219 research outputs found

    Meta-learning Model for Optimizing Rating Elicitation Strategies Based on Reinforcement Learning

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์‚ฐ์—…๊ณตํ•™๊ณผ, 2018. 8. ์กฐ์„ฑ์ค€.๋Œ€๋‹ค์ˆ˜์˜ ์ถ”์ฒœ ์‹œ์Šคํ…œ ์—ฐ๊ตฌ๋Š” ๊ธฐ์กด์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ฐœ์„ ํ•˜๊ฑฐ๋‚˜ ์ƒˆ๋กœ์šด ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ํ‰์  ์˜ˆ์ธก์— ๋Œ€ํ•œ ์„ฑ๋Šฅ์„ ๊ฐœ์„ ์‹œ์ผœ์™”๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ถ”์ฒœ ์‹œ์Šคํ…œ์ด ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ๋ฐ์ดํ„ฐ์˜ ์„ฑ๊น€์„ฑ(sparsity)์™€ ๋กฑํ…Œ์ผ(long-tail) ๋ถ„ํฌ๋ฅผ ๊ณ ๋ คํ•˜์˜€์„ ๋•Œ, ์ถ”์ฒœ ์‹œ์Šคํ…œ์— ํ•™์Šต์‹œํ‚ค๋Š” ๋ฐ์ดํ„ฐํ’€ ์ž์ฒด๋ฅผ ๋ณ€ํ™”์‹œํ‚ฌ ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ์ด์— ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ํ‰์  ์œ ๋„ ์ „๋ฌธ๊ฐ€(Rating Eliciation ExpertREE) ๋ชจ๋ธ์„ ์ œ์•ˆํ•˜๊ณ ์ž ํ•œ๋‹ค. ์ด ๋ชจ๋ธ์€ 1) ์ถ”์ฒœ ์‹œ์Šคํ…œ์˜ ์„ฑ๋Šฅ์„ ํšจ์œจ์ ์œผ๋กœ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ๊ณ  2) ์œ ์ €๊ฐ€ ์ž…๋ ฅํ•  ๊ฐ€๋Šฅ์„ฑ์ด ๋” ๋†’์€ ์•„์ดํ…œ์„ ๋จผ์ € ๋ฐ์ดํ„ฐ๋ฅผ ์ž…๋ ฅ๋ฐ›๋Š” ์ผ์ข…์˜ ์•กํ‹ฐ๋ธŒ ๋Ÿฌ๋‹(active learning) ๋ฐฉ์‹ ๋”ฐ๋ฅธ๋‹ค. REE๋Š” ์ ์šฉ๋œ ์ถ”์ฒœ ์‹œ์Šคํ…œ์˜ ํ•™์Šต ๊ณผ์ •์„ ๋ฐ์ดํ„ฐ๋กœ ์—ฌ๊ธฐ๊ณ  ํ•™์Šตํ•จ์œผ๋กœ์จ ๋ฐ์ดํ„ฐ ์ œ์•ˆ ๊ทœ์น™์„ ๋ฐœ์ „์‹œ์ผœ๊ฐ€๋Š” ๋ฉ”ํƒ€ ๋Ÿฌ๋‹(meta-learning) ๋ชจ๋ธ์ด๋ฉฐ, ์ด๋Š” ๊ธฐ์กด์— ํ‰์  ์œ ๋„ ์ „๋žต์„ ์ธ๊ฐ„์˜ ์ง๊ด€์œผ๋กœ ์ œ์•ˆํ–ˆ๋˜ ๋ชจ๋ธ๋“ค๊ณผ๋Š” ์ฐจ์ด๊ฐ€ ์žˆ๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ, REE๋Š” ๊ธฐ์กด ์ „๋žต๋“ค์— ๋น„ํ•ด ์ˆ˜์ง‘๋˜๋Š” ๋ฐ์ดํ„ฐ์˜ ๊ฐœ์ˆ˜๋Š” ์ ์—ˆ์ง€๋งŒ, REE๋กœ ์ˆ˜์ง‘๋œ ๋ฐ์ดํ„ฐ๋“ค์˜ ํ‰๊ท  ์„ฑ๋Šฅ ๊ฐœ์„  ์ •๋„๊ฐ€ ๋‹ค๋ฅธ ์ „๋žต์— ๋น„ํ•ด ๋›ฐ์–ด๋‚ฌ์œผ๋ฉฐ ์˜คํžˆ๋ ค ์ ์€ ์ˆ˜์˜ ๋ฐ์ดํ„ฐ๋กœ ๋” ์ข‹์€ ์„ฑ๋Šฅ ๊ฐœ์„ ์„ ์ด๋Œ์–ด ๋‚ด์—ˆ๋‹ค. ์ด๋Ÿฌํ•œ REE๋Š” ์ถ”์ฒœ ์‹œ์Šคํ…œ ๋ชจ๋ธ๊ณผ ํ•™์Šต ๋ฐฉ์‹์— ์ข…์†๋˜์ง€ ์•Š์•„ ์–ด๋– ํ•œ ์‹œ์Šคํ…œ์—๋“  ์ ์šฉ ๊ฐ€๋Šฅํ•  ๊ฒƒ์ด๋ผ ๊ธฐ๋Œ€ํ•œ๋‹ค.์ดˆ๋ก i ๋ชฉ์ฐจ iii ํ‘œ ๋ชฉ์ฐจ iv ๊ทธ๋ฆผ ๋ชฉ์ฐจ v ์ œ 1 ์žฅ ์„œ๋ก  1 ์ œ 2 ์žฅ ์„ ํ–‰์—ฐ๊ตฌ 3 2.1 ์ถ”์ฒœ ์‹œ์Šคํ…œ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.1 ํ˜‘์—… ํ•„ํ„ฐ๋ง(Collaborative Filtering) . . . . . . . . . . . . . . 3 2.1.2 ์ถ”์ฒœ ์‹œ์Šคํ…œ์—์„œ ์ˆ˜์ง‘๋˜๋Š” ํ‰๊ฐ€ ๋ฐ์ดํ„ฐ์˜ ํŠน์„ฑ . . . . . . . . . 4 2.2 ์ปค๋ฆฌํ˜๋Ÿผ ๋Ÿฌ๋‹(Curriculum learning) . . . . . . . . . . . . . . . . . . 6 2.3 ๋ฉ”ํƒ€ ๋Ÿฌ๋‹(Meta-learning) . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4 ๊ฐ•ํ™” ํ•™์Šต(Reinforcement learning) . . . . . . . . . . . . . . . . . . . 9 2.5 ์•กํ‹ฐ๋ธŒ ๋Ÿฌ๋‹(Active learning) . . . . . . . . . . . . . . . . . . . . . . . 11 ์ œ 3 ์žฅ ์ œ์•ˆํ•˜๋Š” ๋ชจ๋ธ 14 3.1 ์ถ”์ฒœ ์‹œ์Šคํ…œ์˜ ๊ตฌ์กฐ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.1.1 ํ•™์Šต ๊ณผ์ • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2 ํ‰์  ์œ ๋„ ์ „๋ฌธ๊ฐ€ ๋ชจ๋ธ (Rating Elicitation ExpertREE) . . . . . . . 17 3.2.1 ํ•™์Šต์„ ์œ„ํ•œ ๊ฐ€์ • . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2.2 ํ•™์Šต ๊ณผ์ • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2.3 ์ƒํƒœ(state)์˜ ์ •์˜ . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2.4 ๋ณด์ƒ(reward)์— ๋Œ€ํ•œ ์„ค๊ณ„ . . . . . . . . . . . . . . . . . . . . 20 ์ œ 4 ์žฅ ์‹คํ—˜ 23 4.1 ์‹คํ—˜ ๋ฌธ์ œ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.1.1 ๋ฐ์ดํ„ฐ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.1.2 ์ถ”์ฒœ ์‹œ์Šคํ…œ ์„ธํŒ… . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.1.3 ๋ชจ๋ธ ์„ธํŒ… . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.2 ์‹คํ—˜ ๊ฒฐ๊ณผ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.2.1 ์ˆ˜์ง‘๋œ ๋ฐ์ดํ„ฐ์˜ ์งˆ์  ์ธก๋ฉด . . . . . . . . . . . . . . . . . . . . 27 4.2.2 ์ˆ˜์ง‘๋œ ๋ฐ์ดํ„ฐ์˜ ์–‘์  ์ธก๋ฉด . . . . . . . . . . . . . . . . . . . . 28 4.2.3 ๋ฐ์ดํ„ฐ ์ œ์•ˆ ๊ทœ์น™ . . . . . . . . . . . . . . . . . . . . . . . . . 29 ์ œ 5 ์žฅ ๊ฒฐ๋ก  31 5.1 ๊ฒฐ๋ก  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.2 ํ–ฅํ›„ ์—ฐ๊ตฌ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ์ฐธ๊ณ ๋ฌธํ—Œ 34 Abstract 37Maste

    ๋จธ์‹  ๋Ÿฌ๋‹ ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜์„ ์œ„ํ•œ ์Šค๋ƒ…์ƒท ๊ธฐ๋ฐ˜์˜ ์—ฐ์‚ฐ ์˜คํ”„๋กœ๋”ฉ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2017. 8. ๋ฌธ์ˆ˜๋ฌต.๋จธ์‹ ๋Ÿฌ๋‹ ๊ธฐ์ˆ ์€ ๋ฐ์ดํ„ฐ๋ฅผ ํ•™์Šตํ•˜๊ณ  ๋ฌธ์ œ์˜ ๋‹ต์„ ์ถ”๋ก ํ•˜๊ธฐ ์œ„ํ•ด ๋ณต์žกํ•œ ์—ฐ์‚ฐ๊ณผ ๋ฐฉ๋Œ€ํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ์š”๊ตฌํ•œ๋‹ค. ์ด๋Ÿฐ ๋จธ์‹ ๋Ÿฌ๋‹ ๊ธฐ์ˆ ์„ ์ €์‚ฌ์–‘ ์ž„๋ฒ ๋””๋“œ ๊ธฐ๊ธฐ์—์„œ ํ™œ์šฉํ•˜๊ธฐ ์œ„ํ•ด ์˜คํ”„๋กœ๋”ฉ ๊ธฐ๋ฐ˜ ๋จธ์‹ ๋Ÿฌ๋‹์ด ์ œ์•ˆ๋˜์—ˆ๋‹ค. ์—ฐ์‚ฐ ์˜คํ”„๋กœ๋”ฉ์ด๋ž€ ์ž„๋ฒ ๋””๋“œ ๊ธฐ๊ธฐ์—์„œ ๋ณต์žกํ•œ ์—ฐ์‚ฐ์„ ๋™์ ์œผ๋กœ ์„œ๋ฒ„๋ฅผ ํ†ตํ•ด ์ˆ˜ํ–‰ํ•˜๋Š” ๋ฐฉ์‹์ด๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์›น ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜์„ ๋Œ€์ƒ์œผ๋กœ ์Šค๋ƒ…์ƒท ๊ธฐ๋ฐ˜ ์—ฐ์‚ฐ ์˜คํ”„๋กœ๋”ฉ์„ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ์Šค๋ƒ…์ƒท์ด๋ž€ ์ˆ˜ํ–‰ ์ค‘์ธ ์›น ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜์˜ ์ƒํƒœ๋ฅผ ๋˜ ๋‹ค๋ฅธ ์›น ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜์˜ ํ˜•ํƒœ๋กœ ์ €์žฅํ•˜๊ณ  ๋ณต์›ํ•˜๋Š” ๊ธฐ์ˆ ์ด๋‹ค. ์Šค๋ƒ…์ƒท ๊ธฐ๋ฐ˜ ์—ฐ์‚ฐ ์˜คํ”„๋กœ๋”ฉ์„ ๋จธ์‹ ๋Ÿฌ๋‹ ์›น ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜์— ์ ์šฉ ์‹œ ๋‘ ๊ฐ€์ง€ ์ด์Šˆ๊ฐ€ ๋ฐœ์ƒํ•œ๋‹ค. ํ•˜๋‚˜๋Š” ์›น์—์„œ ์ด๋ฏธ์ง€๋ฅผ ์ฒ˜๋ฆฌํ•˜๋Š” ์บ”๋ฒ„์Šค ๊ฐ์ฒด์˜ ์ „์†ก ๋ฌธ์ œ์ด๋ฉฐ ๋‹ค๋ฅธ ํ•˜๋‚˜๋Š” ํฌ๊ธฐ๊ฐ€ ํฐ ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ ์ „์†ก ๋ฌธ์ œ์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋‘ ๊ฐ€์ง€ ์ด์Šˆ๋ฅผ ํ•ด๊ฒฐํ•˜์—ฌ ์Šค๋ƒ…์ƒท ๊ธฐ๋ฐ˜ ์˜คํ”„๋กœ๋”ฉ์„ ํ†ตํ•œ ๋จธ์‹  ๋Ÿฌ๋‹ ์›น ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜์˜ ์˜ฌ๋ฐ”๋ฅธ ๋™์ž‘๊ณผ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋‘ ๊ฐ€์ง€ ์ด์Šˆ๋ฅผ ํ•ด๊ฒฐํ•˜์—ฌ ์‹ค์ œ ๋จธ์‹ ๋Ÿฌ๋‹ ์›น ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜์—์„œ ์ถ”๋ก  ์‹œ๊ฐ„์„ ์ธก์ •ํ•˜์˜€๋‹ค. ์ธก์ • ๊ฒฐ๊ณผ ํด๋ผ์ด์–ธํŠธ ์ˆ˜ํ–‰ ์‹œ๊ฐ„ ๋Œ€๋น„ ์˜คํ”„๋กœ๋”ฉ ์‹œ 3-3.5๋ฐฐ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ํ™•์ธํ•˜์˜€๋‹ค.์ œ 1 ์žฅ ์„œ๋ก  1 ์ œ 2 ์žฅ ์Šค๋ƒ…์ƒท ๊ธฐ๋ฐ˜ ์—ฐ์‚ฐ ์˜คํ”„๋กœ๋”ฉ 3 ์ œ 1 ์ ˆ ์Šค๋ƒ…์ƒท 3 ์ œ 2 ์ ˆ ์Šค๋ƒ…์ƒท ๊ธฐ๋ฐ˜ ์—ฐ์‚ฐ ์˜คํ”„๋กœ๋”ฉ 3 ์ œ 3 ์žฅ ์บ”๋ฒ„์Šค ์ €์žฅ ๋ฐฉ๋ฒ• 8 ์ œ 1 ์ ˆ ImageData 9 ์ œ 2 ์ ˆ Rendering Context 11 ์ œ 4 ์žฅ ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ ์ „์†ก ๋ฐฉ๋ฒ• 12 ์ œ 5 ์žฅ ์‹คํ—˜ ๋ฐ ๊ฒฐ๊ณผ 14 ์ œ 1 ์ ˆ ์‹คํ—˜ ํ™˜๊ฒฝ 14 ์ œ 2 ์ ˆ ์บ”๋ฒ„์Šค ์ €์žฅ ๋ฐฉ๋ฒ•์— ๋”ฐ๋ฅธ ์ธก์ • ๊ฒฐ๊ณผ 14 ์ œ 3 ์ ˆ ๋ชจ๋ธ ์ „์†ก ๋ฐฉ๋ฒ•์— ๋”ฐ๋ฅธ ์ธก์ • ๊ฒฐ๊ณผ 16 ์ œ 6 ์žฅ ๊ฒฐ๋ก  18 ์ฐธ๊ณ ๋ฌธํ—Œ 19Maste

    ์†”ํŽ˜์ด์ง€ ๊ต์ˆ˜๋ฒ•์„ ์ค‘์‹ฌ์œผ๋กœ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ์‚ฌ๋ฒ”๋Œ€ํ•™ ํ˜‘๋™๊ณผ์ • ์Œ์•…๊ต์œก์ „๊ณต, 2023. 2. ๊น€๊ทœ๋™.๋ณธ ์—ฐ๊ตฌ๋Š” ๋จธ์‹ ๋Ÿฌ๋‹์„ ์ ‘๋ชฉํ•œ ์Œ์•…๊ต์œก ์—๋“€ํ…Œํฌ ๋ชจ๋ธ์„ ๊ฐœ๋ฐœํ•˜๊ณ  ์ œ์•ˆํ•˜๋Š” ๊ฒƒ์— ๋ชฉ์ ์ด ์žˆ๋‹ค. ๋ชฉ์  ๋‹ฌ์„ฑ์— ์žˆ์–ด ๊ฐœ๋ฐœ์€ ๊ธฐ์ˆ ์ ์œผ๋กœ ๋จธ์‹ ๋Ÿฌ๋‹ ํˆด์„ ์‚ฌ์šฉํ•˜์—ฌ ์ ‘๊ทผ์„ฑ์„ ๋†’์˜€๊ณ , ๊ต์œก์ ์ธ ๋ฉด์—์„œ๋Š” ์Œ์•…์˜ ๊ธฐ์ดˆ ๋Šฅ๋ ฅ์„ ๊ธฐ๋ฅด๋Š” ์†”ํŽ˜์ด์ง€ ๊ต์ˆ˜๋ฒ•์„ ์ ์šฉํ•˜์˜€๋‹ค. ์—ฐ๊ตฌ ๋ฐฉ๋ฒ•์œผ๋กœ๋Š” ์ฒซ์งธ, ์‹œ๋Œ€์™€ ํ•จ๊ป˜ ๋ณ€ํ™”ํ•œ ๊ต์œกํ™˜๊ฒฝ๊ณผ ๊ต์ˆ˜์ž์˜ ์—ญํ• ์„ ์—๋“€ํ…Œํฌ์˜ ํ˜„ํ™ฉ ๋ฐ ์ „๋ง๊ณผ ํ•จ๊ป˜ ๊ณ ์ฐฐํ•˜๊ณ , ๊ต์ˆ˜์ž์™€ ํ•™์Šต์ž ๊ฐ„์˜ ์Œ์•… ๊ธฐ์ดˆ ํ•™์Šต์„ ๋„์šธ ์ˆ˜ ์žˆ๋Š” ๋งค๊ฐœ์ฒด๋กœ์จ ๋จธ์‹ ๋Ÿฌ๋‹์˜ ํ™œ์šฉ์„ ์‚ดํŽด๋ณด์•˜๋‹ค. ๋‘˜์งธ, ์ฒด๊ณ„์ ์ธ ์Œ์•… ๊ธฐ์ดˆ ํ•™์Šต๋ฒ•์œผ๋กœ ์•Œ๋ ค์ง„ ์†”ํŽ˜์ด์ง€ ๊ต์ˆ˜๋ฒ•์˜ ์‹ ์ฒด ํ‘œํ˜„์„ ํ†ตํ•œ ์Œ๊ฐ ํ˜•์„ฑ๊ณผ ๊ธฐ๋ณด ๋ฐ ๋…๋ณด ํ™œ๋™์„ ์ฃผ์ œ๋กœ ํ•˜์—ฌ ์ž์ฃผ์ ยท์ฐฝ์˜์ ์ธ ํ•™์Šต์ด ๊ฐ€๋Šฅํ•˜๋„๋ก ์—๋“€ํ…Œํฌ ๋ชจ๋ธ์„ ์„ค๊ณ„ํ•˜์˜€๋‹ค. ์…‹์งธ, ์ด๋ฅผ ์œ„ํ•ด ํ•„์š”ํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ์ˆ˜์ง‘ํ•˜๊ณ  ๋จธ์‹ ๋Ÿฌ๋‹ ํˆด๋กœ ํ•™์Šต์‹œํ‚จ ํ›„, ์‹ค์‹œ๊ฐ„์œผ๋กœ ๋ฐ์ดํ„ฐ๋ฅผ ๋ถ„๋ฅ˜ํ•  ์ˆ˜ ์žˆ๋Š” ์†”ํŽ˜์ด์ง€ ์—๋“€ํ…Œํฌ ๋ชจ๋ธ์„ ๊ตฌํ˜„ํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ๊ต์ˆ˜์ž ๋˜๋Š” ํ•™์Šต์ž๊ฐ€ ์—๋“€ํ…Œํฌ ๋ชจ๋ธ์„ ๋‹ค์–‘ํ•˜๊ฒŒ ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋„๋ก ๊ต์ˆ˜ยทํ•™์Šต ๋ฐฉ์•ˆ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ํ”„๋กœ๊ทธ๋žจ ๊ตฌํ˜„์— ์žˆ์–ด ๋ฐ์ดํ„ฐ์˜ ๋‹ค์–‘์„ฑ ๋ถ€์กฑ๊ณผ ๊ธฐ์ˆ ์  ๋ฌธ์ œ๋กœ ์ธํ•ด ์ธ์‹๋ฅ  ์ œ๊ณ ์˜ ์–ด๋ ค์›€์„ ๊ฒช์—ˆ๋‹ค๋Š” ํ•œ๊ณ„์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ์ด๋Š” ์Œ์•…๊ต์œก ๋ถ„์•ผ์—์„œ ์˜คํ”ˆ์†Œ์Šค๋ฅผ ํ™œ์šฉํ•œ ์—๋“€ํ…Œํฌ๋ฅผ ์ œ์•ˆํ•˜๋ฉฐ ์ž์ฃผ์ ์ด๊ณ  ์ฐฝ์˜์ ์ธ ํ•™์Šต์„ ๋•๋Š” ์Œ์•… ๊ธฐ์ดˆ ํ•™์Šต ๋ชจ๋ธ์„ ๊ฐœ๋ฐœํ•œ ๊ฒƒ์— ์˜์˜๊ฐ€ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์‹œ๋„๋Š” ์Œ์•…๊ต์œก์—์„œ ํ•™์Šต์ž ๋งž์ถคํ˜• ๊ต์œก์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋Š” ์—๋“€ํ…Œํฌ ๋ชจ๋ธ์„ ์ œ์‹œํ•˜์—ฌ, ๋ฏธ๋ž˜ ์Œ์•…๊ต์œก ๋ฐœ์ „์— ๋ฐœํŒ์ด ๋  ์ˆ˜ ์žˆ์œผ๋ฆฌ๋ผ ๊ธฐ๋Œ€ํ•œ๋‹ค. ์ฃผ์š”์–ด : ์—๋“€ํ…Œํฌ, ๋จธ์‹ ๋Ÿฌ๋‹, ์Œ์•…๊ต์œก๊ณตํ•™, ์†”ํŽ˜์ด์ง€, ์Œ์•…๊ธฐ์ดˆํ•™์Šต ํ•™ ๋ฒˆ : 2021-27013Developing EduTech Model with Machine Learning Tools : Focusing on Solfege Pedagogical Approach Seunggyeong Seo Interdisciplinary Program of Music Education The Graduate School Seoul National University This study aims to develop and propose an Education Technology (EduTech) model to utilize educational technology that incorporates new technology in the educational field. To achieve its goal, in the technological aspect, this study used machine learning tools to increase accessibility. In the aspect of music, this study developed an EduTech model by applying the Solfege pedagogy to develop basic music skills. The research methods are as follows. First, the changing educational environment and the role of instructors were considered, along with the status and role of EduTech. The use of machine learning to facilitate basic music learning between instructors and learners was examined. Second, an EduTech model was designed to enable independent and creative learning with 'interval learning through body expression' and 'learning notation and sight-reading' in the Solfege pedagogy, a systematic music basic learning method. Finally, the necessary data was collected and trained with a machine-learning tool, 'Solfege EduTech Model' was developed which can classify newly input data. Despite the limitation that it needed to improve the recognition rate of program implementation due to a lack of data diversity and technical problems, this study is still meaningful in suggesting the use of EduTech with open source in music education and developing it as a basic music learning model that can be used independently and creatively. This attempt is expected to present the possibility of introducing EduTech as customized learning in music education and help to prepare the direction of future music education.โ… . ์„œ๋ก  1 1. ์—ฐ๊ตฌ ํ•„์š”์„ฑ ๋ฐ ๋ชฉ์  1 2. ์—ฐ๊ตฌ๋‚ด์šฉ ๋ฐ ๋ฐฉ๋ฒ• 3 3. ์—ฐ๊ตฌ์˜ ์ œํ•œ์  4 โ…ก. ์ด๋ก ์  ๋ฐฐ๊ฒฝ 5 1. ์—๋“€ํ…Œํฌ์˜ ์ดํ•ด 5 2. ๋จธ์‹ ๋Ÿฌ๋‹์˜ ์ดํ•ด 14 3. ์†”ํŽ˜์ด์ง€ ๊ต์ˆ˜๋ฒ• 19 โ…ข. ์†”ํŽ˜์ด์ง€ ๊ต์ˆ˜๋ฒ•์„ ์ ์šฉํ•œ ์—๋“€ํ…Œํฌ ๋ชจ๋ธ ์„ค๊ณ„ 23 1. ์„ค๊ณ„ ๋ฐฉํ–ฅ 23 2. ์†”ํŽ˜์ด์ง€ ์—๋“€ํ…Œํฌ ๋ชจ๋ธ ๊ฐœ๋ฐœ ๊ณผ์ • 26 โ…ฃ. ์†”ํŽ˜์ด์ง€ ์—๋“€ํ…Œํฌ ๋ชจ๋ธ์˜ ๊ตฌํ˜„ 45 โ…ค. ์‘์šฉ ํ•™์Šต๋ฐฉ์•ˆ ์ œ์•ˆ 51 โ…ฅ. ๊ฒฐ๋ก  57 ๋ถ€๋ก 60 ์ฐธ๊ณ ๋ฌธํ—Œ 64 Abstract 67์„

