
(
∆EP−,XA +λP−,XA

)2

4kBT λP−,XA

)
, (3.11)

which includes the ratio of pre-exponential factors, |VP−,XA |2
√

λX0,XA /|VX0,XA|2
√

λP−,XA = 1/
√

3 .

In most cases, dimerisation decreases the gMT rate; in particular, kdim
CT,gMT < kmon

CT if, as in modern

RCs, JP > 0 and λX0,XA . 220meV. Since gMT obeys detailed balance, the rate kdim
reform,gMT of charge

back-transfer is calculated by reversing the signs of ∆EX0,XA and ∆EP−,XA .

The second limit we consider is adiabatic charge transfer, which, in its simplest form11, predicts a

CT rate (whether forward or backward) of

kadiabatic =
ωvib

2π
e−(EA−|VDA|)/kBT , (3.12)

where ωvib is the attempt frequency, EA is the energy barrier, and VDA the electronic coupling between

donor and acceptor. The absolute value ensures that this rate describes transfer from the lower state

regardless of the sign of VDA.

Upon dimerisation, the electronic coupling VDA is reduced by a factor of
√

2 , and there are energetic

shifts due to changes in the Coulomb binding. Analogously to our discussion of EET, we assume

that forward CT is slowed down by the reduced driving force by a factor of exp(−∆ECoul,A/2kBT ),
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Parameter Symbol Minimum Maximum

Exciton recombination rate in monomer kmon
rec 109 s−1 109 s−1

Exciton transfer rate in monomer (antenna to RC) kmon
EET 109 s−1 1011 s−1

Exciton detrapping rate in monomer (RC to antenna) kmon
detrap 109 s−1 1011 s−1

Charge transfer rate in monomer kmon
CT 109 s−1 1012 s−1

Excitonic coupling in special pair JP 10 meV 50 meV

Driving force for charge transfer in monomer ∆EX0,XA −λX0,XA 0 meV

Reorganisation energy for charge transfer in monomer λX0,XA 80 meV 270 meV

Electronic coupling for charge transfer in monomer VX0,XA 1 meV 18 meV

Supertransfer enhancement factor in dimer γ 1.5 1.8

Electrostatic energy shift of XA upon dimerisation ∆ECoul,A 0 meV 30 meV

Electrostatic energy shift of XS upon dimerisation ∆ECoul,ST 0 meV 10 meV

Table 3.1: The explored parameter space.

while the backward CT is accelerated by the reduced uphill barrier by a factor of exp(∆ECoul,A/2kBT ).

Overall, the rate of forward CT in the dimer becomes

kdim
CT,adiabatic = kmon

CT exp
(
−∆ECoul,A/2kBT

)
exp
(
(1−
√

2 )
∣∣VX0,XA

∣∣/kBT
)
. (3.13)

As the exponentials are less than 1, dimerisation slows down the forward adiabatic CT, reducing the

relative efficiency. Similarly, the back-transfer rate is taken to be

kdim
reform,adiabatic = kmon

reform exp
(
∆ECoul,A/2kBT

)
exp
(
(1−
√

2 )
∣∣VX0,XA

∣∣/kBT
)
, (3.14)

where kmon
reform is given by detailed balance, kmon

reform = kmon
CT exp(∆EX0,XA/kBT ).

Subsequent charge transfer is also affected by delocalisation due to changes in electrostatics.

Because the subsequent transfer occurs farther from P, the energetic destabilisation is smaller than for

transfer from P to XA, giving a net increase in the driving force, which we call ∆ECoul,ST. In both gMT

and adiabatic CT treatments, we include the effect through kdim
ST = exp(∆ECoul,ST/kBT )kmon

ST .

Overall, dimerisation is expected to decrease the rate of CT whether it is described using gMT or

adiabatic theory.

3.4.5 Parameter space

Our goal is to determine, over a plausible parameter space, whether and how the primordial dimerisation

could have affected the RC efficiency. Table 3.1 lists the free parameters of the model and their ranges

within the parameter space. The monomer rates were taken as fundamental, and dimer rates were

calculated from monomer rates and the dimerisation parameters (JP, ∆EX0,XA , λX0,XA , VX0,XA , γ ,

∆ECoul,A, and ∆ECoul,ST) using Equations 3.8, 3.9, and 3.11 or 3.13.
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We determined the limits of the parameter space by considering modern RCs. We assume that the

monomer was no faster at EET or CT than modern RCs, implying that the monomer EET and CT

rates are less than the natural rates: kmon
EET ≤ 1011 s−1 and kmon

CT ≤ 1012 s−1 34,143,144,154. We also assume

that these rates are larger than the recombination rate kmon
rec = 109 s−1, which is assumed constant,

essentially setting the timescale. We make no assumption about whether detrapping is faster than or

comparable to forward EET (as in modern plants155,156) or slower (as in purple bacteria157), instead

limiting kmon
detrap to at most 1011 s−1, the maximal rate of kmon

EET.