    Monetization of Machine Learning Model and Architecture for Automated Market

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์‚ฐ์—…๊ณตํ•™๊ณผ, 2022. 8. ์กฐ์„ฑ์ค€.์ตœ๊ทผ ๋จธ์‹ ๋Ÿฌ๋‹ ๊ด€๋ จ ๋งŽ์€ ์—ฐ๊ตฌ์™€ ๋…ผ๋ฌธ๋“ค์ด SOTA(State-of-the-Art)๊ธ‰์˜ ์„ฑ๋Šฅ์„ ์ฃผ์žฅํ•˜์ง€๋งŒ ํ•ด๋‹น ์‹คํ—˜ํ™˜๊ฒฝ์—์„œ๋งŒ ์ตœ์ ํ™”๋œ ๊ฒฐ๊ณผ๊ฐ€ ๋‚˜์˜ค๋Š” ๊ฒฝ์šฐ๋„ ๋งŽ๊ณ , ๋‹ค์–‘ํ•œ ํ‰๊ฐ€ ์ง€ํ‘œ๊ฐ€ ์žˆ์œผ๋‚˜ ํ•ด๋‹น ์ง€ํ‘œ๋“ค๋งŒ์œผ๋กœ๋Š” ํด๋ผ์ด์–ธํŠธ ์ž…์žฅ์—์„œ ๋ชจ๋ธ์˜ ์šฐ์—ด์„ ํ‰๊ฐ€ํ•˜๋Š” ๊ฒƒ์ด ๋งค์šฐ ์–ด๋ ต๋‹ค. ์‹ค์ œ๋กœ ๋…ผ๋ฌธ์—์„œ SOTA ๋ชจ๋ธ์ด ์‚ฐ์—… ์‘์šฉ์—์„œ๋Š” ์ข‹์ง€ ๋ชปํ•˜๋Š” ์„ฑ๋Šฅ์„ ๋ณด์ด๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๋‹ค. ์ด์— STO(Security Token Offering), AMM(Automated Market Maker)์™€ ๊ฐ™์€ ๋ธ”๋ก์ฒด์ธ ๊ธฐ๋ฐ˜์˜ ์ž์‚ฐ ์œ ๋™ํ™” ๋ฐ ์ž๋™ํ™” ๊ฑฐ๋ž˜ ์‹œ์žฅ ๋Œ€ํ•œ ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ํ•˜์˜€๊ณ , ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ ์ž์ฒด๋ฅผ ์œ ๋™ํ™”ํ•˜์—ฌ ์‹œ์žฅ ๊ฐ€๊ฒฉ ๋…ผ๋ฆฌ์— ๋งž๊ฒŒ ๊ฑฐ๋ž˜๋˜๊ณ  ํ‰๊ฐ€๋  ์ˆ˜ ์žˆ์œผ๋ฉด์„œ๋„ ๋ชจ๋ธ์˜ ์˜๋ฆฌ์  ๊ฐ€์น˜๋ฅผ ๋ณดํ˜ธํ•˜๋Š” ์•„ํ‚คํ…์ฒ˜๋ฅผ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋˜ํ•œ ์ด๋ฅผ ๋…ผ๋ฆฌ์ ์œผ๋กœ ์ž…์ฆํ•˜๋Š” ํ”„๋กœ๊ทธ๋žจ์„ ๊ตฌํ˜„ํ•˜์˜€๋‹ค.A lot of recent research and paper insists its performance accomplish SOTA(State-of-the-Art). However, most of the result only perform SOTA with optimized experiment data and environment. As a result, machine learning model cannot be successfully applied to industry. This paper suggests architecture which is based on the concept of machine learning, smart contract and STO(Security Token Offering). By tokenizing machine learning model, the value of model can be intuitively and objectively estimated. Besides, demand for machine learning model can be automated by smart contract code, while protect client data privacy via distributed learning. Solidity and Javascript program is implemented to prove the proposed architecture.์ œ 1 ์žฅ ์„œ๋ก  8 1.1 ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ 8 1.2 ๋ฌธ์ œ ์ •์˜ ๋ฐ ์—ฐ๊ตฌ ๋ชฉ์  9 1.3 ๋…ผ๋ฌธ ๊ตฌ์กฐ ๋ฐ ๊ธฐ์—ฌ 9 ์ œ 2 ์žฅ ๊ด€๋ จ ์—ฐ๊ตฌ 11 2.1 ๋ธ”๋ก์ฒด์ธ์˜ ๋ถˆ๋ณ€์„ฑ๊ณผ ํ•ฉ์˜ ๋งค์ปค๋‹ˆ์ฆ˜ 11 2.2 ์ด๋”๋ฆฌ์›€ ๊ฐ€์ƒ ๋จธ์‹ ๊ณผ ์Šค๋งˆํŠธ ์ปจํŠธ๋ž™ํŠธ 12 2.3 Tokenization์„ ํ†ตํ•œ ์ž์‚ฐ ์œ ๋™ํ™” 13 2.4 AMM์„ ํ†ตํ•œ ์ž๋™ํ™” ๊ฑฐ๋ž˜ ์‹œ์žฅ 15 2.5 ๋ฐ์ดํ„ฐ ์˜ค๋ผํด์„ ํ†ตํ•œ ์˜จ-์˜คํ”„์ฒด์ธ ์—ฐ๊ฒฐ 17 ์ œ 3 ์žฅ ์ œ์•ˆํ•˜๋Š” ๋ฐฉ๋ฒ• 19 3.1 CPMM์„ ํ†ตํ•œ AI ๋ชจ๋ธ ์œ ๋™ํ™” ๋ฐ ๊ฑฐ๋ž˜ 19 3.2 ๋ฐ์ดํ„ฐ ์˜ค๋ผํด์„ ํ†ตํ•œ ํ•™์Šต ์š”์ฒญ 20 3.2 ์ „์ฒด ์•„ํ‚คํ…์ฒ˜ ๋ฐ ํ”„๋กœ์„ธ์Šค 21 ์ œ 4 ์žฅ ์‹คํ—˜ ๋ฐ ๋ถ„์„ 23 4.1 ์‹คํ—˜ ํ™˜๊ฒฝ 23 4.2 ์Šค๋งˆํŠธ ์ปจํŠธ๋ž™ํŠธ ๊ตฌํ˜„ ๋ฐ ๋ฐฐํฌ 24 4.3 ์ž๋™ํ™” ํ”„๋กœ๊ทธ๋žจ ๊ตฌํ˜„ 29 4.4 ๊ฒฐ๊ณผ ๋ถ„์„ 31 ์ œ 5 ์žฅ ๊ฒฐ๋ก  ๋ฐ ์˜์˜ 33 5.1 ๊ฒฐ๋ก  33 5.2 ํ–ฅํ›„ ์—ฐ๊ตฌ์— ๋Œ€ํ•œ ๋…ผ์˜ 33์„

    Development of gear design algorithm based on machine learning

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๋†์—…์ƒ๋ช…๊ณผํ•™๋Œ€ํ•™ ๋ฐ”์ด์˜ค์‹œ์Šคํ…œ๊ณตํ•™๊ณผ, 2023. 2. ๋ฐ•์˜์ค€.The traditional gear design process mainly uses a method of selecting two or three gear macro-geometry based on the designer's experience and then taking the design that is considered to have the best gear performance among them, or a brute-force approach. The brute-force approach evaluates various gear performance metrics for all candidates that can be combined in a defined design variable space and selects some gear designs that meet the objective function and constraints, thereby obtaining gear macro-geometry that satisfies various requirements for operating conditions and is possible to be manufactured. However, traditional gear design methods require a designer's high background knowledge of gears and a gear analysis solver to evaluate the gear performance. In this study, a machine learning-based gear design algorithm was developed to improve those difficulties in gear design. For the use of machine learning in gear design, it is essential to prepare enough gear design dataset with good quality. In this study, an in-house code for gear analysis was developed to generate a gear design dataset by the author. In order to ensure its calculation accuracy, the safety factors for tooth root stress and surface durability and gear mesh efficiency were evaluated based on the international standards. The volume and weight of a gear pair were calculated based on the geometrical characteristics of the gears. However, since there is no standardized method for the static transmission error, an improved analytical model for predicting it was proposed considering the exact involute and trochoidal root profile of the gear. As a result of comparing the proposed analytical method and the finite element method, a relative error of about 3% was shown, and through this, the superiority of the proposed model was verified. Using the developed gear analysis solver, two gear pairs with the safety factors satisfying the design requirements and similar performance for peak-to-peak static transmission error, efficiency, mass, and volume were selected when the macro-geometry errors were not considered. For those gear pairs, Monte-Carlo type robustness analysis was performed to investigate the effects of gear macro-geometry errors on various gear performance metrics. Unlike previous studies that focused on analyzing the effects of micro-geometry errors on the gear performance, this study confirmed that it is very important to consider the macro-geometry errors and robustness of static transmission errors when designing gears. In particular, when the errors were considered, the standard deviation of peak-to-peak static transmission error for the two gear pairs showed a difference of about 6 times. A gear design dataset with about 2.3 million data was generated by using the developed gear analysis solver within the defined design variable space and design intervals. The effectiveness of machine learning as a surrogate model was evaluated for various models. The k-nearest neighbor (kNN), random forest, and deep neural network (DNN) showed R^2 scores of 0.9973 or higher for all gear performance metrics. In addition, these models exhibited R^2 scores of 0.9961 or higher for all gear macro-geometry parameters. In other words, kNN, random forest, and DNN not only predicted each gear performance metric with high performance through gear macro-geometry parameters, but also inferred each gear macro-geometry parameter with high prediction accuracy through gear performance metrics. In order to evaluate the applicability in the field, the appropriate dataset size for training the machine learning models was determined. Finally, a multi-objective optimization algorithm for gear design using backpropagation of the artificial neural network and active learning was proposed. Since the gear performance metrics cannot be expressed in an explicit form in terms of design variables, the optimization process is generally performed based on a stochastic method such as the genetic algorithm instead of a deterministic method such as the gradient descent, which can quickly obtain an optimal solution. In this study, NSGIDNs (nondominated sorting generative inverse design networks), an artificial neural network-based multi-objective optimization algorithm with a nondominated sorting based on crowding metrics, were proposed. NSGIDNs was able to find the optimal Pareto-front with 2,984 data through two iterations by using 2,380 initial samples. On the other hand, when NSGA-II, a representative multi-objective optimization genetic algorithm, was used, the Pareto-front was converged after a total of 6,000 data were secured by 60 generations with a population size of 100. Through the comparison with NSGA-II, the effectiveness and superiority of NSGIDNs were confirmed. The proposed optimization algorithm not only solves the difficulties in traditional optimization problems of gear design, but is also expected to be a good example showing the possibility of using machine learning in the field of optimum design.์ „ํ†ต์ ์ธ ๊ธฐ์–ด ์„ค๊ณ„ ๊ณผ์ •์€ ์„ค๊ณ„์ž์˜ ๊ฒฝํ—˜์„ ๊ธฐ๋ฐ˜์œผ๋กœ 2~3๊ฐœ์˜ ๊ธฐ์–ด ๋งคํฌ๋กœ์ œ์›์„ ์„ ์ •ํ•œ ํ›„ ๊ทธ ์ค‘ ๊ธฐ์–ด ์„ฑ๋Šฅ์ด ๊ฐ€์žฅ ์šฐ์ˆ˜ํ•˜๋‹ค๊ณ  ํŒ๋‹จ๋˜๋Š” ์ œ์›์„ ์ทจํ•˜๋Š” ๋ฐฉ๋ฒ•๊ณผ ๋ฌด์ž‘์œ„ ๋Œ€์ž… ์ ‘๊ทผ ๋ฐฉ๋ฒ•์„ ์ฃผ๋กœ ์‚ฌ์šฉํ•œ๋‹ค. ๋ฌด์ž‘์œ„ ๋Œ€์ž… ์ ‘๊ทผ ๋ฐฉ๋ฒ•์€ ์ •ํ•ด์ง„ ์„ค๊ณ„ ๋ณ€์ˆ˜ ๊ณต๊ฐ„์—์„œ ์กฐํ•ฉ ๊ฐ€๋Šฅํ•œ ๋ชจ๋“  ํ›„๋ณด ์ œ์›๋“ค์— ๋Œ€ํ•ด์„œ ๊ฐ ๊ธฐ์–ด ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•˜๊ณ  ๋ชฉ์  ํ•จ์ˆ˜์™€ ์ œ์•ฝ ์กฐ๊ฑด์— ๋ถ€ํ•ฉํ•˜๋Š” ์ œ์›์„ ์„ ์ •ํ•จ์œผ๋กœ์จ, ์ž‘๋™ ์กฐ๊ฑด์— ๋Œ€ํ•œ ๋‹ค์–‘ํ•œ ์š”๊ตฌ ์‚ฌํ•ญ์„ ๋งŒ์กฑํ•˜๋Š” ๊ธฐ์–ด ๋งคํฌ๋กœ์ œ์›์„ ์ฐพ๋Š” ๋™์‹œ์— ์ œ์ž‘ ๊ฐ€๋Šฅํ•œ ์ œ์›์„ ์ฐพ์„ ์ˆ˜ ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ์ „ํ†ต์ ์ธ ๊ธฐ์–ด ์„ค๊ณ„ ๋ฐฉ๋ฒ•์€ ์„ค๊ณ„์ž์˜ ๊ธฐ์–ด์— ๋Œ€ํ•œ ๋†’์€ ๋ฐฐ๊ฒฝ ์ง€์‹๊ณผ ๋ณ„๋„์˜ ๊ธฐ์–ด ํ•ด์„ ์†”๋ฒ„๊ฐ€ ์š”๊ตฌ๋œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๊ธฐ์–ด ์„ค๊ณ„ ์ƒ์˜ ์–ด๋ ค์›€์„ ๊ฐœ์„ ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๋จธ์‹ ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜์˜ ๊ธฐ์–ด ์„ค๊ณ„ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ๊ธฐ์–ด ์„ค๊ณ„ ๋ถ„์•ผ์— ๋จธ์‹ ๋Ÿฌ๋‹์„ ์ ์šฉํ•˜๊ธฐ ์œ„ํ•˜์—ฌ์„œ๋Š” ์–‘์งˆ์˜ ๊ธฐ์–ด ์„ค๊ณ„ ๋ฐ์ดํ„ฐ์„ธํŠธ๋ฅผ ํ™•๋ณดํ•˜๋Š” ๊ฒƒ์ด ํ•„์ˆ˜์ ์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ธฐ์–ด ์„ค๊ณ„ ๋ฐ์ดํ„ฐ์„ธํŠธ๋ฅผ ์ƒ์„ฑํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์ž์ฒด์ ์œผ๋กœ ๊ธฐ์–ด ํ•ด์„ ์†”๋ฒ„๋ฅผ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ๊ณ„์‚ฐ ์ •ํ™•๋„๋ฅผ ๋ณด์žฅํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๊ตญ์ œ ํ‘œ์ค€์—์„œ ์ œ์‹œํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ํ†ตํ•ด ๊ธฐ์–ด์˜ ๊ตฝํž˜ ๋ฐ ๋ฉด์•• ๊ฐ•๋„์— ๋Œ€ํ•œ ์•ˆ์ „๊ณ„์ˆ˜์™€ ํšจ์œจ์„ ๊ณ„์‚ฐํ•˜์˜€๋‹ค. ๊ธฐ์–ด์Œ์˜ ๋ถ€ํ”ผ์™€ ๋ฌด๊ฒŒ๋Š” ๊ธฐํ•˜ํ•™์  ํŠน์„ฑ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ณ„์‚ฐํ•˜์˜€๋‹ค. ํ•˜์ง€๋งŒ, ์ •์  ์ „๋‹ฌ์˜ค์ฐจ์˜ ๊ฒฝ์šฐ ํ‘œ์ค€ํ™”๋œ ๋ฐฉ๋ฒ•์ด ์—†๊ธฐ ๋•Œ๋ฌธ์— ๊ธฐ์–ด์˜ ์ •ํ™•ํ•œ ์ธ๋ณผ๋ฃจํŠธ ๋ฐ ํŠธ๋กœ์ฝ”์ด๋“œ ์ด๋ฟŒ๋ฆฌ ์น˜ํ˜•์„ ๊ณ ๋ คํ•˜์—ฌ ์ •์  ์ „๋‹ฌ์˜ค์ฐจ๋ฅผ ์˜ˆ์ธกํ•˜๋Š” ํ•ด์„์  ๋ชจ๋ธ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ œ์•ˆ๋œ ํ•ด์„์  ๋ชจ๋ธ๊ณผ ์œ ํ•œ์š”์†Œ๋ฐฉ๋ฒ•์˜ PPSTE๋ฅผ ๋น„๊ตํ•œ ๊ฒฐ๊ณผ ์•ฝ 3%์˜ ์ƒ๋Œ€์˜ค์ฐจ๋ฅผ ๋‚˜ํƒ€๋ƒˆ๊ณ , ์ด๋ฅผ ํ†ตํ•ด ์˜ˆ์ธก ์„ฑ๋Šฅ์˜ ์šฐ์ˆ˜์„ฑ์ด ๊ฒ€์ฆ๋˜์—ˆ๋‹ค. ๊ฐœ๋ฐœ๋œ ๊ธฐ์–ด ํ•ด์„ ์†”๋ฒ„๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ธฐ์–ด ๋งคํฌ๋กœ์ œ์› ์˜ค์ฐจ๊ฐ€ ๊ณ ๋ ค๋˜์ง€ ์•Š์•˜์„ ๋•Œ ๋น„์Šทํ•œ ์„ฑ๋Šฅ์„ ๋‚˜ํƒ€๋‚ด๋Š” 2๊ฐœ์˜ ๊ธฐ์–ด์Œ์„ ์„ ์ •ํ•œ ํ›„ ์ œ์ž‘ ์˜ค์ฐจ๋ฅผ ๊ณ ๋ คํ•œ ๋ชฌํ…Œ์นด๋ฅผ๋กœ ํ•ด์„์„ ํ†ตํ•ด ๋งคํฌ๋กœ์ œ์› ์˜ค์ฐจ๊ฐ€ ๊ธฐ์–ด ์„ฑ๋Šฅ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๋ถ„์„ํ•˜์˜€๋‹ค. ๋งˆ์ดํฌ๋กœ์ œ์› ์˜ค์ฐจ๊ฐ€ ๊ธฐ์–ด ์„ฑ๋Šฅ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๋ถ„์„ํ•˜๋Š” ๊ฒƒ์— ์ดˆ์ ์ด ๋งž์ถฐ์ง„ ์„ ํ–‰์—ฐ๊ตฌ์™€ ๋‹ฌ๋ฆฌ, ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ธฐ์–ด ์„ค๊ณ„ ์‹œ ๊ธฐ์–ด ๋งคํฌ๋กœ์ œ์› ์˜ค์ฐจ์™€ ์ •์  ์ „๋‹ฌ์˜ค์ฐจ์˜ ๊ฐ•๊ฑด์„ฑ์„ ๊ณ ๋ คํ•˜๋Š” ๊ฒƒ์ด ๋งค์šฐ ์ค‘์š”ํ•˜๋‹ค๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ํŠนํžˆ PPSTE์˜ ๊ฒฝ์šฐ ๊ธฐ์–ด ๋งคํฌ๋กœ์ œ์› ์˜ค์ฐจ๊ฐ€ ๊ณ ๋ ค๋˜์—ˆ์„ ๋•Œ ๋‘ ๊ธฐ์–ด์Œ์—์„œ ํ‘œ์ค€ํŽธ์ฐจ๊ฐ€ ์•ฝ 6๋ฐฐ ์ฐจ์ด๊ฐ€ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ •์˜๋œ ์„ค๊ณ„ ๋ณ€์ˆ˜ ๊ณต๊ฐ„ ๋ฐ ์„ค๊ณ„ ๋ณ€์ˆ˜ ๊ฐ„๊ฒฉ์—์„œ ๊ฐœ๋ฐœ๋œ ๊ธฐ์–ด ํ•ด์„ ์†”๋ฒ„๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ธฐ์–ด ์„ค๊ณ„ ๋ฐ์ดํ„ฐ์„ธํŠธ๋ฅผ ์ƒ์„ฑํ•˜์˜€๋‹ค. ์•ฝ 230๋งŒ ๊ฐœ์˜ ๊ธฐ์–ด ์„ค๊ณ„ ๋ฐ์ดํ„ฐ์„ธํŠธ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ์„ ์ด์šฉํ•œ ๊ธฐ์–ด ์„ฑ๋Šฅ ์˜ˆ์ธก ๋ฐ ์„ค๊ณ„ ๊ฐ€๋Šฅ์„ฑ์„ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ๋‹ค์–‘ํ•œ ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ์„ ๊ฒ€ํ† ํ•œ ๊ฒฐ๊ณผ, kNN(k-nearest neighbor), ๋žœ๋ค ํฌ๋ ˆ์ŠคํŠธ(random forest), DNN(deep neural network)์€ ๋ชจ๋“  ๊ธฐ์–ด ์„ฑ๋Šฅ ์ง€ํ‘œ์— ๋Œ€ํ•ด์„œ 0.9973 ์ด์ƒ์˜ R^2 ์ ์ˆ˜๋ฅผ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ๋˜ํ•œ, ์ด๋“ค ๋ชจ๋ธ์€ ๋ชจ๋“  ๊ธฐ์–ด ๋งคํฌ๋กœ์ œ์› ๋งค๊ฐœ๋ณ€์ˆ˜์— ๋Œ€ํ•ด์„œ 0.9961 ์ด์ƒ์˜ R^2 ์ ์ˆ˜๋ฅผ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ๋‹ค์‹œ ๋งํ•ด์„œ, kNN, ๋žœ๋ค ํฌ๋ ˆ์ŠคํŠธ, DNN์€ ๊ธฐ์–ด ๋งคํฌ๋กœ์ œ์› ๋งค๊ฐœ๋ณ€์ˆ˜๋ฅผ ํ†ตํ•ด ๊ฐ ๊ธฐ์–ด ์„ฑ๋Šฅ ์ง€ํ‘œ๋ฅผ ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์œผ๋กœ ์˜ˆ์ธกํ•  ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ๊ธฐ์–ด ์„ฑ๋Šฅ ์ง€ํ‘œ๋ฅผ ํ†ตํ•ด ๊ฐ ๊ธฐ์–ด ๋งคํฌ๋กœ์ œ์› ๋งค๊ฐœ๋ณ€์ˆ˜๋ฅผ ๋†’์€ ์˜ˆ์ธก ์ ์ˆ˜๋กœ ์ถ”๋ก ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋˜ํ•œ ์‹ค์ œ ํ˜„์žฅ์—์„œ์˜ ํ™œ์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๊ธฐ์–ด ์„ฑ๋Šฅ ์˜ˆ์ธก ๋ฐ ์„ค๊ณ„๋ฅผ ์œ„ํ•œ ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ ๊ฐœ๋ฐœ ์‹œ ์ ์ ˆํ•œ ๋ฐ์ดํ„ฐ์„ธํŠธ์˜ ํฌ๊ธฐ๋ฅผ ํ™•์ธํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ์ธ๊ณต์‹ ๊ฒฝ๋ง ๊ตฌ์กฐ์˜ ์—ญ์ „ํŒŒ์™€ ๋Šฅ๋™์  ํ•™์Šต์„ ์ด์šฉํ•œ ์ตœ์ ์„ค๊ณ„ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๊ธฐ์–ด ์„ฑ๋Šฅ ์ง€ํ‘œ๋Š” ์„ค๊ณ„ ๋ณ€์ˆ˜์— ๋Œ€ํ•œ ๋ช…์‹œ์  ํ˜•ํƒœ๋กœ ๋‚˜ํƒ€๋‚ผ ์ˆ˜ ์—†๊ธฐ ๋•Œ๋ฌธ์— ๋น ๋ฅด๊ฒŒ ์ตœ์ ์˜ ํ•ด๋ฅผ ๊ตฌํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ•๊ณผ ๊ฐ™์€ ๊ฒฐ์ •๋ก ์  ๋ฐฉ๋ฒ• ๋Œ€์‹  ์œ ์ „์•Œ๊ณ ๋ฆฌ์ฆ˜๊ณผ ๊ฐ™์€ ํ™•๋ฅ ๋ก ์  ๋ฐฉ๋ฒ•์œผ๋กœ ์ตœ์ ์„ค๊ณ„๋ฅผ ์ˆ˜ํ–‰ํ•ด์•ผ ํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ตฐ์ง‘ ์ง€ํ‘œ ๊ธฐ๋ฐ˜์˜ ๋น„์ง€๋ฐฐ ๋ถ„๋ฅ˜ ๊ธฐ๋ฒ•์„ ์ ์šฉํ•œ ์ธ๊ณต์‹ ๊ฒฝ๋ง ๊ธฐ๋ฐ˜์˜ ๋‹ค๋ชฉ์  ๊ธฐ์–ด ์ตœ์ ์„ค๊ณ„ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ธ NSGIDNs(nondominated sorting generative inverse design networks)๋ฅผ ์ œ์•ˆํ•˜์˜€๋‹ค. NSGIDNs๋Š” 2,380๊ฐœ์˜ ์ดˆ๊ธฐ ๋ฐ์ดํ„ฐ๋ฅผ ๊ฐ€์ง€๊ณ  2๋ฒˆ์˜ ์ตœ์ ์„ค๊ณ„ ์ˆ˜ํ–‰์„ ํ†ตํ•ด ์ตœ์ข…์ ์œผ๋กœ 2,984๊ฐœ์˜ ๋ฐ์ดํ„ฐ๋กœ ์ตœ์ ์˜ ํŒŒ๋ ˆํ†  ํ”„๋ก ํŠธ๋ฅผ ์ฐพ์„ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋ฐ˜๋ฉด, ๋Œ€ํ‘œ์ ์ธ ๋‹ค๋ชฉ์  ์ตœ์ ํ™” ์œ ์ „์•Œ๊ณ ๋ฆฌ์ฆ˜์ธ NSGA-II๋Š” 100๊ฐœ์˜ ๊ฐœ์ฒด๊ตฐ ํฌ๊ธฐ๋กœ 60๋ฒˆ์˜ ์„ธ๋Œ€๊ฐ€ ์ง„ํ–‰๋˜์–ด ์ด 6,000๊ฐœ์˜ ๋ฐ์ดํ„ฐ๊ฐ€ ํ™•๋ณด๋˜์—ˆ์„ ๋•Œ ํŒŒ๋ ˆํ†  ํ”„๋ก ํŠธ๊ฐ€ ์ˆ˜๋ ดํ•˜์˜€๋‹ค. NSGA-II์™€์˜ ๋น„๊ต๋ฅผ ํ†ตํ•ด NSGIDNs์˜ ์œ ํšจ์„ฑ๊ณผ ์„ฑ๋Šฅ์˜ ์šฐ์ˆ˜์„ฑ์ด ํ™•์ธ๋˜์—ˆ๋‹ค. NSGIDNs๋Š” ์ „ํ†ต์ ์ธ ๊ธฐ์–ด ์ตœ์ ์„ค๊ณ„์—์„œ์˜ ์–ด๋ ค์›€์„ ํ•ด๊ฒฐํ–ˆ์„ ๋ฟ ์•„๋‹ˆ๋ผ, ๋‚˜์•„๊ฐ€ ์ตœ์ ์„ค๊ณ„ ๋ถ„์•ผ์—์„œ์˜ ๋จธ์‹ ๋Ÿฌ๋‹ ํ™œ์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ๋ณด์—ฌ์ฃผ๋Š” ์ข‹์€ ์‚ฌ๋ก€๊ฐ€ ๋  ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค.์ œ1์žฅ ์„œ ๋ก  1 1.1. ์—ฐ๊ตฌ ํ•„์š”์„ฑ 1 1.2. ์—ฐ๊ตฌ ๋ชฉ์  8 1.3. ๋ฌธํ—Œ ์กฐ์‚ฌ 10 1.3.1. ๊ธฐ์–ด ํ•ด์„ ์†”๋ฒ„ ๊ฐœ๋ฐœ 10 1.3.1.1. ๊ธฐ์–ด ์ •์  ์ „๋‹ฌ์˜ค์ฐจ ์˜ˆ์ธก 10 1.3.1.2. ์ œ์ž‘ ์ •๋ฐ€๋„๋ฅผ ๊ณ ๋ คํ•œ ๊ธฐ์–ด ์„ฑ๋Šฅ ์˜ˆ์ธก 14 1.3.2. ๊ธฐ์–ด ๋งคํฌ๋กœ์ œ์› ์ตœ์ ์„ค๊ณ„ 16 1.3.3. ๊ธฐ์–ด ๋ถ„์•ผ์—์„œ์˜ ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ ํ™œ์šฉ 18 1.3.4. ๊ณตํ•™ ์„ค๊ณ„ ๋ถ„์•ผ์—์„œ์˜ ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ ํ™œ์šฉ 21 1.4. ์—ฐ๊ตฌ ๋‚ด์šฉ ๋ฐ ๊ตฌ์„ฑ 24 ์ œ2์žฅ ๊ธฐ์–ด ์„ค๊ณ„ ๋ฐ์ดํ„ฐ ์ƒ์„ฑ์„ ์œ„ํ•œ ๊ธฐ์–ด ํ•ด์„ ์†”๋ฒ„ ๊ฐœ๋ฐœ 27 2.1. ๊ฐœ์š” 27 2.2. ๊ธฐ์–ด ์„ฑ๋Šฅ ์ง€ํ‘œ์— ๋Œ€ํ•œ ์ด๋ก ์  ๋ฐฐ๊ฒฝ 30 2.2.1. ๊ธฐ์–ด์˜ ๊ฐ•๋„ ํ‰๊ฐ€ 30 2.2.1.1. ๊ตฝํž˜ ๊ฐ•๋„์— ๋Œ€ํ•œ ์•ˆ์ „๊ณ„์ˆ˜ 31 2.2.1.2. ๋ฉด์•• ๊ฐ•๋„์— ๋Œ€ํ•œ ์•ˆ์ „๊ณ„์ˆ˜ 36 2.2.2. ๊ธฐ์–ด์˜ ์ •์  ์ „๋‹ฌ์˜ค์ฐจ 39 2.2.3. ๊ธฐ์–ด์˜ ํšจ์œจ 42 2.2.4. ๊ธฐ์–ด์Œ์˜ ๋ถ€ํ”ผ ๋ฐ ๋ฌด๊ฒŒ 45 2.3. ์ •์  ์ „๋‹ฌ์˜ค์ฐจ ์˜ˆ์ธก์„ ์œ„ํ•œ ํ•ด์„์  ๋ชจ๋ธ ๊ฐœ๋ฐœ 46 2.3.1. ํŠธ๋กœ์ฝ”์ด๋“œ ์ด๋ฟŒ๋ฆฌ ํ˜•์ƒ์„ ๊ณ ๋ คํ•œ ํŒŒ๋ผ๋ฉ”ํŠธ๋ฆญ ๋ชจ๋ธ 47 2.3.2. ํšŒ์ „์— ๋”ฐ๋ฅธ ๊ธฐ์–ด์Œ์˜ ๋ฌผ๋ฆผ ์œ„์น˜ 54 2.3.3. ๊ธฐ์–ด์˜ ๋ฌผ๋ฆผ ๊ฐ•์„ฑ 59 2.3.4. ์ •์  ์ „๋‹ฌ์˜ค์ฐจ ํ•ด์„ ๊ฒฐ๊ณผ ๋ฐ ๋…ผ์˜ 68 2.3.4.1. IAM๊ณผ FEM์˜ ํ•ด์„ ๊ฒฐ๊ณผ ๋น„๊ต 69 2.3.4.2. IAM๊ณผ TAM์˜ ์น˜ ๊ฐ•์„ฑ ํ•ด์„ ๊ฒฐ๊ณผ ๋น„๊ต 73 2.3.4.3. IAM๊ณผ TAM์˜ TVMS ๋ฐ LSTE ํ•ด์„ ๊ฒฐ๊ณผ ๋น„๊ต 77 2.4. ๊ธฐ์–ด ํ•ด์„ ์†”๋ฒ„๋ฅผ ์ด์šฉํ•œ ๊ธฐ์–ด ๊ฐ•๊ฑด์„ฑ ๋ถ„์„ ์ˆ˜ํ–‰ 81 2.4.1. ๋ชฌํ…Œ์นด๋ฅผ๋กœ ํ•ด์„ ๊ธฐ๋ฒ• 83 2.4.2, ๋งคํฌ๋กœ์ œ์› ์ œ์ž‘ ์˜ค์ฐจ๋ฅผ ๊ณ ๋ คํ•œ ๊ธฐ์–ด ์„ฑ๋Šฅ ํ‰๊ฐ€ 85 2.4.3. ๊ธฐ์–ด ์„ฑ๋Šฅ ํ‰๊ฐ€ ๊ฒฐ๊ณผ์— ๋Œ€ํ•œ ๋…ผ์˜ 92 2.5. ๊ฒฐ๋ก  96 ์ œ3์žฅ ๊ธฐ์–ด ์„ฑ๋Šฅ ์˜ˆ์ธก ๋ฐ ๊ธฐ์–ด ๋งคํฌ๋กœ์ œ์› ์„ค๊ณ„๋ฅผ ์œ„ํ•œ ๋จธ์‹ ๋Ÿฌ๋‹ ํ™œ์šฉ ๊ฐ€๋Šฅ์„ฑ ํ‰๊ฐ€ 98 3.1. ๊ฐœ์š” 98 3.2. ๊ธฐ์–ด ์„ฑ๋Šฅ ์˜ˆ์ธก์šฉ ๋ฐ ์„ค๊ณ„์šฉ ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ ๊ฐœ๋ฐœ 102 3.2.1. ๊ธฐ์–ด ์„ค๊ณ„ ๋ฐ์ดํ„ฐ ์ƒ์„ฑ 104 3.2.2. ํšŒ๊ท€ ๋ฌธ์ œ๋ฅผ ์œ„ํ•œ ๋‹ค์–‘ํ•œ ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ 105 3.3.3. ๋ฐ์ดํ„ฐ ์ „์ฒ˜๋ฆฌ ๋ฐ ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ ์„ฑ๋Šฅ ํ‰๊ฐ€ ์ง€ํ‘œ 110 3.3. ๋จธ์‹ ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜์˜ ๊ธฐ์–ด ์„ฑ๋Šฅ ์˜ˆ์ธก ๋ฐ ๊ธฐ์–ด ๋งคํฌ๋กœ์ œ์› ์„ค๊ณ„ 114 3.3.1. ๊ธฐ์–ด ๋งคํฌ๋กœ์ œ์›์„ ํ†ตํ•œ ๊ฐ ๊ธฐ์–ด ์„ฑ๋Šฅ ์ง€ํ‘œ ์˜ˆ์ธก 114 3.3.2. ๊ธฐ์–ด ์„ฑ๋Šฅ ์ง€ํ‘œ๋ฅผ ํ†ตํ•œ ๊ฐ ๊ธฐ์–ด ๋งคํฌ๋กœ์ œ์› ์˜ˆ์ธก 117 3.3.3. ๋ฐ์ดํ„ฐ์„ธํŠธ ํฌ๊ธฐ์— ๋”ฐ๋ฅธ ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ ์˜ˆ์ธก ์ •ํ™•๋„ ๋ถ„์„ 119 3.4. ๊ธฐ์–ด ์„ฑ๋Šฅ ์˜ˆ์ธก์šฉ ๋ฐ ์„ค๊ณ„์šฉ ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ ๊ฐœ๋ฐœ์— ๋Œ€ํ•œ ๋…ผ์˜ 123 3.5. ๊ฒฐ๋ก  126 ์ œ4์žฅ ์ธ๊ณต์‹ ๊ฒฝ๋ง ๊ธฐ๋ฐ˜์˜ ๋‹ค๋ชฉ์  ๊ธฐ์–ด ์ตœ์ ์„ค๊ณ„ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ฐœ๋ฐœ 128 4.1. ๊ฐœ์š” 128 4.2. GIDNs์™€ NSGIDNs ์•Œ๊ณ ๋ฆฌ์ฆ˜ 131 4.2.1. GIDNs ์•Œ๊ณ ๋ฆฌ์ฆ˜ 131 4.2.2. GIDNs๋ฅผ ์ด์šฉํ•œ ๋‹ค๋ชฉ์  ๊ธฐ์–ด ์ตœ์ ์„ค๊ณ„ 139 4.2.3. ๋‹ค๋ชฉ์  ๊ธฐ์–ด ์ตœ์ ์„ค๊ณ„๋ฅผ ์œ„ํ•œ NSGIDNs ์•Œ๊ณ ๋ฆฌ์ฆ˜ 146 4.3. NSGIDNs๋ฅผ ์ด์šฉํ•œ ๋‹ค๋ชฉ์  ๊ธฐ์–ด ์ตœ์ ์„ค๊ณ„ 150 4.3.1. NSGIDNs๋ฅผ ์ด์šฉํ•œ ์ตœ์ ์„ค๊ณ„ ๊ฒฐ๊ณผ 150 4.3.2. NSGA-II๋ฅผ ์ด์šฉํ•œ NSGIDNs ์ตœ์ ์„ค๊ณ„ ๊ฒฐ๊ณผ ๊ฒ€์ฆ 158 4.4. ๊ฒฐ๋ก  160 ์ œ5์žฅ ๊ฒฐ ๋ก  161 ์ฐธ๊ณ ๋ฌธํ—Œ 164 Abstract 172๋ฐ•

    ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•œ 2002~2020๋…„ ํ•œ๊ตญ์˜ O3, NO2, CO ๋†๋„์˜ ๊ณ ํ•ด์ƒ๋„ ์ถ”์ •