In modern RCs, JP ranges between about 20 and 50 meV83,85,158–160, setting the upper bound

JP ≤ 50meV. As the coupling in the monomer may have been weaker than in modern RCs, we take

10meV as the lower bound for JP. Modern RCs have a coupling between the special pair and the

charge acceptor of between 0.7 and 13 meV84,85,87,161; we compensate for the decrease in coupling

through dimerisation by multiplying these values by
√

2 to find the range of VX0,XA . We assume

CT takes place in the normal or activationless regime (as opposed to the inverted regime), meaning

∆EX0,XA ≥−λX0,XA , and that EX0 ≥ EXA , meaning ∆EX0,XA ≤ 0. The reorganisation energy λX0,XA is

assumed to be between 80 and 270 meV, typical ranges for CT in biological structures162–165.

We estimate γ , the supertransfer enhancement factor for EET, to have been between 1.5 and 1.8.

As RC geometry is strongly conserved and EET depends on relative transition-dipole orientations in

the special pair, we assume the distribution of oscillator strengths in the primordial dimer was similar

to the modern cases. If, as in modern special pairs, P− carried about 90% of the oscillator strength152,

γ ≈ 1.8; the lower estimate of 1.5 allows for the primordial dimer to have been somewhat less efficient.

Finally, we consider the electrostatic energy differences ∆ECoul,A and ∆ECoul,ST. We estimate the

former as

∆ECoul,A =
e2

4πε0εr

(
1

rmon
XAX0

− 1
rdim

XAP

)
, (3.15)

where εr is the relative permittivity, rmon
XAX0

the distance between XA and X0 in the monomer, and rdim
XAP

the distance between XA and the centre of P in the dimer. ∆ECoul,ST is defined analogously, using

distances between X0/P and the subsequent acceptors. For ∆ECoul,A, we assume a range of 0 meV to

30 meV, based on the separations between pigments in several modern RCs, and on an effective εr

ranging between 5 and 10. ∆ECoul,ST is smaller because of the larger distances, and we take it to be at

most 10 meV.

3.5 Results

While we have shown above that dimerisation has opposite effects on EET and CT, enhancing the

former and diminishing the latter, the total effect on the efficiency depends on which of these two

effects is larger. We express the results of our parameter survey (Figure 3.5) as the relative efficiency

of a dimer relative to a monomer, ηdim/ηmon.

Our results show that between about half and three-quarters of the parameter space (depending

on whether CT is described using gMT or adiabatic theory) leads to improved relative efficiency
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Figure 3.5: Efficiency of the dimer relative to the monomer across the parameter space of Table 3.1, if charge transfer
(CT) is described using (a) generalised Marcus theory (gMT) or (b) adiabatic rates. (c) Relative efficiency if only exciton
transfer (EET) effects are considered (i.e., assuming CT is unaffected by dimerisation), showing that dimerisation always
enhances EET and the efficiency. (d) Relative efficiency if only CT effects are considered, modelled using gMT (i.e.
assuming EET is unaffected by dimerisation), showing that dimerisation always diminishes CT and the efficiency. (e)
As (d), but with CT described using adiabatic rates. In all cases, the recombination rate is 109 s−1; in the legend, ‘slow’
indicates rates comparable to recombination (below 1010 s−1), and ‘fast’ those much faster (above 1010 s−1). In all panels,
the histograms are stacked.

(Figure 3.5a,b). When divided into individual contributions of EET (Figure 3.5c) and CT (Figure 3.5d,e)

it can be seen that dimerisation enhances EET and is detrimental to CT. The differences in efficiency

between the gMT and adiabatic treatments are caused by the fact that adiabatic CT rates are diminished

less by dimerisation, meaning that the final efficiency can be increased more by the EET.

The results in Figure 3.5 are divided into four regimes, depending on whether EET and CT are

fast (above 1010 s−1, i.e., much faster than recombination), or slow (below 1010 s−1, i.e., comparable

to recombination). First, when both CT and EET are much faster than recombination, the exciton

does not have time to recombine and the efficiency is high. In that case, small changes in rates

due to dimerisation do not meaningfully affect the efficiency, making the relative efficiency close to

1. Second, if CT is much faster than recombination but EET is comparable to recombination, the

exciton may recombine on the antenna. However, if it is transferred to X0/P, the fast CT removes it

before detrapping can occur. Since dimerisation improves EET, this regime consists largely of relative

efficiencies greater than 1. Third, if CT is comparable to the recombination rate but EET is much

faster, detrapping limits the amount of time CT has to occur and so the exciton spends much of its time
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transferring between the antenna and X0/P. Because dimerisation makes CT even slower, detrapping

is more likely following dimerisation, and so this regime consists largely of relative efficiencies less

than 1. Finally, the case where both CT and EET are comparable to the recombination rate has low

efficiency, with recombination occurring in both X0/P and the antenna. This regime is the most

sensitive to small changes in EET and CT rate, and has the broadest distribution of relative efficiencies.