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๋ณด๊ฑด๋Œ€ํ•™์› ๋ณด๊ฑดํ•™๊ณผ, 2023. 2. ๊น€ํ˜ธ.Backrgound : Long-term exposure to ozone (O3), nitrogen dioxide (NO2), and carbon monoxide (CO) is known to cause various diseases and increase mortality. For that reason, estimating ground-level O3, NO2, and CO concentrations with a high spatial resolution is crucial for assessing the health effects associated with these air pollutants. However, related studies are limited in South Korea. This study aimed to develop machine learning-based models to predict the monthly O3 (average of daily 8-hour maximums), NO2, and CO at a spatial resolution of 1 km ร— 1 km across South Korea from 2002 to 2020. Methods : Approximately 80% of the monitoring stations were used to train the three machine learning models (random forest, light gradient boosting, and neural network) with a 10-fold cross-validation, and 20% of the monitoring stations were used to test the model performance. The author also applied ensemble models to integrate the variation in predictions among the models. Multiple predictors with satellite-based remote sensing data, inverse distance weighted ground-level air pollutants, land use variables, reanalysis datasets for meteorological variables, and regional socioeconmoic variables collected from various databases were included in the prediction model. Results : For O3, the overall R2 of the ensemble model was 0.841 during the entire study period. Urban areas showed a better model performance (R2 = 0.845) than rural areas (R2 = 0.762). For NO2, the highest overall R2 was 0.756, which best fit in autumn (R2 = 0.768). For CO, the overall R2 value was 0.506. This study provides high spatial resolution monthly average O3 and NO2 estimates with excellent performance (R2 > 0.75). Conclusion : The authors predictions can be used to analyze the spatial patterns in pollutants in relation to population characteristics and studies on the health effects of long-term exposure to air pollution using geocode-based health information and local health data.์—ฐ๊ตฌ๋ฐฐ๊ฒฝ : ์˜ค์กด(O3), ์ด์‚ฐํ™”์งˆ์†Œ(NO2), ์ผ์‚ฐํ™”ํƒ„์†Œ(CO)์— ์žฅ๊ธฐ๊ฐ„ ๋…ธ์ถœ๋˜๋ฉด ๊ฐ์ข… ์งˆ๋ณ‘์„ ์œ ๋ฐœํ•˜๊ณ  ์‚ฌ๋ง๋ฅ ์„ ๋†’์ด๋Š” ๊ฒƒ์œผ๋กœ ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ๊ทธ๋ ‡๊ธฐ์—, ๊ณ ํ•ด์ƒ๋„๋กœ ์ง€ํ‘œ๋ฉด O3, NO2, CO ๋†๋„๋ฅผ ์ถ”์ •ํ•˜๋Š” ๊ฒƒ์€ ์ด๋Ÿฌํ•œ ๋Œ€๊ธฐ์˜ค์—ผ๋ฌผ์งˆ๊ณผ ๊ด€๋ จ๋œ ๊ฑด๊ฐ• ์˜ํ–ฅ์„ ํ‰๊ฐ€ํ•˜๋Š” ๋ฐ ๋งค์šฐ ์ค‘์š”ํ•˜๋‹ค. ํ•˜์ง€๋งŒ, ์žฅ๊ธฐ๊ฐ„์— ๊ฑธ์ณ ๊ณ ํ•ด์ƒ๋„๋กœ ๊ฐ€์Šค์ƒ ๋Œ€๊ธฐ์˜ค์—ผ๋ฌผ์งˆ(O3, NO2, CO)๋ฅผ ์ถ”์ •ํ•œ ์—ฐ๊ตฌ๋Š” ๊ตญ๋‚ด์—์„œ ์•„์ง ์ง„ํ–‰๋œ ๋ฐ”๊ฐ€ ์—†๋‹ค. ๋”ฐ๋ผ์„œ, ๋ณธ ์—ฐ๊ตฌ๋Š” 2002๋…„๋ถ€ํ„ฐ 2020๋…„๊นŒ์ง€ ๋Œ€ํ•œ๋ฏผ๊ตญ ์ „์—ญ์—์„œ 1km ร— 1km์˜ ๊ณต๊ฐ„ํ•ด์ƒ๋„๋กœ ์›”๋ณ„ O3(์ผํ‰๊ท  8์‹œ๊ฐ„ ์ตœ๋Œ€์น˜), NO2, CO๋ฅผ ๋จธ์‹ ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ๋ชจ๋ธ ๋ฐ ๊ทธ๋“ค์˜ ์•™์ƒ๋ธ” ๋ชจํ˜•์„ ํ†ตํ•ด ์˜ˆ์ธกํ•˜๊ณ ์ž ํ•œ๋‹ค. ์—ฐ๊ตฌ๋ฐฉ๋ฒ• : 3๊ฐ€์ง€ ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ(๋žœ๋ค ํฌ๋ ˆ์ŠคํŠธ, ๋ผ์ดํŠธ ๊ทธ๋ž˜๋””์–ธํŠธ ๋ถ€์ŠคํŒ…, ์‹ ๊ฒฝ๋ง)์˜ ์ตœ์ ์˜ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ฐพ๊ธฐ ์œ„ํ•ด ๋ชจ๋‹ˆํ„ฐ๋ง ์Šคํ…Œ์ด์…˜์˜ ์•ฝ 80%๋ฅผ ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ๋กœ ์‚ฌ์šฉํ•˜์˜€๊ณ , 10-fold ๊ต์ฐจ๊ฒ€์ฆ์„ ํ†ตํ•ด ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ ๋‚ด์—์„œ ํ›ˆ๋ จ/ํ‰๊ฐ€ ๋‹จ๊ณ„๋ฅผ ๊ฑฐ์ณค์œผ๋ฉฐ, ๋‚˜๋จธ์ง€ ๋ชจ๋‹ˆํ„ฐ๋ง ์Šคํ…Œ์ด์…˜์˜ 20%๋ฅผ ๋ชจ๋ธ ํ‰๊ฐ€์— ์‚ฌ์šฉํ•˜์˜€๋‹ค. ์—ฌ๊ธฐ์— ์ถ”๊ฐ€๋กœ ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ ๊ฐ„์˜ ์˜ˆ์ธก ๋ณ€๋™์„ ํ†ตํ•ฉํ•˜๊ธฐ ์œ„ํ•ด ์•™์ƒ๋ธ” ๋ชจ๋ธ์„ ์ ์šฉํ–ˆ๋‹ค. ๋ฐ์ดํ„ฐ์—๋Š” ์œ„์„ฑ ๊ธฐ๋ฐ˜ ์›๊ฒฉ ๊ฐ์ง€ ๋ฐ์ดํ„ฐ, ์—ญ๊ฑฐ๋ฆฌ ๊ฐ€์ค‘์น˜ ๊ธฐ๋ฐ˜ ๋Œ€๊ธฐ์˜ค์—ผ๋†๋„, ํ† ์ง€ ์ด์šฉ ๋ณ€์ˆ˜, ๊ธฐ์ƒ ์žฌ๋ถ„์„ ์ž๋ฃŒ, ๋‹ค์–‘ํ•œ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค์—์„œ ์ˆ˜์ง‘๋œ ์ง€์—ญ ์‚ฌํšŒ๊ฒฝ์ œ์  ๋ณ€์ˆ˜ ๋“ฑ์ด ํฌํ•จ๋˜์—ˆ๋‹ค. ์—ฐ๊ตฌ๊ฒฐ๊ณผ : O3์˜ ๊ฒฝ์šฐ, ์ „์ฒด ์—ฐ๊ตฌ ๊ธฐ๊ฐ„ ๋™์•ˆ ์•™์ƒ๋ธ” ๋ชจ๋ธ์˜ R2๊ฐ€ 0.841์„ ๊ธฐ๋กํ–ˆ์œผ๋ฉฐ, ๋„์‹œ ์ง€์—ญ์ด ๋†์ดŒ ์ง€์—ญ(R2 = 0.762)๋ณด๋‹ค ์šฐ์ˆ˜ํ•œ ์˜ˆ์ธก ์„ฑ๋Šฅ(R2 = 0.845)์„ ๋ณด์˜€๋‹ค. NO2์˜ ๊ฒฝ์šฐ, ์•™์ƒ๋ธ”(ํ‰๊ท ) ๋ชจ๋ธ์˜ R2๊ฐ€ 0.756์œผ๋กœ ๊ฐ€์žฅ ๋†’์•˜์œผ๋ฉฐ, ๊ณ„์ ˆ๋กœ ๋ณด๋ฉด ๊ฐ€์„์— ์˜ˆ์ธก ์„ฑ๋Šฅ์ด ๊ฐ€์žฅ ๋†’์•˜๋‹ค(R2 = 0.768). CO์˜ ๊ฒฝ์šฐ, R2๊ฐ€ 0.506 ์„ ๊ธฐ๋กํ–ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” O3 ๋ฐ NO2 ์—์„œ R2 > 0.75 ์œผ๋กœ ๋†’์€ ์˜ˆ์ธก๋ ฅ์˜ ๊ณ ํ•ด์ƒ๋„ ์›”ํ‰๊ท  ์ถ”์ •์น˜๋ฅผ ์ œ๊ณตํ•œ๋‹ค. ๊ฒฐ๋ก  : ๋ณธ ์—ฐ๊ตฌ์—์„œ ์–ป์–ด์ง„ ๋Œ€๊ธฐ์˜ค์—ผ ์ถ”์ • ๊ฒฐ๊ณผ๋Š” ์ธ๊ตฌ ํŠน์„ฑ๊ณผ ๊ด€๋ จ๋œ ๊ฐ€์Šค์ƒ ๋Œ€๊ธฐ์˜ค์—ผ๋ฌผ์งˆ์˜ ๊ณต๊ฐ„ ํŒจํ„ด์„ ๋ถ„์„ํ•˜๊ฑฐ๋‚˜, ์œ„์น˜ ๊ธฐ๋ฐ˜ ๊ฑด๊ฐ• ์ •๋ณด์™€ ํ–‰์ •๊ตฌ์—ญ ๋‹จ์œ„ ๊ฑด๊ฐ• ๋ฐ์ดํ„ฐ์™€ ์—ฎ์—ฌ์„œ ์žฅ๊ธฐ๊ฐ„ ๋Œ€๊ธฐ์˜ค์—ผ ๋…ธ์ถœ์˜ ๊ฑด๊ฐ• ์˜ํ–ฅ์„ ํ‰๊ฐ€ํ•˜๋Š” ์—ฐ๊ตฌ์— ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค.Chapter 1. Introduction 1 Chapter 2. Materials and Methods 6 2.1. Study area 6 2.2. Air pollution monitoring data 6 2.3. Satellite-based remote sensing data 7 2.3.1. Meteorological data 7 2.3.2. Land-use data 10 2.3.3. Surface reflectance 11 2.4. Regional socioeconomic predictors 12 2.5. Modeling procedures 13 2.5.1. Data Preprocessing 14 2.5.2. Machine learning-based model 15 2.5.3. Ensemble Model 16 2.5.4. Model Prediction 17 Chapter 3. Results 19 Chapter 4. Discussion 29 Chapter 5. Conclusion 34 Supplementary materials 47 ๊ตญ๋ฌธ ์ดˆ๋ก 82 Tables Table 1. Model performance for O3, NO2, and CO overall and in three- and four-year periods 21 Table S1. Detailed information about data sources 61 Table S2. Variables sorted by % missing values 65 Table S3. Results of parameter grid search using 10-fold cross-validation for O3, NO2 and CO 68 Table S4. Yearly ensemble (GAM) performance for O3, NO2, and CO 70 Table S5. Model performances for O3, NO2, and CO by season and urbanity 71 Table S6. Number of monitoring stations by year for O3, NO2 and CO in urban and rural areas 73 Figures Fig. 1. Flowchart of the modeling process. GEE: Google Earth Engine, SEDAC: Socioeconomic Data and Applications Center, RSD: Regional Socioeconomic Database from Korean Disease Control and Prevention Agency 18 Fig. 2. Density scatter plot for monthly averages of the monitored and predicted concentrations of O3, NO2, and CO 26 Fig. 3. Maps of monitored and predicted O3, NO2 and CO during 2002~2020 27 Fig. 4. Percentage decrease in R2 when excluding grouped variables from each machine learning model of O3, NO2, and CO. The closer the color is to red, the greater the effect of the variables on the model performance 28 Fig. S1. Urban/Rural and Metropolitan (Metro) area for entire contiguous regions of South Korea 74 Fig. S2. Distribution maps of predicted O3 (ppb) by year and season for contiguous South Korea 75 Fig. S3. Distribution maps of predicted NO2 (ppb) by year and season for contiguous South Korea 76 Fig. S4. Distribution maps of predicted CO (ppm) by year and season for contiguous South Korea 77 Fig. S5. Monthly fluctuations in the number of monitoring stations for O3, NO2, and CO between 2002 and 2020 78 Fig. S6. Density scatter plot for monthly averages of the monitored and predicted concentrations of O3, NO2, and CO with seasonal discrimination 79์„

    Analysis of Factors influencing Berthing Velocity of Ship using Machine Learning Prediction Algorithm

    Get PDF
    ์„ ๋ฐ•์ด ํ•ญ๋งŒยท๋ถ€๋‘์‹œ์„ค์— ์ ‘์•ˆํ•  ๋•Œ ์„ ๋ฐ•์šดํ•ญ์ž ๋ฐ ํ•ญ๋งŒ๊ด€๋ฆฌ์ž๋Š” ์„ ๋ฐ•์˜ ์ ‘์•ˆ์—๋„ˆ์ง€๋ฅผ ๊ณ ๋ คํ•ด์•ผํ•œ๋‹ค. ์„ ๋ฐ•์€ ํ•ญ๋งŒ์‹œ์„ค์˜ ํ—ˆ์šฉ ์ ‘์•ˆ์—๋„ˆ์ง€ ์ด๋‚ด๋กœ ์ ‘์•ˆํ•ด์•ผ ์„ ์ฒด๋ฅผ ๋ณดํ˜ธํ•˜๊ณ  ํ•ญ๋งŒ์‹œ์„ค์˜ ํŒŒ์†์„ ์˜ˆ๋ฐฉํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘์•ˆ์—๋„ˆ์ง€์— ๊ฐ€์žฅ ํฐ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์š”์†Œ๋Š” ์ ‘์•ˆ์†๋„๋กœ์„œ ์„ ๋ฐ•์€ ์ ์ • ์ ‘์•ˆ์†๋„๋ฅผ ์œ ์ง€ํ•˜๋ฉฐ ์ ‘์•ˆํ•˜๋Š” ๊ฒƒ์ด ๋งค์šฐ ์ค‘์š”ํ•˜๋‹ค. ์„ ๋ฐ• ์ ‘์•ˆ์†๋„๋Š” ๋‚ ์”จ, ํ•ญ๋งŒ์˜ ์œ„์น˜, ์„ ๋ฐ•์˜ ์ข…๋ฅ˜, ์ธ์ ์š”์ธ ๋“ฑ ๋‹ค์–‘ํ•œ ์š”์ธ๋“ค์˜ ์˜ํ–ฅ์„ ๋ฐ›์•„ ๊ฒฐ์ •๋œ๋‹ค. ํ•˜์ง€๋งŒ ๊ทธ๋™์•ˆ ์—ฐ๊ตฌ ๋ฐ ๋ถ„์„๋˜์—ˆ๋˜ ๊ตญ๋‚ด์™ธ ์ ‘์•ˆ์†๋„ ๊ธฐ์ค€์€ ์ˆ˜์ง‘๋œ ์„ ๋ฐ• ์ ‘์•ˆ๋ฐ์ดํ„ฐ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์„ ๋ฐ•์˜ ํฌ๊ธฐ๋งŒ์„ ๊ณ ๋ คํ•˜์—ฌ ์ ์ • ์ ‘์•ˆ์†๋„๋ฅผ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋˜ํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ†ต๊ณ„์  ๊ธฐ๋ฒ•๋งŒ์„ ํ™œ์šฉํ•œ ๋ถ„์„๊ฒฐ๊ณผ๋ฅผ ์ œ์‹œํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์„ ๋ฐ• ์ ‘์•ˆ์†๋„ ๋ฐ์ดํ„ฐ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ํ†ต๊ณ„์  ๊ธฐ๋ฒ•๋งŒ์ด ์•„๋‹Œ ๋น…๋ฐ์ดํ„ฐ ๋ถ„์„ ์ค‘ ํ•˜๋‚˜์ธ ๋จธ์‹ ๋Ÿฌ๋‹ ๊ธฐ๋ฒ•์„ ํ™œ์šฉํ•˜๊ณ ์ž ํ•œ๋‹ค. ๋น…๋ฐ์ดํ„ฐ ๋ถ„์„์€ ๋‹ค์–‘ํ•œ ๋ณ€์ˆ˜๋ฅผ ์ข…ํ•ฉ์ ์œผ๋กœ ๋ถ„์„ํ•˜์—ฌ ๋ฏธ๋ž˜๋ฅผ ์˜ˆ์ธกํ•˜๊ณ  ์˜์‚ฌ๊ฒฐ์ •์„ ํ•˜๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ์„œ ์„ ๋ฐ• ์ ‘์•ˆ์†๋„์˜ ๋‹ค์–‘ํ•œ ์˜ํ–ฅ์š”์†Œ๋ฅผ ๋ชจ๋‘ ํ™œ์šฉํ•˜์—ฌ ๋ถ„์„ํ•˜๊ณ  ์˜ˆ์ธก์„ ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ์„ ๋ฐ•์šดํ•ญ์ž๋Š” ์ ‘์•ˆ ์‹œ ์ ์ • ์ ‘์•ˆ์†๋„๋ฅผ ์˜ˆ์ธกํ•˜์—ฌ ์‚ฌ๊ณ  ์˜ˆ๋ฐฉ์„ ํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ํ•ญ๋งŒ๊ด€๋ฆฌ์ž ์ž…์žฅ์—์„œ๋Š” ์•ˆ์ „ ๊ด€๋ฆฌ์— ์ฐธ๊ณ ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ตญ๋‚ด์˜ ํ•œ ํƒฑ์ปค๋ถ€๋‘์—์„œ ์„ ๋ฐ• ์ ‘์•ˆ ๋ณด์กฐ ์žฅ์น˜๋ฅผ ํ†ตํ•ด ์•ฝ 17๊ฐœ์›”(2017.03. ~ 2018.07.) ๊ฐ„ ์ˆ˜์ง‘ํ•œ 206๊ฐœ์˜ ์‹ค์ธก๋ฐ์ดํ„ฐ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๋จธ์‹ ๋Ÿฌ๋‹ ๊ธฐ๋ฒ•์„ ์ ์šฉํ•˜์—ฌ ์˜ˆ์ธก๋ชจ๋ธ์„ ๊ตฌ์ถ•ํ•˜๊ณ ์ž ํ•œ๋‹ค. ์ˆ˜์ง‘ํ•œ ์‹ค์ธก๋ฐ์ดํ„ฐ์—์„œ ๋ถ„์„์— ํ•„์š”ํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ์„ ๋ณ„ํ•˜์—ฌ ๋…๋ฆฝ๋ณ€์ˆ˜์™€ ์ข…์†๋ณ€์ˆ˜๋ฅผ ์„ ์ •ํ•˜๊ณ  ์ƒ๊ด€๊ด€๊ณ„ ๋ถ„์„ ๋ฐ ๊ต์ฐจ๋ถ„์„์„ ํ†ตํ•ด ์œ ์˜๋ฏธํ•œ ๋ณ€์ˆ˜๋ฅผ ์ฑ„ํƒํ•˜์˜€๋‹ค. ๋จธ์‹ ๋Ÿฌ๋‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜์œผ๋กœ๋Š” ์˜์‚ฌ๊ฒฐ์ •๋‚˜๋ฌด(Decision Tree), ๋žœ๋คํฌ๋ ˆ์ŠคํŠธ(Random Forest), ๋กœ์ง€์Šคํ‹ฑ ํšŒ๊ท€๋ถ„์„(Logistic Regression), ์ธ๊ณต์‹ ๊ฒฝ๋ง(Artificial Neural Network)์„ ํ™œ์šฉํ•˜์˜€๋‹ค. ์˜ˆ์ธก๋ชจ๋ธ์˜ ์˜ˆ์ธก์ •ํ™•๋„ ๊ฒ€์ฆ์„ ์œ„ํ•œ ๋ฐฉ์‹์œผ๋กœ๋Š” Hold-Out ๋ฐฉ์‹์„ ์ฑ„ํƒํ•˜์˜€์œผ๋ฉฐ Train data set๊ณผ Test data set์„ 7:3์œผ๋กœ ๋ถ„๋ฆฌํ•˜์˜€๋‹ค. Train data set์„ ํ†ตํ•ด ๊ตฌ์ถ•๋œ ์˜ˆ์ธก๋ชจ๋ธ์€ Test data set์„ ์ด์šฉํ•˜์—ฌ ํ˜ผ๋™ํ–‰๋ ฌ์— ๋”ฐ๋ฅธ ์ง€ํ‘œ์™€ ROC ๊ณก์„ ์œผ๋กœ ์„ฑ๋Šฅ์„ ๋น„๊ตํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, ๋žœ๋คํฌ๋ ˆ์ŠคํŠธ๊ฐ€ ๊ฐ€์žฅ ์ข‹์€ ์„ฑ๋Šฅ์„ ๋ณด์˜€์œผ๋ฉฐ ์˜์‚ฌ๊ฒฐ์ •๋‚˜๋ฌด, ๋กœ์ง€์Šคํ‹ฑ ํšŒ๊ท€๋ถ„์„์ด ๋น„๊ต์  ๋‚ฎ์€ ์„ฑ๋Šฅ์„ ๋ณด์˜€๋‹ค. ์ข‹์€ ์„ฑ๋Šฅ์„ ๋ณด์ธ ๋žœ๋คํฌ๋ ˆ์ŠคํŠธ์— ๋”ฐ๋ฅด๋ฉด ์ ‘์•ˆ์†๋„์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์š”์ธ์€ ํ™”๋ฌผ์˜ ์ ์žฌ์ƒํƒœ, ์„ ๋ฐ•์˜ ์งˆ๋Ÿ‰, ์ ‘์•ˆ ๋ถ€๋‘ ์œ„์น˜, ์ ‘์•ˆ๊ฐ๋„ ์ˆœ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์„ ๋ฐ• ์ ‘์•ˆ์†๋„ ์‹ค์ธก๋ฐ์ดํ„ฐ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๋น…๋ฐ์ดํ„ฐ ๋ถ„์„๋ฐฉ๋ฒ•์ธ ๋จธ์‹ ๋Ÿฌ๋‹ ๊ธฐ๋ฒ•์„ ์ ์šฉํ•˜์˜€๋‹ค. ๋ถ„์„ ๊ฒฐ๊ณผ, ๋น…๋ฐ์ดํ„ฐ ๋ถ„์„๋ฐฉ๋ฒ•์„ ํ†ตํ•˜์—ฌ ์ ‘์•ˆ์†๋„ ์˜ˆ์ธก์ด ๊ฐ€๋Šฅํ•˜๋‹ค๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€์œผ๋ฉฐ, ์ ‘์•ˆ์†๋„์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์š”์ธ์„ ์‹๋ณ„ํ•˜์—ฌ ์„ ๋ฐ•์šดํ•ญ์ž์™€ ํ•ญ๋งŒ๊ด€๋ฆฌ์ž์˜ ์‚ฌ๊ณ  ์˜ˆ๋ฐฉ์—๋„ ๋„์›€์„ ์ค„ ์ˆ˜ ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์„ ๋ฐ• ๋ฐ ํ•ด์šด๋ถ„์•ผ์—์„œ๋„ ๋ฐ์ดํ„ฐ ์ถ•์ ์„ ํ†ตํ•˜์—ฌ ๋น…๋ฐ์ดํ„ฐ์— ๊ธฐ๋ฐ˜ํ•œ ๋จธ์‹ ๋Ÿฌ๋‹, ์ธ๊ณต์ง€๋Šฅ ๋“ฑ์˜ ๊ธฐ๋ฒ•์œผ๋กœ ์˜ˆ์ธก๋ชจ๋ธ, ์˜์‚ฌ๊ฒฐ์ •๋ชจ๋ธ ๋“ฑ์˜ ํ™œ์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ์ œ์‹œํ•˜์˜€๋‹ค. ํ•˜์ง€๋งŒ ๋‹ค์–‘ํ•œ ์„ ์ข… ๋ฐ ๋ถ€๋‘์˜ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘์„ ํ†ตํ•œ ์ถ”๊ฐ€ ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•˜๋ฉฐ, ์ ‘์•ˆ์†๋„์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๋ชจ๋“  ์š”์ธ์„ ๋ถ„์„์— ํ™œ์šฉํ•˜์ง€ ๋ชปํ•œ ํ•œ๊ณ„์ ์„ ๊ฐ€์ง„๋‹ค. ๋˜ํ•œ ์˜ค๋žœ ๊ธฐ๊ฐ„๋™์•ˆ ๋ฐ์ดํ„ฐ๋ฅผ ์ˆ˜์ง‘ํ•˜์—ฌ ๋”์šฑ ์ •ํ™•ํ•œ ์˜ˆ์ธก๋ชจ๋ธ์„ ๊ตฌ์ถ•ํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค.|When a ship is in contact with the dock facilities of the port, the ship operator and the port manager shall consider the ship's berthing energy. Ships must meet within the allowable berthing energy of port facilities to protect the hull and prevent damage to ports facilities. The factor that has the greatest effect on the berthing energy is the berthing velocity, so it is very important for ships to meet and maintain proper berthing velocity. The shipโ€™s berthing velocity is determined by various factors including weather, the location of the port and dock, the type of ships and human factors. However, based on the domestic and overseas berthing velocity criteria that had been studied and analyzed, the proper berthing velocity was proposed based on the collected vessel berthing data, considering only the size of the vessel. In addition, the analysis results using only statistical techniques were presented based on data. In this study, I intend to use machine learning techniques, which are one of big data analyses, not just statistical techniques, based on vessel berthing velocity data, to suggest proper berthing velocity. Big data analysis is a method of comprehensively analyzing various variables to predict the future and make decisions, and it can be analyzed and predicted using all the various factors of ship's berthing velocity. Therefore, the vessel operator can prevent accidents by predicting the appropriate berthing velocity, and from the point of view of the port manager, it can be a safety management standard. In this study, a prediction model was built by applying machine learning techniques based on 206 actual data collected for 17 months from March 2017 to July 2018 through a ship berthing assist device at the local tanker dock. Independent variables and dependent variables were selected by data needed for analysis from the measured data, and significant variables were adopted through correlation analysis and cross analysis. Decision Tree, Random Forest, Logistic Regression, and Artistic Neural Network were used as machine learning algorithms. The Hold-Out method was adopted as a way to verify the accuracy of the prediction model. The Train data set and Test data set were separated by 7:3. Prediction model built through the Train data set was used to compare performance with the indicators according to the Confusion matrix and ROC curve by using the test data set. As a result, random forest performed best and decision trees and logistic regression performed relatively low. According to Random Forest, which showed good performance, factors affecting the berthing velocity were shown in order of the loading condition of the cargo, tonnage of the ship, location of the jetty and approach angle of the vessel. In this study, the machine learning technique, which is a big data analysis method, was applied based on actual data of the vessel's berthing velocity. As a result of the analysis, it was confirmed that the berthing velocity prediction is possible through the analysis of big data, and that the factors affecting the berthing velocity could be identified to help prevent accidents for ship operators, port and dock managers. Through this study, it was shown that it is possible to utilize prediction model and decision-making model in the field of ship and marine transportation by using machine learning and artificial intelligence based on big data. However, further research is needed through data collection at various types of vessel and docks, and all factors affecting the berthing velocity have not been utilized in the analysis. It also needs to collect data over a long period of time to build more accurate prediction models.1. ์„œ ๋ก  1 1.1 ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉ์  1 1.2 ์—ฐ๊ตฌ ๋ฐฉ๋ฒ• 3 2. ์„ ๋ฐ• ์ ‘์•ˆ์—๋„ˆ์ง€ 5 2.1 ์ ‘์•ˆ์—๋„ˆ์ง€ 5 2.1.1 ์ ‘์•ˆ์—๋„ˆ์ง€ ์‚ฐ์ • 5 2.1.2 ์ ‘์•ˆ์—๋„ˆ์ง€ ์˜ํ–ฅ์š”์ธ ๋ถ„์„ 6 2.2 ์ ‘์•ˆ์†๋„ 10 2.2.1 PIANC 11 2.2.2 ๊ตญ๋‚ด์™ธ ์ ‘์•ˆ์†๋„ ๊ธฐ์ค€ ๋ฐ ์—ฐ๊ตฌ์‚ฌ๋ก€ 16 3. ๋น…๋ฐ์ดํ„ฐ์™€ ๋จธ์‹ ๋Ÿฌ๋‹ 21 3.1 ๋น…๋ฐ์ดํ„ฐ 21 3.2 ๋จธ์‹ ๋Ÿฌ๋‹ 25 3.3 ์˜์‚ฌ๊ฒฐ์ •๋‚˜๋ฌด 32 3.4 ๋žœ๋คํฌ๋ ˆ์ŠคํŠธ 35 3.5 ๋กœ์ง€์Šคํ‹ฑํšŒ๊ท€ 38 3.6 ์ธ๊ณต์‹ ๊ฒฝ๋ง 40 4. ์‹ค์ธก ๋ฐ์ดํ„ฐ ๋ถ„์„ 43 4.1 ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ ๋ฐ ์„ ์ • 43 4.1.1 ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ 43 4.1.2 ๋ฐ์ดํ„ฐ ์„ ์ • 46 4.2 ๊ธฐ์ดˆ ๋ฐ์ดํ„ฐ ๋ถ„์„ 53 4.2.1 ๋ฒ”์ฃผํ˜• ๋ณ€์ˆ˜ 53 4.2.2 ์—ฐ์†ํ˜• ๋ณ€์ˆ˜ 62 4.3 ์—ฐ๊ด€์„ฑ๋ถ„์„ 66 4.3.1 ์ƒ๊ด€๋ถ„์„ 66 4.3.2 ๊ต์ฐจ๋ถ„์„ 69 4.3.3 ๋ณ€์ˆ˜์ฑ„ํƒ 71 4.4 ๋‹ค์ค‘์„ ํ˜•ํšŒ๊ท€ 72 5. ์˜ˆ์ธก๋ชจ๋ธ ์•Œ๊ณ ๋ฆฌ์ฆ˜ 77 5.1 ๊ฐœ์š” 77 5.2 ์ ‘์•ˆ์†๋„ ์˜ˆ์ธก๋ชจ๋ธ 81 5.2.1 ์˜์‚ฌ๊ฒฐ์ •๋‚˜๋ฌด 81 5.2.2 ๋žœ๋คํฌ๋ ˆ์ŠคํŠธ 83 5.2.3 ๋กœ์ง€์Šคํ‹ฑํšŒ๊ท€ 85 5.2.4 ์ธ๊ณต์‹ ๊ฒฝ๋ง 86 5.3 ์˜ˆ์ธก๋ชจ๋ธ ์„ฑ๋Šฅ๋น„๊ต 90 5.3.1 ํ˜ผ๋™ ํ–‰๋ ฌ 90 5.3.2 ROC ๊ณก์„  94 5.4 ์ตœ์ข…๋ชจ๋ธ ์„ ํƒ ๋ฐ ์˜ํ–ฅ์š”์ธ ๋ถ„์„ 96 6. ๊ฒฐ๋ก  ๋ฐ ํ–ฅํ›„๊ณผ์ œ 98 6.1 ๊ฒฐ๋ก  ๋ฐ ํ–ฅํ›„๊ณผ์ œ 98 ์ฐธ๊ณ ๋ฌธํ—Œ 101Maste