3.6 Discussion

Our results show that Explanation 6 is a plausible account of the rise of RC dimerism. In a large

fraction of the parameter space, the strong coupling in P would have caused changes in EET and CT

that, overall, would have considerably increased the RC efficiency. In non-negligible regions of the

parameter space, the enhancement was larger than 50%, a performance improvement that could have

provided a sufficient fitness advantage to displace the monomeric competition.

We emphasise that the parameter space we surveyed was deliberately broad, whereas the actual

dimerisation event corresponded to only one point in that space. Therefore, the panels of Figure 3.5

are not probability distributions for what would happen if evolution were repeated; rather, they

reflect ignorance about the primordial RC and the rather arbitrary assumptions about the limits of the

parameter space and of the distribution of each parameter (which we took to be uniform). To argue

for a likely evolutionary explanation of dimerism, it suffices to establish that there is a large range of

primordial parameters for which the argument holds.

While we surveyed a broad parameter space, we do think some areas of that space are more likely

than others to represent the primordial RC. In particular, if the primordial RC was like modern RCs,

it would fall in the orange panels of Figure 3.5, corresponding to fast CT and slow EET. Of the four

domains in Figure 3.5, that is the one that shows the greatest efficiency enhancement.

If the efficiency enhancement was the actual driver of RC dimerism, it would tell us more about

the early stages of the evolution of photosynthesis. First, because the efficiency enhancement is caused

by improved EET from the antenna to P, the pre-dimerisation RC, like all modern RCs, would have

had an antenna. In other words, antennas likely evolved before RC dimerism (or at least before the

strong coupling in P). If the earliest antennas were poor at EET, as one might expect, the enhancement

due to dimerism could have been very large. After the dimerisation event, the antennas diversified to

the wide range seen today34, but all RCs retained their dimerism.

Our argument also explains why the lower state of P is bright. Whether P+ or P− is lower in energy

depends on the sign of JP, which can change based on the alignment of the transition-dipole moments

of the (B)Chls. One might think it would be better for the lower state to be dark, because that would

slow down radiative relaxation (fluorescence), giving the exciton more time to dissociate, an idea

called dark-state protection166. Indeed, if the RC were responsible for light absorption, the reversal

of bright and dark states would improve the efficiency. However, if the driver of dimerisation was

lowering the energy of the bright state of P relative to an antenna, then the bright state must have been

the lower one.
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3.7 Conclusion

We have used modern RCs to construct a model and a plausible parameter space for the primordial

dimerisation event, finding that dimerisation could have increased RC efficiency, perhaps by as much

as 50%, offering a good evolutionary explanation for the dimeric structure. The coupling between the

two halves of P created an exciton trap, enhancing EET into the system and diminishing back transfer.

While dimerisation decreased the forward CT rate, in large parts of the explored parameter space

the slower CT was more than compensated for by the EET enhancement. In particular, if CT in the

monomer was as fast as it is in modern dimers, the benefit to EET would have far exceeded the small

decrease in efficiency due to the reduction in CT rates. Our findings could be experimentally tested

through the engineering of fully monomeric RCs, which could also narrow the possible parameter

regime through a combination of structural and more accurate computational studies.
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Chapter 4

Conclusion

This thesis achieved two goals: (1) to derive a theory of delocalised charge transfer in molecular

systems; and (2) to apply this theory to photosynthetic reaction centres to explain the impact of

dimerisation on efficiency. Their implications for future research are summarised here.

4.1 Generalised Marcus Theory

Chapter 2 derived generalised Marcus theory (gMT) to describe delocalised charge transfer, that could

be used in molecular systems such as organic semiconductors, the photosynthetic reaction centre,

metal-organic framework, and inorganic coordination complexes.

To derive gMT, we used the time evolution of the Hamiltonian describing the system, environment,

and system-environment interaction, using second-order in perturbation theory for inter-aggregate

coupling to create equations of motion. The end result was a closed-form solution that allows

predictions about the charge transfer properties of delocalised molecular systems. These include:

• charge supertransfer, the enhancement of delocalised charge transfer rate through constructive

interference of charge-transfer pathways;

• reorganisation energy suppression, where the delocalisation reduces the environment displace-

ment caused by the presence of a charge;

• the existence of an inverted regime, which was predicted by MT for charge transfer between

individual sites; and

• nuclear tuning, where molecules can be arranged such that their delocalised charge transfer rate

is greater than either alone.