    ์„œ์šธ์ˆฒ๊ณต์›๊ณผ ์†Œ๋ž˜์ƒํƒœ๊ณต์› ์‚ฌ๋ก€๋ฅผ ์ค‘์‹ฌ์œผ๋กœ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ํ™˜๊ฒฝ๋Œ€ํ•™์› ํ˜‘๋™๊ณผ์ • ์กฐ๊ฒฝํ•™, 2023. 2. ์กฐ๊ฒฝ์ง„.A smart park is a new concept defined as a park that achieves substantial value using environment-related advanced digital technologies. In other words, the purpose of smart parks is to promote effective operation and maintenance by grafting ICT technology and to enhance user convenience through environmental improvement. In this study, the smart park is assumed to be a space for improving the environment in relation to climate change. For this purpose, the Internet of Things (IoT) artificial intelligence model was tested to find a suitable application direction in the future. Global climate change is leading various efforts to reduce carbon emissions around the world. Among the various functions of urban parks in this era of the climate crisis, heat disaster prevention and reduction of carbon dioxide and fine dust are particularly important. Therefore, to consider the response to climate change as one of the functions of urban parks, previous studies were reviewed. To analyze the effects, IoT equipment was manufactured and installed, and data were acquired over a specific period. Finally, conclusions were drawn through experiments and analyses with the following two research objectives. First, data such as temperature, air quality, and the amount of walking by visitors in Seoul Forest Park were collected for about 9 months. The number of people who visited the park was counted and set as a target. The correlation between each environmental factor was analyzed using artificial intelligence. Regression analysis was performed with various modeling algorithms. We focused on the environmental factors (and their patterns) that showed a high correlation with the number of people counted through a voting ensemble, which exhibited the best performance among the modeling methods. As a result, feature importance was determined for six environmental data factors: temperature, hour, humidity, month, working day, and fine dust (PM). Feature importance was measured as the factor that had the greatest influence on the prediction of the number of people counted. As an evaluation index, the closer the coefficient of determination (R2) is to 1, the better the evaluation of the AI โ€‹โ€‹model. The voting ensemble, which had the highest model evaluation index, yielded the highest R2 (0.72). XGBoostRegressor, LightGBM, and RandomForestRegressor produced R2 values of 0.70, 0.69, and 0.53, respectively. Therefore, the voting ensemble model could be considered the optimal algorithm through the evaluation of the AI โ€‹-learning model. In the future, it is expected that the voting ensemble machine-learning model identified in this study will be used for quantitative prediction of the number of people counted by using environmental data as a management function of the smart park. Second, this study collected and used heatwave environmental data from the reed forest and salt wetland of Sorae Ecological Park in Incheon. These data were compared with environmental data such as temperature and humidity collected from the POGURO crossroad, an urban area. In doing so, the factors affecting the amount of carbon dioxide generated and differences according to the site were analyzed. As a result, the carbon dioxide emissions at the POGURO crossroad were measured to be 40 ppm on average and were up to 60 ppm higher than those at the salt wetland of Sorae Ecological Park. The temperature at the POGURO crossroad was constant and was about 1.5 โ„ƒ higher regardless of the time and date. Regarding ultrafine dust (PM 2.5), the POGURO crossroad, located in the city center, measured a value about 3ใŽ/m3 higher than that of the average reed forest and 4ใŽ/m3 higher than that of the salt wetland. Likewise, for fine dust, the POGURO crossroad showed a value about 3.5ใŽ/m3 higher than that of the average reed forest, and the 4ใŽ/m3 difference compared to the salt wetland remained. To analyze the correlation between environmental data and carbon dioxide generation in response to climate change, an AutoML machine learning model was used. By comparing the prediction performance of each machine learning algorithm through artificial intelligence analysis and identifying the highly correlated environmental factors analyzed through the stacking ensemble, which showed the optimal results. Comparative analysis by regression modeling was performed by dividing the obtained data by those of the the patterns of salt marsh reed forestand POGURO crossroad. As a result, in the salt marsh, the amount of carbon dioxide generated was estimated by six factors in descending order: temperature (sr_salty_temp), gusts (sr_salty_wind_gust), humidity (sr_salty_humi), atmospheric pressure (sr_salty_pressure), ultrafine dust (sr_salty_pm2.5), and time (hour). The R2 corresponding to the stacking ensemble was the highest (0.90). XGBoostRegressor, LightGBM, and RandomForestRegressor yielded R2 values of 0.88, 0.88, and 0.66, respectively. Through evaluation of the AI learning model, it was possible to identify the optimal algorithm. In the reed forest, the six factors of humidity (sr_galdae_humi), gust (sr_galdae_wind gust), atmospheric pressure (sr_galdae_pressure), wind direction (sr_galdae_wind direction), time (hour), and temperature (sr_galdae_temp) had the greatest effect on carbon dioxide generation in descending order. The R2 of the applied stacking ensemble was the highest (0.918), followed by those of the XGBoostRegressor (0.915), LightGBM (0.89), and RandomForestRegressor (0.80). Because of the limitations for installing environmental sensors in the downtown area (POGURO crossroad), data from some reed forests were used instead. As a result, the reed forest wind direction (sr_galdae_wind direction), temperature (sr_pg4_temp), fine dust at the POGURO crossroad (sr_pg4_pm10), solar illumination in the reed forest (sr_galdae_solar), humidity at the POGURO crossroad (sr_pg4_humi), and wind speed in the reed forest (sr_galdae_wind speed) were the six factors that had the greatest effect on carbon dioxide generation. Again, the R2 of the applied stacking ensemble was the highest (0.85), followed by the XGBoostRegressor (0.83), LightGBM (0.79), and RandomForestRegressor (0.52). Therefore, we expect that the optimal stacking ensemble machine-learning model identified in this study can be used for the quantitative prediction of carbon dioxide generation. This in turn could be useful for emission reduction measures based on environmental data, which could become a disaster prevention function for smart parks in the future. Through this study, the economic benefit of an IoT method based on sensing environmental data was proposed. An optimal artificial intelligence machine-learning model was designed so that existing parks could be easily transformed into smart parks, which will make it possible to provide optimal service through the accurate prediction of the number of visitors, counted according to environmental variables. This is expected to give new value to urban parks by strengthening the disaster prevention functions of smart parks, including carbon reduction and heatwave prevention.์Šค๋งˆํŠธ๊ณต์›์€ ํ™˜๊ฒฝ ๊ด€๋ จ ๋””์ง€ํ„ธ ์ฒจ๋‹จ๊ธฐ์ˆ ์„ ์‚ฌ์šฉํ•˜์—ฌ ์ผ๋ จ์˜ ๊ฐ€์น˜๋ฅผ ๋‹ฌ์„ฑํ•˜๋Š” ๊ณต์›์œผ๋กœ ์ •์˜๋œ ์ƒˆ๋กœ์šด ๊ฐœ๋…์ด๋‹ค. ์ฆ‰, ์Šค๋งˆํŠธ๊ณต์›์˜ ๋ชฉ์ ์€ ๊ธฐ์กด์˜ ๋„์‹œ๊ณต์›์— ICT ๊ธฐ์ˆ  ๋“ฑ์„ ์ ‘๋ชฉํ•˜์—ฌ, ํšจ๊ณผ์ ์ธ ์šด์˜ยท์œ ์ง€๋ฅผ ๋„๋ชจํ•˜๊ณ  ํ™˜๊ฒฝ ๊ฐœ์„ ์„ ํ†ตํ•œ ์‚ฌ์šฉ์ž์˜ ํŽธ์˜๋ฅผ ์ฆ์ง„ ํ•˜๋Š” ๋ฐ ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ธฐํ›„๋ณ€ํ™”์™€ ๊ด€๋ จ, ๋Œ€๊ธฐํ™˜๊ฒฝ์„ ๊ฐœ์„ ํ•˜๋Š” ๊ณต๊ฐ„์œผ๋กœ ์Šค๋งˆํŠธ๊ณต์›์˜ ๊ธฐ๋Šฅ์„ ์ƒ์ •ํ•˜๊ณ , ์ด๋ฅผ ์œ„ํ•ด IoT ๊ธฐ์ˆ  ๊ธฐ๋ฐ˜ ์ธ๊ณต์ง€๋Šฅ ๋ชจ๋ธ์„ ๋น„๊ตํ•˜์—ฌ, ํ–ฅํ›„ ์ ์ •ํ•˜๊ฒŒ ์ ์šฉ ๊ฐ€๋Šฅํ•œ ๋ฐฉํ–ฅ์„ ๋ชจ์ƒ‰ํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ํ•œํŽธ ํ˜„ ์‹œ๋Œ€๋Š” ํƒ„์†Œ์ €๊ฐ, ์ด์ƒ๊ธฐํ›„, ์ง€๊ตฌ์˜จ๋‚œํ™” ๋“ฑ์˜ ๋ฌธ์ œ๋กœ ์ด๋ฅธ๋ฐ” ๊ธฐํ›„๋ณ€ํ™” ์‹œ๋Œ€๋กœ ์ง€์นญ๋˜๊ณ  ์ธ์‹๋˜๊ณ  ์žˆ๋‹ค. ์ด์— ๋”ฐ๋ผ ๊ทธ ์›์ธ์œผ๋กœ ์ง€๋ชฉ๋˜๋Š” ํƒ„์†Œ ๋ฐฐ์ถœ๋Ÿ‰์˜ ์ €๊ฐ์ด ์ค‘์š”ํ•œ ๊ณผ์ œ๋กœ ์ธ์‹๋˜๊ณ  ์žˆ์œผ๋ฉฐ, ์ „ ์„ธ๊ณ„์ ์œผ๋กœ ํƒ„์†Œ ์ €๊ฐ์„ ์œ„ํ•œ ๋‹ค์–‘ํ•œ ์‹œ๋„๋“ค์ด ์ด์–ด์ง€๊ณ  ์žˆ๋‹ค. ๊ธฐํ›„ ์œ„๊ธฐ ์‹œ๋Œ€ ๋„์‹œ๊ณต์›์˜ ์—ฌ๋Ÿฌ ๊ฐ€์ง€ ๊ธฐ๋Šฅ ์ค‘์—์„œ, ๊ธฐํ›„๋ณ€ํ™”๋Œ€์‘ ์ค‘ ํญ์—ผ๋ฐฉ์žฌ ๋ฐ ์ด์‚ฐํ™”ํƒ„์†Œ์™€ ๋ฏธ์„ธ๋จผ์ง€ ์ €๊ฐ ๊ธฐ๋Šฅ์€ ๋งค์šฐ ์ค‘์š”ํ•œ ์š”์†Œ๋กœ ์ž๋ฆฌ์žก๊ณ  ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ, ๋„์‹œ๊ณต์›์˜ ๊ธฐ๋Šฅ ์ค‘ ๊ธฐํ›„๋ณ€ํ™”๋Œ€์‘์— ๋Œ€ํ•œ ๋ถ€๋ถ„์„ ๊ณ ์ฐฐํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์„ ํ–‰์—ฐ๊ตฌ๋ฅผ ์‚ดํŽด๋ณด๊ณ , ํšจ๊ณผ๋ฅผ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์‹ค์ œ IoT ์žฅ๋น„๋ฅผ ์ œ์ž‘ํ•˜์—ฌ ์„ค์น˜ํ•˜๊ณ , ๋ฐ์ดํ„ฐ๋ฅผ ํŠน์ • ๊ธฐ๊ฐ„์— ๊ฑธ์ณ ์ทจ๋“ํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๋‘ ๊ฐ€์ง€ ์—ฐ๊ตฌ๋ชฉ์ ์„ ๊ฐ€์ง€๊ณ  ์‹คํ—˜๊ณผ ๋ถ„์„์„ ํ•˜์—ฌ ๊ฒฐ๋ก ์„ ๋„์ถœํ•˜์˜€๋‹ค. ์ฒซ์งธ, ์„œ์šธ์ˆฒ ๊ณต์›์˜ ๊ธฐ์˜จ ๋ฐ ๊ณต๊ธฐ์งˆ ๋“ฑ์˜ ํ™˜๊ฒฝ ์š”์†Œ์™€ ๋ณดํ–‰๋Ÿ‰์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์•ฝ 9๊ฐœ์›”์˜ ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ๋กœ ์ˆ˜์ง‘ํ•˜๊ณ , ๋ณดํ–‰๋Ÿ‰์„ ๋ชฉํ‘œ(target)๋กœ ํ•œ ํ›„, ๊ฐ ํ™˜๊ฒฝ ์š”์†Œ์˜ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ์ธ๊ณต์ง€๋Šฅ์„ ํ™œ์šฉํ•˜์—ฌ ๋‹ค์ˆ˜์˜ ๋ชจ๋ธ๋ง ์•Œ๊ณ ๋ฆฌ์ฆ˜์œผ๋กœ ํšŒ๊ท€๋ถ„์„์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๋ชจ๋ธ๋ง ๋ฐฉ๋ฒ• ์ค‘ ๊ฐ€์žฅ ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์ธ Voting Ensemble์„ ํ†ตํ•ด์„œ ๋ถ„์„๋œ ๋ณดํ–‰๋Ÿ‰๊ณผ ์ƒ๊ด€๊ด€๊ณ„๊ฐ€ ๋†’์€ ํ™˜๊ฒฝ ์š”์†Œ์™€ ๊ทธ์˜ ํŒจํ„ด์„ ์‚ดํŽด๋ณด์•˜๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, ์˜จ๋„(temperature), ์‹œ๊ฐ„(hour), ์Šต๋„(humidity), ์›”(month), ํ‰์ผ(working day), ๋ฏธ์„ธ๋จผ์ง€(pm)์˜ 6๊ฐœ ํ™˜๊ฒฝ ๋ฐ์ดํ„ฐ ์ธ์ž์˜ ์ˆœ์„œ๋กœ ํŠน์ง•์ค‘์š”๋„(feature importance)๊ฐ€ ๋ณดํ–‰๋Ÿ‰ ์˜ˆ์ธก์— ๊ฐ€์žฅ ํฐ ์˜ํ–ฅ์„ ์ฃผ๋Š” ์ธ์ž๋กœ ์ธก์ •์ด ๋˜์—ˆ๋‹ค. ํ‰๊ฐ€์ง€ํ‘œ๋กœ๋Š” ๊ฒฐ์ •๊ณ„์ˆ˜์ธ ์ด 1์— ๊ฐ€๊นŒ์šธ์ˆ˜๋ก ์ธ๊ณต์ง€๋Šฅ ๋ชจ๋ธ์ด ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์ธ๋‹ค๊ณ  ํ‰๊ฐ€๋˜๋Š”๋ฐ, ๊ฐ€์žฅ ๋ชจ๋ธ ํ‰๊ฐ€์ง€์ˆ˜๊ฐ€ ๋†’์€ ๊ฒƒ์œผ๋กœ ํ‰๊ฐ€๋œ Voting Ensemble์˜ ๊ฒฝ์šฐ ๊ฒฐ์ •๊ณ„์ˆ˜์ธ ์ด 0.72๋กœ ๊ฐ€์žฅ ์šฐ์ˆ˜ํ•œ ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ์œผ๋ฉฐ, XGBoostRegressor๊ฐ€ 0.70, LightGBM์ด 0.69, RandomForestRegressor๊ฐ€ 0.53 ์ˆœ์œผ๋กœ ๋„์ถœ๋˜์–ด ์ธ๊ณต์ง€๋Šฅ ํ•™์Šต๋ชจ๋ธ์— ๋Œ€ํ•œ ํ‰๊ฐ€๋ฅผ ํ†ตํ•ด์„œ Voting Ensemble ๋ชจ๋ธ์„ ์ตœ์ ์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์œผ๋กœ ๊ฒฐ๋ก ์„ ๋‚ด๋ฆด ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ด์— ๋”ฐ๋ผ, ํ–ฅํ›„ ์Šค๋งˆํŠธ๊ณต์›์˜ ๊ด€๋ฆฌ๊ธฐ๋Šฅ์œผ๋กœ์„œ ํ™˜๊ฒฝ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•œ ๋ณดํ–‰๋Ÿ‰์˜ ์˜ˆ์ธก์—, ๋ณธ ์—ฐ๊ตฌ์—์„œ ํ™•์ธ๋œ Voting Ensemble ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜์—ฌ ์ •๋Ÿ‰์ ์ธ ์˜ˆ์ธก๊ณผ ์‘์šฉ์— ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค. ๋‘˜์งธ, ๊ธฐํ›„๋ณ€ํ™” ์œ„๊ธฐ ๋ฐฉ์žฌ์—ญํ• ๋กœ์„œ, ์ธ์ฒœ ์†Œ๋ž˜์ƒํƒœ๊ณต์›์˜ ๊ฐˆ๋Œ€์ˆฒ๊ณผ ์—ผ์Šต์ง€์—์„œ ํญ์—ผ๊ธฐ ํ™˜๊ฒฝ ๋ฐ์ดํ„ฐ๋ฅผ ์ˆ˜์ง‘ ์ด์šฉ, ๋„์‹ฌ์ง€์ธ ํฌ๊ตฌ ์‚ฌ๊ฑฐ๋ฆฌ์—์„œ ์ˆ˜์ง‘ํ•œ ์˜จยท์Šต๋„ ๋“ฑ์˜ ํ™˜๊ฒฝ ๋ฐ์ดํ„ฐ์™€ ๋น„๊ตํ•˜๋ฉด์„œ, ์ด์‚ฐํ™”ํƒ„์†Œ์˜ ๋ฐœ์ƒ๋Ÿ‰์— ์˜ํ–ฅ์„ ์ฃผ๋Š” ์š”์†Œ๋“ค๊ณผ ์‚ฌ์ดํŠธ๋ณ„ ์ฐจ์ด๋ฅผ ๋ถ„์„ํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ ๋„๋กœ ๋ถ€์ธ ํฌ๊ตฌ ์‚ฌ๊ฑฐ๋ฆฌ์˜ ์ด์‚ฐํ™”ํƒ„์†Œ ๋ฐœ์ƒ๋Ÿ‰์€ ์†Œ๋ž˜์ƒํƒœ๊ณต์› ์—ผ์Šต์ง€์— ๋น„ํ•ด์„œ ํ‰๊ท  40ppm, ์ตœ๊ณ  60ppm ์ •๋„ ๋†’๊ฒŒ ์ธก์ •๋˜์—ˆ๊ณ , ๊ธฐ์˜จ์€ ํฌ๊ตฌ ์‚ฌ๊ฑฐ๋ฆฌ๊ฐ€ ์‹œ๊ฐ„๊ณผ ๋‚ ์งœ์™€ ๊ด€๊ณ„์—†์ด ์ผ์ •ํ•˜๊ฒŒ ์•ฝ 1.5 โ„ƒ ์ •๋„ ๋†’๊ฒŒ ์œ ์ง€๋˜์—ˆ๋‹ค. ์ดˆ๋ฏธ์„ธ๋จผ์ง€(pm2.5)์˜ ๋น„๊ต์—์„œ, ๋„์‹ฌ๋ถ€์— ์œ„์น˜ํ•œ ํฌ๊ตฌ ์‚ฌ๊ฑฐ๋ฆฌ๋Š” ๋งค์ผ ํ‰๊ท  ๊ฐˆ๋Œ€์ˆฒ๋ณด๋‹ค๋Š” ์•ฝ 3ใŽ/m3 ์ •๋„ ๋†’๊ฒŒ ์ธก์ •๋˜์—ˆ๊ณ , ์—ผ์Šต์ง€ ๋Œ€๋น„ 4ใŽ/m3 ๋†’๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋ฏธ์„ธ๋จผ์ง€์˜ ๋น„๊ต์—์„œ๋Š” ๋„์‹ฌ๋ถ€์— ์œ„์น˜ํ•œ ํฌ๊ตฌ ์‚ฌ๊ฑฐ๋ฆฌ๋Š” ๋งค์ผ ํ‰๊ท  ๊ฐˆ๋Œ€์ˆฒ๋ณด๋‹ค๋Š” ์•ฝ 3.5ใŽ/m3 ์ •๋„ ๋†’๊ฒŒ ์œ ์ง€ํ•˜์˜€๊ณ , ์—ผ์Šต์ง€ ๋Œ€๋น„๋Š” 4ใŽ/m3์˜ ์ฐจ์ด๋ฅผ ์œ ์ง€ํ•˜์˜€๋‹ค. ์ด์–ด์„œ ๊ธฐํ›„ ๋ณ€ํ™” ๋Œ€์‘์„ ์œ„ํ•˜์—ฌ ํ™˜๊ฒฝ ๋ฐ์ดํ„ฐ์™€ ์ด์‚ฐํ™”ํƒ„์†Œ ๋ฐœ์ƒ์˜ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•ด, Auto ML ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ์„ ์ด์šฉํ•˜์˜€๋‹ค. ์ธ๊ณต์ง€๋Šฅ๋ถ„์„์„ ํ†ตํ•œ ๋จธ์‹ ๋Ÿฌ๋‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๋ชจ๋ธ๋ณ„ ์˜ˆ์ธก ์„ฑ๋Šฅ์„ ๋น„๊ตํ•˜๊ณ  ๊ทธ์ค‘์— ๊ฐ€์žฅ ์šฐ์ˆ˜ํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์ธ Stacking Ensemble์„ ํ†ตํ•ด์„œ ๋ถ„์„๋œ ์ƒ๊ด€๊ด€๊ณ„๊ฐ€ ๋†’์€ ํ™˜๊ฒฝ ์š”์†Œ๋ฅผ ํŒŒ์•…ํ•˜๊ณ , ๊ทธ์˜ ํŒจํ„ด์„ ์—ผ์Šต์ง€, ๊ฐˆ๋Œ€์ˆฒ, ๊ทธ๋ฆฌ๊ณ  ํฌ๊ตฌ ์‚ฌ๊ฑฐ๋ฆฌ๋กœ ๋‚˜๋ˆ„์–ด Regression ๋ชจ๋ธ๋ง์˜ ๋น„๊ต ๋ถ„์„์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ ์—ผ์Šต์ง€์—์„œ๋Š” ์˜จ๋„(sr_salty_temp), ๋Œํ’(sr_salt_wind_gust), ์Šต๋„(sr_salty_humi), ๊ธฐ์•• (sr_salty_pressure), ์ดˆ๋ฏธ์„ธ๋จผ์ง€(sr_salty_pm2.5), ์‹œ๊ฐ„(hour)์˜ 6๊ฐœ ์ธ์ž์˜ ์ˆœ์„œ๋กœ ์ด์‚ฐํ™”ํƒ„์†Œ ๋ฐœ์ƒ๋Ÿ‰์— ๊ฐ€์žฅ ํฐ ์˜ํ–ฅ์„ ์ฃผ๋Š” ๊ฒƒ์„ ์ธ์ง€ํ•˜๊ณ , ์ ์šฉ๋œ Stacking Ensemble์˜ ๊ฒฐ์ •๊ณ„์ˆ˜์ธ ์ด 0.90์œผ๋กœ ๊ฐ€์žฅ ์šฐ์ˆ˜ํ•œ ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ์œผ๋ฉฐ, XGBoostRegressor ์ด 0.88, LightGBM ์ด 0.88, RandomForestRegressor ๊ฐ€ 0.66์˜ ์ˆœ์œผ๋กœ ์ธ๊ณต์ง€๋Šฅ ํ•™์Šต๋ชจ๋ธ์— ๋Œ€ํ•œ ํ‰๊ฐ€๋ฅผ ํ†ตํ•ด์„œ ์ตœ์ ์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ๋Œ€ํ•œ ๊ฒฐ๋ก ์„ ๋‚ด๋ฆด ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๊ฐˆ๋Œ€์ˆฒ์—์„œ๋Š” ์Šต๋„(sr_galdae_humi), ๋Œํ’(sr_galdae_Wind Gust), ๊ธฐ์•• (sr_galdae_pressure), ํ’ํ–ฅ(sr_galdae_Wind Direction), ์‹œ๊ฐ„(hour), ์˜จ๋„ (sr_galdae_temp)์˜ 6๊ฐœ ์ธ์ž๊ฐ€ ์ด์‚ฐํ™”ํƒ„์†Œ ๋ฐœ์ƒ๋Ÿ‰์— ๊ฐ€์žฅ ํฐ ์˜ํ–ฅ์„ ์ฃผ๋Š” ๊ฒƒ์„ ์ธ์ง€ํ•˜๊ณ , ์ ์šฉ๋œ Stacking Ensemble์˜ ์ด 0.91๋กœ ๊ฐ€์žฅ ์šฐ์ˆ˜ํ•œ ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ์œผ๋ฉฐ, XGBoostRegressor์ด 0.91, LightGBM์ด 0.89, RandomForestRegressor๊ฐ€ 0.80์˜ ์ˆœ์œผ๋กœ ์ธ๊ณต์ง€๋Šฅ ํ•™์Šต๋ชจ๋ธ์— ๋Œ€ํ•œ ํ‰๊ฐ€๋ฅผ ํ†ตํ•ด์„œ ์ตœ์ ์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ๋Œ€ํ•œ ๊ฒฐ๋ก ์„ ๋‚ด๋ฆด ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋„์‹ฌ๋ถ€์ธ ํฌ๊ตฌ ์‚ฌ๊ฑฐ๋ฆฌ์—์„œ๋Š” ๋„์‹ฌ๋ถ€๋‚ด์˜ ํ™˜๊ฒฝ์„ผ์„œ ์„ค์น˜์˜ ์ œ์•ฝ์œผ๋กœ, ์ผ๋ถ€ ๊ฐˆ๋Œ€์ˆฒ์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์ฐจ์šฉํ•˜์—ฌ ์‚ฌ์šฉํ•œ ๊ฒฐ๊ณผ, ๊ฐˆ๋Œ€์ˆฒ ํ’ํ–ฅ(sr_galdae_wind direction), ์˜จ๋„(sr_pg4_temp), ํฌ๊ตฌ ์‚ฌ๊ฑฐ๋ฆฌ ๋ฏธ์„ธ๋จผ์ง€(sr_pg4_pm10), ๊ฐˆ๋Œ€์ˆฒ ํƒœ์–‘์กฐ๋„(sr_galdae_solar), ํฌ๊ตฌ ์‚ฌ๊ฑฐ๋ฆฌ ์Šต๋„(sr_pg4_humi), ๊ฐˆ๋Œ€์ˆฒ ํ’์†(sr_galdae_wind speed)์˜ ์ˆœ์„œ๋กœ 6๊ฐœ ์ธ์ž๊ฐ€ ์ด์‚ฐํ™”ํƒ„์†Œ ๋ฐœ์ƒ๋Ÿ‰์— ๊ฐ€์žฅ ํฐ ์˜ํ–ฅ์„ ์ฃผ๋Š” ๊ฒƒ์œผ๋กœ ํ™•์ธ๋˜์—ˆ๋‹ค. ์ ์šฉ๋œ Stacking Ensemble์˜ ์ด 0.85๋กœ ๊ฐ€์žฅ ์šฐ์ˆ˜ํ•œ ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ์œผ๋ฉฐ, XGBoostRegressor ์ด 0.83, LightGBM์ด 0.79, RandomForestRegressor๊ฐ€ 0.52์˜ ์ˆœ์œผ๋กœ ์ธ๊ณต์ง€๋Šฅ ํ•™์Šต๋ชจ๋ธ์— ๋Œ€ํ•œ ํ‰๊ฐ€๋ฅผ ํ†ตํ•ด์„œ ์ตœ์ ์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ตฌํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋”ฐ๋ผ์„œ ํ–ฅํ›„ ์Šค๋งˆํŠธ๊ณต์›์˜ ๋ฐฉ์žฌ๊ธฐ๋Šฅ์œผ๋กœ์„œ ํ™˜๊ฒฝ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•œ ์ด์‚ฐํ™”ํƒ„์†Œ ๋ฐœ์ƒ๊ณผ ์ €๊ฐ ์˜ˆ์ธก์— ์—ฐ๊ตฌ์—์„œ ํ™•์ธ๋œ ์ตœ์ ์˜ Stacking Ensemble ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜์—ฌ ์ •๋Ÿ‰์ ์ธ ์˜ˆ์ธก๊ณผ ์‘์šฉ์— ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ๊ฒฝ์ œ์ ์ธ IoT ํ™˜๊ฒฝ ๋ฐ์ดํ„ฐ ์„ผ์‹ฑ ๊ฐœ๋ฐœ ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜๊ณ  ์ตœ์ ์˜ ์ธ๊ณต์ง€๋Šฅ ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ์„ ์„ค๊ณ„ํ•˜์—ฌ, ๊ธฐ์กด์˜ ๊ณต์›์„ ์Šค๋งˆํŠธ๊ณต์›ํ™”ํ•˜๋Š” ๋ฐ ์žˆ์–ด ๊ทธ ์ˆ˜์›”์„ฑ์„ ์ œ๊ณ ํ•˜๋Š” ๋ฐ ๊ธฐ์—ฌํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ์ด์— ๋”ฐ๋ฅธ ๊ธฐ๋Œ€ ํšจ๊ณผ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ์ฒซ์งธ, ์Šค๋งˆํŠธ๊ณต์›์˜ ๊ด€๋ฆฌ๊ธฐ๋Šฅ์œผ๋กœ์„œ ํ™˜๊ฒฝ๋ณ€์ˆ˜์— ๋”ฐ๋ฅธ ๋ฐฉ๋ฌธ์ž ๋ณดํ–‰๋Ÿ‰์— ๋Œ€ํ•œ ์ •ํ™•ํ•œ ์˜ˆ์ธก์„ ํ†ตํ•ด์„œ ์ตœ์ ์˜ ์„œ๋น„์Šค๋ฅผ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค. ๋‘˜์งธ, ์ „ ์„ธ๊ณ„์ ์œผ๋กœ ํ•ด๊ฒฐํ•ด์•ผ๋งŒ ํ•˜๋Š” ๊ธฐํ›„๋ณ€ํ™” ์œ„๊ธฐ ๋Œ€์‘์— ์Šค๋งˆํŠธ๊ณต์›์˜ ํƒ„์†Œ์ €๊ฐ, ํญ์—ผ ์ €๊ฐ๊ณผ ๊ฐ™์€ ๋ฐฉ์žฌ ๊ธฐ๋Šฅ์„ ๊ฐ•ํ™”ํ•จ์œผ๋กœ์จ ๋„์‹œ๊ณต์›์˜ ์ƒˆ๋กœ์šด ๊ฐ€์น˜๋ฅผ ๋ถ€์—ฌํ•  ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค.I. ์„œ๋ก  1 1. ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ 1 2. ์—ฐ๊ตฌ์˜ ๋ชฉ์  3 3. ์—ฐ๊ตฌ์˜ ๋‚ด์šฉ ๋ฐ ๋ฐฉ๋ฒ• 6 II. ์ด๋ก ์  ๋ฐฐ๊ฒฝ 9 1. ์Šค๋งˆํŠธ๊ณต์› ์ •์˜ 9 2. ์Šค๋งˆํŠธ๊ณต์› ์‚ฌ๋ก€ 15 2.1 ํ•œ๊ตญ์˜ ์Šค๋งˆํŠธ๊ณต์› 15 2.2 ํ•ด์™ธ์˜ ์Šค๋งˆํŠธ๊ณต์› 17 2.3 ์Šค๋งˆํŠธ๊ณต์› ๊ด€๋ จ ์ธํ„ฐ๋ทฐ 19 3 ์Šค๋งˆํŠธ๊ณต์›๊ณผ ๊ธฐํ›„๋ณ€ํ™” ๋Œ€์‘ 25 3.1 ์Šค๋งˆํŠธ๊ณต์›์˜ ๊ธฐํ›„๋ณ€ํ™” ๋Œ€์‘ ์‚ฌ๋ก€ 25 3.2 ๊ณต์›์˜ ๊ทธ๋ฆฐ ์ธํ”„๋ผ๋ฅผ ํ†ตํ•œ ๊ธฐํ›„๋ณ€ํ™” ๋Œ€์‘ ์‚ฌ๋ก€ 27 4 ์Šค๋งˆํŠธ๊ณต์› ๊ตฌํ˜„์„ ์œ„ํ•œ IoT, ์ธ๊ณต์ง€๋Šฅ ๊ธฐ์ˆ  31 4.1 IoT ํ™˜๊ฒฝ ๋ฐ์ดํ„ฐ ์žฅ๋น„ ์—ฐ๊ตฌ ๋™ํ–ฅ 31 4.2 ๊ธฐํ›„๋ณ€ํ™” ๋Œ€์‘ ์ •๋Ÿ‰ํ‰๊ฐ€ ํ™˜๊ฒฝ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘์šฉ ์„ผ์„œ 35 4.3 ์ธ๊ณต์ง€๋Šฅ ์„ ํ˜•ํšŒ๊ท€๋ถ„์„์„ ํ†ตํ•œ ๋ฐ์ดํ„ฐ ๋ถ„์„ 39 4.4 ์ธ๊ณต์ง€๋Šฅ ๋ชจ๋ธ๋ง ๋ถ„์„ ๊ณ ์ฐฐ 41 III. ์„œ์šธ์ˆฒ ๊ณต์›์„ ๋Œ€์ƒ์œผ๋กœ ํ•œ ์Šค๋งˆํŠธ๊ณต์› ๊ตฌํ˜„ 46 1. ์„œ์šธ์ˆฒ ๊ณต์›: IoT์™€ ์ธ๊ณต์ง€๋Šฅ์„ ์ด์šฉํ•œ ๊ณต์› ๊ด€๋ฆฌ๊ณ„ํš 46 1.1 IoT ํ™˜๊ฒฝ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ ์žฅ๋น„ ๊ฐœ๋ฐœ๊ณผ ๊ณ ๋ ค์‚ฌํ•ญ 54 1.2 ์ธ๊ณต์ง€๋Šฅ์„ ํ†ตํ•œ ํ™˜๊ฒฝ ๋ฐ์ดํ„ฐ ๋ณดํ–‰๋Ÿ‰ ์˜ํ–ฅ ์š”์†Œ ํ‰๊ฐ€ 76 1.2.1 Auto ML์„ ์‚ฌ์šฉํ•œ ์ „์ฒด ์—ฐ๊ตฌ flow 78 1.2.2 ๋จธ์‹ ๋Ÿฌ๋‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์ข…๋ฅ˜ 80 1.2.3 ๋ฐ์ดํ„ฐ ์ „์ฒ˜๋ฆฌ ๋ฐฉ๋ฒ• 88 1.2.4 ๋ชจ๋ธ ํ‰๊ฐ€ ๋ฐฉ๋ฒ• 92 2. ์ธ๊ณต์ง€๋Šฅ ๋ชจ๋ธ๋ง์„ ํ†ตํ•œ ์„œ์šธ์ˆฒ ์Šค๋งˆํŠธ๊ณต์› ๊ตฌํ˜„ 94 2.1 ์ธ๊ณต์ง€๋Šฅ์„ ์ด์šฉํ•œ ๊ณต๊ธฐ์งˆ๊ณผ ๋ณดํ–‰๋Ÿ‰์˜ ์ƒ๊ด€๊ด€๊ณ„ 94 2.2 ๋จธ์‹ ๋Ÿฌ๋‹ ๋ถ„์„ 110 2.3 ์†Œ๊ฒฐ 121 IV. ์†Œ๋ž˜์ƒํƒœ๊ณต์›์„ ๋Œ€์ƒ์œผ๋กœ ํ•œ ์Šค๋งˆํŠธ๊ณต์› ๊ตฌํ˜„ 122 1. ์†Œ๋ž˜์ƒํƒœ๊ณต์›: ์ธ๊ณต์ง€๋Šฅ์„ ์ด์šฉํ•œ ๊ธฐํ›„๋ณ€ํ™” ๋Œ€์‘ 122 1.1 AWS๋ฅผ ํ†ตํ•œ ์Šค๋งˆํŠธ๊ณต์› ํ™˜๊ฒฝ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ 126 1.1.1 ์ž๋™๊ธฐ์ƒ๊ด€์ธก์†Œ(AWS) ์ •์˜ 126 1.1.2. ์Šค๋งˆํŠธ๊ณต์›์„ ์œ„ํ•œ ํ™˜๊ฒฝ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ ์žฅ๋น„ ๊ตฌํ˜„ 127 1.2 ์ธ๊ณต์ง€๋Šฅ์„ ํ†ตํ•œ ํƒ„์†Œ ๋ฐœ์ƒ ์š”์†Œ ๋ถ„์„ ๋ฐฉ์•ˆ 134 2. ์ธ๊ณต์ง€๋Šฅ ๋ชจ๋ธ๋ง์„ ํ†ตํ•œ ์†Œ๋ž˜ ์ƒํƒœ ์Šค๋งˆํŠธ๊ณต์› ๊ตฌํ˜„ 140 2.1 ์ธ๊ณต์ง€๋Šฅ์„ ์ด์šฉํ•œ ์Šต์ง€์™€ CO2 ์ƒ๊ด€๊ด€๊ณ„ 140 2.2 ๋จธ์‹ ๋Ÿฌ๋‹ ๋ถ„์„ 161 2.3 ์†Œ๊ฒฐ 188 V. ๊ฒฐ๋ก  190 1. ์—ฐ๊ตฌ์˜ ์š”์•ฝ 190 1.1 ์—ฐ๊ตฌ์˜ ์š”์•ฝ 190 1.2 ์—ฐ๊ตฌ์˜ ํ•œ๊ณ„ ๋ฐ ์˜์˜ 194 ์ฐธ๊ณ ๋ฌธํ—Œ 196 ๋ถ€๋ก 204 Abstract 207๋ฐ•

    The Development of a Blended Learning Model for AI Literacy Education in Elementary School

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ์‚ฌ๋ฒ”๋Œ€ํ•™ ๊ต์œกํ•™๊ณผ(๊ต์œก๊ณตํ•™์ „๊ณต), 2022.2. ์ž„์ฒ ์ผ.With the rapid development of artificial intelligence technology in recent years, the importance of AI education has been emphasized, and many countries prepare for future society by integrating AI into their curriculum. The purpose of AI education is to enhance student abilities in areas such as AI literacy. AI literacy refers to the ability to understand, use, communicate, and think critically of artificial intelligence technology, and can be said to be a basic and essential competency that is used for adapting to social change. Currently, various studies are being conducted on artificial intelligence education for elementary education. However, as most research focuses on the development of AI education content and programs, there is a lack of research regarding methods to increase the educational effect and the provision of prescriptive guidelines for AI education. On one hand, as online distance education has spread not only to university education but also to elementary and secondary education due to COVID-19, the potential of distance education has been discovered. However, distance education still has its limitations, and the educational effect can be increased when a blended learning model that combines the advantages of both online and offline classes is used. As the blended learning method has several educational effects, it is necessary to utilize it in AI education. In this study, a blended learning model and instructional strategies for AI education at the elementary school level have been developed. The research questions for this study are as follows. First, what do the blended learning model and instructional strategies for elementary school AI education look like? Second, are the blended learning model and instructional strategies for elementary school AI education valid? In order to develop a model and instructional strategies, this study conducted research based on the design and development research methodology. First, an instructional model and strategies were derived through a literature review. Afterward, through an experiential search process, the opinions of field teachers were implemented and the applicability was increased. Afterward, two rounds of internal validation were conducted with subject experts. The subject experts majored in education, educational technology, and computer science, and six people participated in the validation process. External validation of applying the derived instructional model and strategies into the educational field was then carried out. In the external validation process, two 6th grade elementary schools classes (consisting of 52 students) participated, and the classes took place over a total of 6 sessions. An AI literacy test and satisfaction survey were conducted on learners, and in-depth interviews were conducted with both learners and instructors. By comprehensively analyzing the resulting data, the strengths, weaknesses, and areas of improvement for the instructional model and instructional strategies were identified. The final model and instructional strategies were derived through correcting and supplementing the identified weaknesses and the areas of improvement. The type of blended learning is explicitly revealed through the model that has been developed through this research. The types of blended learning are divided into synchronous online/offline classes that correspond to โ€˜inside the classroomโ€™ and asynchronous online classes that correspond to โ€˜outside the classroomโ€™. The procedure was largely divided into before class, during class, and after class, and a total of eight steps were linearly configured. The name of the steps are '1) Checking the blended learning environment and learner level', '2) Motivating and explaining AI concepts', '3) Supporting the AI technology experience', '4) Guiding topic selection and data collection', '5) Supporting data collection and organization', '6) Guiding AI model training and modification ', '7) Guiding for programming', and '8) Supporting sharing and learning continuation'. The instructional strategies are composed of a total of 15 strategies and are classified according to the detailed steps of the model. The significance of this study is that the developed instructional model and strategies are explicit and clear, thus being easy to use in actual classes. In addition, it is composed of a blended learning method to increase the educational effect. The effects of this instructional model and strategies are as follows. First, it reduces the learning burden on students and enables instructors to provide feedback effectively. Second, it is possible to obtain learning time through blended learning. Third, it helps to promote the interaction of learners. Fourth, it has a positive effect on the students' affective domains. Fifth, it has a significant effect on improving students' AI literacy. However, there are several limitations in this study, and follow-up studies are needed to supplement them. Model development research that comprehensively considers the types of blended learning, research on model use, and research on developing AI literacy test tools should be conducted. Particularly, as AI educational tools are gradually improving, research on how to effectively use them in educational aspects should be continued.์ตœ๊ทผ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ์ˆ ์ด ๊ธ‰๊ฒฉํ•˜๊ฒŒ ๋ฐœ์ „ํ•จ์— ๋”ฐ๋ผ ์ธ๊ณต์ง€๋Šฅ ๊ต์œก์˜ ์ค‘์š”์„ฑ์ด ๊ฐ•์กฐ๋˜๊ณ  ์žˆ์œผ๋ฉฐ ์—ฌ๋Ÿฌ ๋‚˜๋ผ์—์„œ ์ธ๊ณต์ง€๋Šฅ์„ ๊ต์œก๊ณผ์ •์œผ๋กœ ํŽธ์„ฑํ•˜์—ฌ ๋ฏธ๋ž˜์‚ฌํšŒ๋ฅผ ๋Œ€๋น„ํ•˜๊ณ  ์žˆ๋‹ค. ์ธ๊ณต์ง€๋Šฅ ๊ต์œก์˜ ๋ชฉ์ ์€ ํ•™์ƒ๋“ค์˜ ์ธ๊ณต์ง€๋Šฅ ๋ฆฌํ„ฐ๋Ÿฌ์‹œ ๋“ฑ์˜ ์—ญ๋Ÿ‰์„ ์ฆ์ง„์‹œํ‚ค๋Š” ๊ฒƒ์ด๋‹ค. ์ธ๊ณต์ง€๋Šฅ ๋ฆฌํ„ฐ๋Ÿฌ์‹œ๋Š” ์ธ๊ณต์ง€๋Šฅ ๊ธฐ์ˆ ์„ ์ดํ•ดํ•˜๊ณ , ํ™œ์šฉ ๋ฐ ์†Œํ†ต, ๋น„ํŒ์  ์‚ฌ๊ณ ๋ฅผ ํ•  ์ˆ˜ ์žˆ๋Š” ๋Šฅ๋ ฅ์„ ์˜๋ฏธํ•˜๋ฉฐ ์‚ฌํšŒ ๋ณ€ํ™”์— ์ ์‘ํ•˜๊ธฐ ์œ„ํ•ด ๊ธฐ์ดˆ์ ์ด๋ฉฐ ํ•„์ˆ˜์ ์ธ ์—ญ๋Ÿ‰์ด๋ผ ํ•  ์ˆ˜ ์žˆ๋‹ค. ํ˜„์žฌ ์ดˆ๋“ฑ๊ต์œก์—์„œ ์ธ๊ณต์ง€๋Šฅ ๊ต์œก์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ๋‹ค์–‘ํ•˜๊ฒŒ ์ด๋ฃจ์–ด์ง€๊ณ  ์žˆ์œผ๋ฉฐ ์ธ๊ณต์ง€๋Šฅ์˜ ๊ฐœ๋…๊ณผ ์›๋ฆฌ๋ฅผ ์–ด๋–ป๊ฒŒ ๊ฐ€๋ฅด์น  ๊ฒƒ์ธ์ง€์— ๋Œ€ํ•œ ์—ฐ๊ตฌ, ์ธ๊ณต์ง€๋Šฅ์„ ์œตํ•ฉ๊ต์œก ์ธก๋ฉด์—์„œ ๋‹ค๋ฃจ๋Š” ์—ฐ๊ตฌ, ๊ทธ๋ฆฌ๊ณ  ์ธ๊ณต์ง€๋Šฅ ์œค๋ฆฌ ๊ต์œก์— ๋Œ€ํ•œ ์—ฐ๊ตฌ ๋“ฑ์ด ์ด๋ฃจ์–ด์ง€๊ณ  ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ์ธ๊ณต์ง€๋Šฅ ๊ต์œก ๋‚ด์šฉ ๋ฐ ํ”„๋กœ๊ทธ๋žจ ๊ฐœ๋ฐœ์„ ์œ„ํ•œ ์—ฐ๊ตฌ๊ฐ€ ๋Œ€๋ถ€๋ถ„์ด๋ฉฐ ์ธ๊ณต์ง€๋Šฅ ๊ต์œก์—์„œ ๊ต์œก์  ํšจ๊ณผ๋ฅผ ๋†’์ด๊ณ  ์ฒ˜๋ฐฉ์ ์ธ ์ง€์นจ์„ ์ œ๊ณตํ•˜๋Š” ๋ฐฉ์•ˆ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋Š” ๋ถ€์กฑํ•œ ์‹ค์ •์ด๋‹ค. ํ•œํŽธ ์˜จ๋ผ์ธ ์›๊ฒฉ๊ต์œก์€ ์ฝ”๋กœ๋‚˜๋ฐ”์ด๋Ÿฌ์Šค๊ฐ์—ผ์ฆ-19(COVID)๋กœ ์ธํ•ด ๋Œ€ํ•™ ๊ต์œก๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์ดˆโ‹…์ค‘๋“ฑ ๊ต์œก ์ „๋ฐ˜์œผ๋กœ ํ™•์‚ฐ๋˜์—ˆ์œผ๋ฉฐ ์›๊ฒฉ๊ต์œก์˜ ์—ฌ๋Ÿฌ ๊ฐ€์ง€ ์ž ์žฌ์„ฑ์ด ๋ฐœ๊ฒฌ๋˜์—ˆ๋‹ค. ํ•˜์ง€๋งŒ ์›๊ฒฉ๊ต์œก์—๋Š” ์—ฌ์ „ํžˆ ํ•œ๊ณ„๊ฐ€ ์กด์žฌํ•˜๋ฉฐ ์˜จ๋ผ์ธ ์ˆ˜์—…๊ณผ ์˜คํ”„๋ผ์ธ ์ˆ˜์—…์˜ ์žฅ์ ์„ ๊ฒฐํ•ฉํ•œ ๋ธ”๋ Œ๋””๋“œ ๋Ÿฌ๋‹(Blended Learning) ๋ฐฉ์‹์„ ํ™œ์šฉํ–ˆ์„ ๋•Œ ๊ต์œก์  ํšจ๊ณผ๋ฅผ ๋†’์ผ ์ˆ˜ ์žˆ๋‹ค. ๋ธ”๋ Œ๋””๋“œ ๋Ÿฌ๋‹ ๋ฐฉ์‹์—๋Š” ์—ฌ๋Ÿฌ ๊ฐ€์ง€ ๊ต์œก์  ํšจ๊ณผ๊ฐ€ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ์ธ๊ณต์ง€๋Šฅ ๊ต์œก์—์„œ ์ด๋ฅผ ํ™œ์šฉํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ดˆ๋“ฑํ•™๊ต ์ธ๊ณต์ง€๋Šฅ ๋ฆฌํ„ฐ๋Ÿฌ์‹œ ๊ต์œก์„ ์œ„ํ•œ ๋ธ”๋ Œ๋””๋“œ ๋Ÿฌ๋‹ ๋ชจํ˜•๊ณผ ๊ต์ˆ˜์ „๋žต์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์˜ ์—ฐ๊ตฌ ๋ฌธ์ œ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ์ฒซ์งธ, ์ดˆ๋“ฑํ•™๊ต ์ธ๊ณต์ง€๋Šฅ ๋ฆฌํ„ฐ๋Ÿฌ์‹œ ๊ต์œก์„ ์œ„ํ•œ ๋ธ”๋ Œ๋””๋“œ ๋Ÿฌ๋‹ ๋ชจํ˜•๊ณผ ๊ต์ˆ˜ ์ „๋žต์€ ๋ฌด์—‡์ธ๊ฐ€? ๋‘˜์งธ, ์ดˆ๋“ฑํ•™๊ต ์ธ๊ณต์ง€๋Šฅ ๋ฆฌํ„ฐ๋Ÿฌ์‹œ ๊ต์œก์„ ์œ„ํ•œ ๋ธ”๋ Œ๋””๋“œ ๋Ÿฌ๋‹ ๋ชจํ˜•๊ณผ ๊ต์ˆ˜ ์ „๋žต์€ ํƒ€๋‹นํ•œ๊ฐ€? ๋ชจํ˜•๊ณผ ๊ต์ˆ˜์ „๋žต์„ ๊ฐœ๋ฐœํ•˜๊ธฐ ์œ„ํ•ด ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์„ค๊ณ„โ‹…๊ฐœ๋ฐœ ์—ฐ๊ตฌ ๋ฐฉ๋ฒ•๋ก ์— ๊ทผ๊ฑฐํ•˜์—ฌ ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ๋จผ์ € ์„ ํ–‰๋ฌธํ—Œ ๊ฒ€ํ† ๋ฅผ ํ†ตํ•ด ์ˆ˜์—… ๋ชจํ˜•๊ณผ ๊ต์ˆ˜์ „๋žต์„ ๋„์ถœํ•˜์˜€๋‹ค. ์ดํ›„ ๊ฒฝํ—˜์  ํƒ์ƒ‰ ๊ณผ์ •์„ ํ†ตํ•ด ํ˜„์žฅ ๊ต์‚ฌ๋“ค์˜ ์˜๊ฒฌ์„ ๋ฐ˜์˜ํ•˜๊ณ  ์ ์šฉ๊ฐ€๋Šฅ์„ฑ์„ ๋†’์ด๊ณ ์ž ํ•˜์˜€๋‹ค. ์ดํ›„ ์ „๋ฌธ๊ฐ€๋ฅผ ๋Œ€์ƒ์œผ๋กœ ๋‘ ์ฐจ๋ก€์˜ ๋‚ด์  ํƒ€๋‹นํ™”๋ฅผ ์‹ค์‹œํ•˜์˜€๋‹ค. ์ „๋ฌธ๊ฐ€๋“ค์€ ๊ฐ๊ฐ ๊ต์œกํ•™, ๊ต์œก๊ณตํ•™, ์ปดํ“จํ„ฐ ๊ณตํ•™์„ ์ „๊ณตํ•˜์˜€์œผ๋ฉฐ ํƒ€๋‹นํ™” ๊ณผ์ •์—๋Š” ์ด 6์ธ์ด ์ฐธ์—ฌํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋„์ถœํ•œ ์ˆ˜์—… ๋ชจํ˜•๊ณผ ๊ต์ˆ˜์ „๋žต์„ ๊ต์œก ํ˜„์žฅ์— ์ ์šฉํ•˜๋Š” ์™ธ์  ํƒ€๋‹นํ™”๋ฅผ ์‹ค์‹œํ•˜์˜€๋‹ค. ์™ธ์  ํƒ€๋‹นํ™” ๊ณผ์ •์—๋Š” ์ดˆ๋“ฑํ•™๊ต 6ํ•™๋…„ 2ํ•™๊ธ‰(ํ•™์ƒ 52๋ช…)์ด ์ฐธ์—ฌํ•˜์˜€์œผ๋ฉฐ ์ด 6์ฐจ์‹œ(๊ต์‹ค ์•ˆ 4์ฐจ์‹œ, ๊ต์‹ค ๋ฐ– 2์ฐจ์‹œ)์— ๊ฑธ์ณ ์ˆ˜์—…์ด ์ด๋ฃจ์–ด์กŒ๋‹ค. ํ•™์Šต์ž ๋Œ€์ƒ์œผ๋กœ ์ธ๊ณต์ง€๋Šฅ ๋ฆฌํ„ฐ๋Ÿฌ์‹œ ๊ฒ€์‚ฌ, ๋งŒ์กฑ๋„ ์„ค๋ฌธ์กฐ์‚ฌ๋ฅผ ์ง„ํ–‰ํ•˜์˜€๊ณ , ํ•™์Šต์ž ๋ฐ ๊ต์ˆ˜์ž ๋Œ€์ƒ์œผ๋กœ ์‹ฌ์ธต ๋ฉด๋‹ด์„ ์‹ค์‹œํ•˜์˜€๋‹ค. ์ด๋ฅผ ์ข…ํ•ฉ์ ์œผ๋กœ ๋ถ„์„ํ•˜์—ฌ ์ˆ˜์—… ๋ชจํ˜• ๋ฐ ๊ต์ˆ˜์ „๋žต์˜ ๊ฐ•์ , ์•ฝ์ , ๊ฐœ์„ ์ ์„ ํ™•์ธํ•˜์˜€๋‹ค. ํ™•์ธ๋œ ์•ฝ์ ๊ณผ ๊ฐœ์„ ์ ์„ ์ˆ˜์ • ๋ฐ ๋ณด์™„ํ•˜์—ฌ ์ตœ์ข… ์ˆ˜์—… ๋ชจํ˜•๊ณผ ๊ต์ˆ˜์ „๋žต์„ ๋„์ถœํ•˜์˜€๋‹ค. ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ๊ฐœ๋ฐœํ•œ ์ˆ˜์—… ๋ชจํ˜•์—์„œ ๋ธ”๋ Œ๋””๋“œ ๋Ÿฌ๋‹์˜ ์œ ํ˜•์ด ๋ช…์‹œ์ ์œผ๋กœ ๋“œ๋Ÿฌ๋‚˜๋„๋ก ํ•˜์˜€๋‹ค. ๋ธ”๋ Œ๋””๋“œ ๋Ÿฌ๋‹์˜ ์œ ํ˜•์€ โ€˜๊ต์‹ค ์•ˆโ€™์— ํ•ด๋‹นํ•˜๋Š” ์‹ค์‹œ๊ฐ„ ์˜จโ‹…์˜คํ”„๋ผ์ธ ์ˆ˜์—…๊ณผ โ€˜๊ต์‹ค ๋ฐ–โ€™์— ํ•ด๋‹นํ•˜๋Š” ๋น„์‹ค์‹œ๊ฐ„ ์˜จ๋ผ์ธ ์ˆ˜์—…์œผ๋กœ ๊ตฌ๋ถ„ํ•˜์˜€๋‹ค. ์ ˆ์ฐจ๋Š” ํฌ๊ฒŒ ์ˆ˜์—… ์ „, ์ˆ˜์—… ์ค‘, ์ˆ˜์—… ํ›„๋กœ ๊ตฌ๋ถ„ํ•˜์˜€์œผ๋ฉฐ ์ด 8๊ฐœ์˜ ์„ธ๋ถ€ ๋‹จ๊ณ„๋ฅผ ์„ ํ˜•์ ์œผ๋กœ ๊ตฌ์„ฑํ•˜์˜€๋‹ค. ๊ฐ ๋‹จ๊ณ„์˜ ๋ช…์นญ์€ โ€˜1) ๋ธ”๋ Œ๋””๋“œ ๋Ÿฌ๋‹ ํ™˜๊ฒฝ ๋ฐ ํ•™์Šต์ž ์ˆ˜์ค€ ํ™•์ธโ€™, โ€˜2) ๋™๊ธฐ ์œ ๋ฐœ ๋ฐ ์ธ๊ณต์ง€๋Šฅ ๊ฐœ๋… ์•ˆ๋‚ดโ€™, โ€˜3) ์ธ๊ณต์ง€๋Šฅ ๊ธฐ์ˆ  ์ฒดํ—˜ ์ง€์›โ€™, โ€˜4) ์ฃผ์ œ ์„ ์ • ๋ฐ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ ๋ฐฉ๋ฒ• ์•ˆ๋‚ดโ€™, โ€˜5) ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ ๋ฐ ์ •๋ฆฌ ์ง€์›โ€™, โ€˜6) ์ธ๊ณต์ง€๋Šฅ ๋ชจ๋ธ ํ›ˆ๋ จ ๋ฐ ์ˆ˜์ • ์•ˆ๋‚ดโ€™, โ€˜7) ๋ชจ๋ธ์„ ํ™œ์šฉํ•œ ํ”„๋กœ๊ทธ๋ž˜๋ฐ ์•ˆ๋‚ดโ€™, โ€˜8) ๊ณต์œ  ๋ฐ ํ•™์Šต์ง€์† ์ง€์›โ€™์ด๋‹ค. ๊ต์ˆ˜์ „๋žต์€ ์ด 15๊ฐœ์˜ ์ „๋žต์œผ๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ์œผ๋ฉฐ ๋ชจํ˜•์˜ ์„ธ๋ถ€ ๋‹จ๊ณ„์— ๋”ฐ๋ผ ๊ตฌ๋ถ„์ด ๋˜๋„๋ก ํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์˜ ์˜์˜๋Š” ์ตœ์ข…์ ์œผ๋กœ ๊ฐœ๋ฐœ๋œ ์ˆ˜์—… ๋ชจํ˜• ๋ฐ ๊ต์ˆ˜์ „๋žต์ด ๋ช…์‹œ์ ์ด์–ด์„œ ์‹ค์ œ ์ˆ˜์—…์—์„œ ํ™œ์šฉํ•˜๊ธฐ ์šฉ์ดํ•˜๊ณ , ์ˆ˜์—…์— ์ฐธ๊ณ ํ•  ์ˆ˜ ์žˆ๋Š” ์ฒ˜๋ฐฉ์ ์ธ ์„ฑ๊ฒฉ์„ ๊ฐ€์ง€๋ฉฐ, ๋ธ”๋ Œ๋””๋“œ ๋Ÿฌ๋‹ ๋ฐฉ์‹์œผ๋กœ ๊ตฌ์„ฑํ•˜์—ฌ ๊ต์œก์  ํšจ๊ณผ๋ฅผ ๋†’์˜€๋‹ค๋Š” ์ ์ด๋‹ค. ๋ณธ ์ˆ˜์—… ๋ชจํ˜•๊ณผ ๊ต์ˆ˜์ „๋žต์˜ ํšจ๊ณผ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ์ฒซ์งธ, ํ•™์ƒ๋“ค์˜ ํ•™์Šต ๋ถ€๋‹ด์„ ์ค„์—ฌ์ฃผ๋ฉฐ ๊ต์ˆ˜์ž๊ฐ€ ํ”ผ๋“œ๋ฐฑ์„ ํšจ๊ณผ์ ์œผ๋กœ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ๋‹ค. ๋‘˜์งธ, ๋ธ”๋ Œ๋””๋“œ ๋Ÿฌ๋‹์„ ํ†ตํ•ด ๋ถ€์กฑํ•œ ํ•™์Šต ์‹œ๊ฐ„์„ ํ™•๋ณดํ•  ์ˆ˜ ์žˆ๋‹ค. ์…‹์งธ, ํ•™์Šต์ž๋“ค์˜ ์ƒํ˜ธ์ž‘์šฉ ์ฆ์ง„์— ๋„์›€์ด ๋œ๋‹ค. ๋„ท์งธ, ํ•™์ƒ๋“ค์˜ ์ •์˜์  ์ธก๋ฉด์— ๊ธ์ •์ ์ธ ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค. ๋‹ค์„ฏ์งธ, ํ•™์ƒ๋“ค์˜ ์ธ๊ณต์ง€๋Šฅ ๋ฆฌํ„ฐ๋Ÿฌ์‹œ ํ–ฅ์ƒ์— ์œ ์˜๋ฏธํ•œ ํšจ๊ณผ๊ฐ€ ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ๋ณธ ์—ฐ๊ตฌ์—๋Š” ์—ฌ๋Ÿฌ ๊ฐ€์ง€ ํ•œ๊ณ„์ ์ด ์กด์žฌํ•˜๋ฉฐ ์ด๋ฅผ ๋ณด์™„ํ•˜๊ธฐ ์œ„ํ•œ ํ›„์† ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ๋ธ”๋ Œ๋””๋“œ ๋Ÿฌ๋‹์˜ ์œ ํ˜•์„ ์ข…ํ•ฉ์ ์œผ๋กœ ๊ณ ๋ คํ•œ ๋ชจํ˜•๊ฐœ๋ฐœ ์—ฐ๊ตฌ, ๋ชจํ˜•์‚ฌ์šฉ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ, ์ธ๊ณต์ง€๋Šฅ ๋ฆฌํ„ฐ๋Ÿฌ์‹œ ๊ฒ€์‚ฌ๋„๊ตฌ ๊ฐœ๋ฐœ ์—ฐ๊ตฌ ๋“ฑ์ด ์ด๋ฃจ์–ด์ ธ์•ผ ํ•œ๋‹ค. ํŠนํžˆ ์ธ๊ณต์ง€๋Šฅ ๊ต์œก ๋„๊ตฌ๊ฐ€ ์ ์  ๊ฐœ์„ ๋จ์— ๋”ฐ๋ผ ์ด๋ฅผ ๊ต์œก์  ์ธก๋ฉด์—์„œ ํšจ๊ณผ์ ์œผ๋กœ ํ™œ์šฉํ•˜๋Š” ๋ฐฉ์•ˆ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ์ง€์†๋˜์–ด์•ผ ํ•œ๋‹ค.โ… . ์„œ๋ก  1 1. ์—ฐ๊ตฌ์˜ ํ•„์š”์„ฑ๊ณผ ๋ชฉ์  1 2. ์—ฐ๊ตฌ ๋ฌธ์ œ 6 3. ์šฉ์–ด์˜ ์ •์˜ 7 ๊ฐ€. ์ธ๊ณต์ง€๋Šฅ 7 ๋‚˜. ์ธ๊ณต์ง€๋Šฅ ๋ฆฌํ„ฐ๋Ÿฌ์‹œ 8 ๋‹ค. ๋ธ”๋ Œ๋””๋“œ ๋Ÿฌ๋‹ 8 โ…ก. ์ด๋ก ์  ๋ฐฐ๊ฒฝ 9 1. ์ธ๊ณต์ง€๋Šฅ ๊ต์œก 9 ๊ฐ€. ์ธ๊ณต์ง€๋Šฅ์˜ ๊ฐœ๋… ๋ฐ ์œ ํ˜• 9 ๋‚˜. ์ธ๊ณต์ง€๋Šฅ ๊ต์œก์˜ ์œ ํ˜•๊ณผ ๊ตฌ์„ฑ ์š”์†Œ 12 ๋‹ค. ํ•™๊ต์—์„œ์˜ ์ธ๊ณต์ง€๋Šฅ ๊ต์œก์˜ ์ค‘์š”์„ฑ๊ณผ ์‚ฌ๋ก€ 15 2. ํ•™๊ต๊ต์œก์—์„œ์˜ ๋ธ”๋ Œ๋””๋“œ ๋Ÿฌ๋‹ 22 ๊ฐ€. ๋ธ”๋ Œ๋””๋“œ ๋Ÿฌ๋‹์˜ ์œ ํ˜•๊ณผ ๊ตฌ์„ฑ ์š”์†Œ 22 ๋‚˜. ํ•™๊ต๊ต์œก์—์„œ์˜ ๋ธ”๋ Œ๋””๋“œ ๋Ÿฌ๋‹์˜ ๊ต์œก์  ํšจ๊ณผ 26 3. ์ธ๊ณต์ง€๋Šฅ ๊ต์œก์„ ์œ„ํ•œ ๋ธ”๋ Œ๋””๋“œ ๋Ÿฌ๋‹ ๋ชจํ˜• 28 ๊ฐ€. ์ธ๊ณต์ง€๋Šฅ(๋จธ์‹ ๋Ÿฌ๋‹) ๊ต์œก ๋ชจํ˜• 28 ๋‚˜. ๋ธ”๋ Œ๋””๋“œ ๋Ÿฌ๋‹ ๋ชจํ˜•์˜ ์œ ํ˜• ๋ฐ ์‚ฌ๋ก€ 30 โ…ข. ์—ฐ๊ตฌ ๋ฐฉ๋ฒ• 35 1. ์—ฐ๊ตฌ ์ ˆ์ฐจ 36 2. ์—ฐ๊ตฌ ์ฐธ์—ฌ์ž ๋ฐ ๋„๊ตฌ 37 ๊ฐ€. ์—ฐ๊ตฌ ์ฐธ์—ฌ์ž 37 ๋‚˜. ์—ฐ๊ตฌ ๋„๊ตฌ 41 3. ์ดˆ๊ธฐ ์ˆ˜์—… ๋ชจํ˜• ๋ฐ ๊ต์ˆ˜์ „๋žต ๊ฐœ๋ฐœ ๊ณผ์ • 43 ๊ฐ€. ์„ ํ–‰ ๋ฌธํ—Œ ๊ฒ€ํ†  43 ๋‚˜. ๊ฒฝํ—˜์  ํƒ์ƒ‰ 44 4. ๋‚ด์  ํƒ€๋‹นํ™” 44 5. ์™ธ์  ํƒ€๋‹นํ™” 45 โ…ฃ. ์—ฐ๊ตฌ๊ฒฐ๊ณผ 46 1. ์ตœ์ข… ์ˆ˜์—… ๋ชจํ˜• ๋ฐ ๊ต์ˆ˜์ „๋žต 46 2. ์ดˆ๊ธฐ ์ˆ˜์—… ๋ชจํ˜• ๋ฐ ๊ต์ˆ˜์ „๋žต 50 ๊ฐ€. ์„ ํ–‰๋ฌธํ—Œ ๊ฒ€ํ† ๋ฅผ ํ†ตํ•œ ์ˆ˜์—… ๋ชจํ˜• ๋ฐ ๊ต์ˆ˜์ „๋žต ๋„์ถœ 50 ๋‚˜. ๊ฒฝํ—˜์  ํƒ์ƒ‰ 57 ๋‹ค. 1์ฐจ ์ˆ˜์—… ๋ชจํ˜• ๋ฐ ๊ต์ˆ˜์ „๋žต ๊ฐœ๋ฐœ 58 3. ๋‚ด์  ํƒ€๋‹นํ™” 64 ๊ฐ€. 1์ฐจ ์ „๋ฌธ๊ฐ€ ํƒ€๋‹นํ™” 64 ๋‚˜. 2์ฐจ ์ „๋ฌธ๊ฐ€ ํƒ€๋‹นํ™” 69 4. ์™ธ์  ํƒ€๋‹นํ™” 78 ๊ฐ€. ์ˆ˜์—…์˜ ์„ค๊ณ„ ๋ฐ ์‹คํ–‰ 78 ๋‚˜. ๊ต์ˆ˜์ž ๋ฐ˜์‘ 89 ๋‹ค. ํ•™์Šต์ž ๋ฐ˜์‘ 93 โ…ค. ๋…ผ์˜ ๋ฐ ๊ฒฐ๋ก  99 1. ๋…ผ์˜ 99 ๊ฐ€. ์ดˆ๋“ฑํ•™๊ต ์ธ๊ณต์ง€๋Šฅ ๋ฆฌํ„ฐ๋Ÿฌ์‹œ ๊ต์œก์„ ์œ„ํ•œ ๋ธ”๋ Œ๋””๋“œ ๋Ÿฌ๋‹ ๋ชจํ˜• ๋ฐ ์„ค๊ณ„ ์ „๋žต 99 ๋‚˜. ์ดˆ๋“ฑํ•™๊ต ์ธ๊ณต์ง€๋Šฅ ๋ฆฌํ„ฐ๋Ÿฌ์‹œ ๊ต์œก์„ ์œ„ํ•œ ๋ธ”๋ Œ๋””๋“œ ๋Ÿฌ๋‹ ๋ชจํ˜• ๋ฐ ์„ค๊ณ„ ์ „๋žต์— ๋Œ€ํ•œ ๋ฐ˜์‘๊ณผ ํšจ๊ณผ 100 2. ๊ฒฐ๋ก  ๋ฐ ์ œ์–ธ 103 ๊ฐ€. ๊ฒฐ๋ก  103 ๋‚˜. ์ œ์–ธ 104 ์ฐธ๊ณ ๋ฌธํ—Œ 106 ๋ถ€ ๋ก 115 Abstract 166์„