These predictions are suited to be tested experimentally. As outlined in Chapter 2, the simplest test

would be to construct covalently linked donors and acceptors in geometries such as those shown in

Figures 2.3 and 2.4. Chemical modification would allow tuning of the couplings and energy levels, the

parameters relevant for gMT, which would allow the theory to be tested.
69
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Charge supertransfer in molecular systems was recently demonstrated experimentally167 by con-

structing a covalently linked system of an electron donor (anthracene) equidistant from two electron

acceptors (benzoquinones). When the electronic coupling between the acceptors was weak compared

to the environment interactions (achieved by having the system at room temperature), the charge

was transferred to a state localised on a single acceptor. However, with large coupling relative to the

environment interactions (achieved by cooling the system to cryogenic temperatures), the electron

was transferred to a delocalised state across the two acceptors. As gMT predicted, there was an

enhancement of a factor of two in charge transfer rate to the delocalised state relative to the localised

state.

As gMT is a general theory of delocalised charge transfer in molecular systems, future work

could use gMT to on many systems of active research, such as organic semiconductors, conductive

metal-organic frameworks, and inorganic coordination complexes.

While the closed-form solution of gMT is particular to the high-temperature stationary limit,

intermediate solutions were also presented in Chapter 2, including a time-dependent expression that

includes internal aggregate dynamics (Equation 2.9), to allow evaluation of aggregate charge transfer

with fewer assumptions. However, like MT, gMT was derived in the strong-environment, weak

donor-acceptor coupling limit, making it inapplicable in the Redfield regime (weak environment

coupling, strong donor-acceptor coupling). Future work could use the same approach as gMT with the

second-order perturbation being in the system-environment coupling, rather than the inter-aggregate

coupling, or adapt low-temperature corrections to MT for use in gMT168.

The closed-form solution presented in Chapter 2 is similar to the closed-form delocalised exciton

transfer presented by Cleary and Cao33. This illustrates a deep similarity between charge and exciton

transfer, and also leads to an open question: under what assumptions does this similarity break down,

and in what limits is it maintained?

While gMT has been deliberately restricted to the delocalised generalisation of Marcus-theory,

we are confident that future work on gMT could include developments in charge transfer subsequent

to MT, such as adiabatic charge transfer, coherent multi-step charge transfer, quantum-mechanical

vibrational corrections, off-diagonal system-bath couplings, and shared intra-aggregate environmental

modes.

The goal of Chapter 2 was to derive a theory of delocalised charge transfer, which was successful

with the derivation of gMT. This provided the last of the mathematical tools necessary to describe the

effect of dimerisation on charge transfer within the photosynthetic RC.

4.2 Dimerism in Photosynthetic Reaction Centres

Chapter 3 explores reasons for the dimeric nature of photosynthetic reaction centres (RCs) using the

results of Chapter 2. It was shown that, over a broad parameter regime, dimerisation of the RC from a

monomeric ancestor likely improved overall RC quantum efficiency.
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In Chapter 3 we constructed a model of the primordial monomeric RC, using extant organisms as a

guide for a broad parameter regime of relative site energy levels, intersite coupling, and environment

coupling. The dimerisation event led to a strong coupling between molecules where the two monomers

connected, the special pair (SP), resulting in a delocalised state. Existing theories were able to

describe exciton transfer to the SP (generalised Förster theory), and charge transfer out of the SP if

the coupling strength between the SP and primary acceptor were greater than the coupling of either

to the environment (adiabatic charge transfer), but were unsuited to describing charge transfer out of

the SP when the coupling to the primary acceptor was weak relative to the intra-SP coupling or the

environment (as is the case in modern systems). This was resolved by the derivation of generalised

Marcus theory (gMT) in Chapter 2.

These theories were chosen for their capacity to describe delocalised charge and exciton transfer,

enabling comparison of the monomer to a dimeric version of the primordial RC, and their computational

efficiency allowing for assessment of RC efficiency across a broad parameter regime. This was

necessary, as modern RCs are far removed from their monomeric ancestor, and the monomeric RC has

not been preserved.

The main limitation of this work is that we cannot know for certain why dimeric RCs came

to dominance over monomeric ones, as billions of years of evolution have led to highly derived

photosynthetic systems, very removed from the monomer that underwent the initial dimerisation event.

While certainty is inaccessible, we have demonstrated that dimerisation likely offered an enhancement

to overall RC quantum efficiency, and this contributes to a body of work looking at the evolution of

photosynthetic apparatuses.

Future work could greatly benefit from the research conducted in Chapter 3. Namely, the genetic

engineering of a fully monomeric RC would allow these results to be experimentally verified by simu-

lating the dimerisation event experimentally. Further, the construction of a monomer could help narrow

the parameter regime explored in Table 3.1, allowing for more sophisticated and computationally-

expensive quantum-chemical techniques to be feasibly used to examine the benefits and costs of

dimerism relative to a monomeric reaction RC.
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