    ์ž๊ฐ€๊ฑด๊ฐ•์ „๋žต์˜ ํด๋Ÿฌ์Šคํ„ฐ๋ง๊ณผ ๋จธ์‹ ๋Ÿฌ๋‹ ๊ธฐ๋ฒ•์„ ์‚ฌ์šฉํ•œ ์•”์ƒ์กด์ž์˜ ์‚ถ์˜ ์งˆ ๋ฐ ์ง„ํ–‰์„ฑ ์•”ํ™˜์ž์˜ ์ƒ์กด ์˜ˆ์ธก

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ์˜๊ณผ๋Œ€ํ•™ ์˜๊ณผํ•™๊ณผ, 2023. 2. ์œค์˜ํ˜ธ.Background: In cancer-care, self-management strategies can help cancer patients improve their health-related quality of life (HRQoL) or survival, irrespective of the cancer stage or their treatment plan. However, there is insufficient research on the clustering of self-management strategies considering cancer stages in natural clinical settings; the prediction model of HRQoL or survival in cancer patients also lacks research. In addition, research that has comprehensively identified the relationship between self-management strategies, HRQoL, and survival still needs to be completed. Hence, we investigated their relationship using clustering methods, machine learning techniques (MLT), and path analysis of structural equation modeling (SEM). Methods: In cancer survivors, cluster analyses using principal component analyses in varimax rotation and clustering of the k-means method were conducted to examine the interrelationship among self-management strategies in smart management strategies for health assessment tool (SAT). Multivariate-adjusted analyses were performed to identify the association of self-management strategies with HRQoL after 6 months. We constructed the HRQoL prediction model and compared the performance of the model with ensemble algorithms including decision tree, random forest, gradient boosting, eXtreme Gradient Boost (XGBoost), and LightGBM. Next, we selected the XGBoost model for further analysis. We demonstrated critical features of HRQoL and extracted the individual prediction result in the XGBoost model using SHAP. In advanced cancer patients, self-management clustering and multivariate-adjusted analyses for examining the association of the strategies with the HRQoL were conducted the same way as in cancer survivors. We performed dimensional multiple Cox proportional hazard regression analyses to determine critical predictors for 1-year survival. We established a survival prediction model with the XGBoost method using MLT with the critical predictors in the Cox regression model. To examine the causal relationship among SAT strategies, HRQoL, and survival, we used a subgroup analysis and a path analysis of structural equation modeling. Results: All cancer survivors and advanced cancer patients experienced two clusters in the self-management strategies concurrently. However, the strategy clusters differed by cancer stage. Advanced-stage cancer patients used core strategies along with preparation and implementation strategies to overcome their crisis. Among all cancer patients, the self-management strategies had a positive association with improved HRQoL, even in advanced cancer patients. In the prediction model development, the XGBoost model for HRQoL showed high performance in cancer survivors. The important variables for each HRQoL factor were different. Moreover, there was a specific method to provide customized healthcare services by employing the individual prediction method with SHAP with a web-based survey study for cancer survivors. In advanced cancer patients, the univariate dimensional Cox model showed that ECOG performance status, marital status, sex, global QoL, dyspnea, pain, appetite loss, constipation, depression at baseline, and clinically meaningful change of emotional functioning were predictive factors with worse survival. In the prediction model using MLT, the XGBoost model of survival showed high performance. The performance was optimum when the model was constructed by combining variables selected by the Cox model and MLT methods: depression, pain, appetite loss, constipation, sex, ECOG performance status, and clinically meaningful change in emotional functioning. We also revealed a causal relationship among SAT strategies, depression, and survival in advanced cancer patients using path analysis. Conclusions: This study is the first to examine the self-management strategy clusters considering cancer stages and different groups of cancer patients, such as cancer survivors and advanced cancer patients. To our knowledge, this is first study to have developed and validated HRQoL prediction models, interpreted the models, and suggested utilization of these results in a clinical setting for cancer survivors. Additionally, we revealed an association of self-management strategies with HRQoL and survival in advanced cancer patients using MLT methods and path analysis. These study results can increase the understanding of self-management strategies and help healthcare providers with healthcare services for cancer patients in the cancer-care continuum.์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ: ์•” ์ผ€์–ด ์—ฐ์†์„ ์ƒ์—์„œ ์ž๊ฐ€๊ด€๋ฆฌ์ „๋žต์€ ์•” ๋ณ‘๊ธฐ ๋˜๋Š” ์น˜๋ฃŒ ๊ณ„ํš๊ณผ ๊ด€๊ณ„์—†์ด ์•”ํ™˜์ž์˜ ๊ฑด๊ฐ•๊ด€๋ จ ์‚ถ์˜ ์งˆ ๋˜๋Š” ์ƒ์กด์„ ๊ฐœ์„ ํ•˜๋Š”๋ฐ ๋„์›€์ด ๋  ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์‹ค์ œ ์ž„์ƒ ํ˜„์žฅ์—์„œ ์•” ๋ณ‘๊ธฐ๋ฅผ ๊ณ ๋ คํ•œ ์ž๊ฐ€๊ด€๋ฆฌ์ „๋žต์ด ์–ด๋–ป๊ฒŒ ํด๋Ÿฌ์Šคํ„ฐ๋ง ๋˜๋Š”์ง€์— ๋Œ€ํ•œ ์—ฐ๊ตฌ์™€ ์•”ํ™˜์ž์˜ ๊ฑด๊ฐ•๊ด€๋ จ ์‚ถ์˜ ์งˆ ๋˜๋Š” ์ƒ์กด ์˜ˆ์ธก ๋ชจ๋ธ์€ ๋ถ€์กฑํ•œ ์‹ค์ •์ด๋‹ค. ๋˜ํ•œ ์•”ํ™˜์ž์˜ ์ž๊ฐ€๊ด€๋ฆฌ์ „๋žต๊ณผ ๊ฑด๊ฐ•๊ด€๋ จ ์‚ถ์˜ ์งˆ, ์ƒ์กด ๊ฐ„์˜ ๊ด€๊ณ„๋ฅผ ์ข…ํ•ฉ์ ์œผ๋กœ ์‚ดํŽด๋ณธ ์—ฐ๊ตฌ๋Š” ์•„์ง๊นŒ์ง€ ์—†๋Š” ์‹ค์ •์ด๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ๋Š” ํด๋Ÿฌ์Šคํ„ฐ๋ง ํ†ต๊ณ„ ๋ฐฉ๋ฒ•, ๋จธ์‹ ๋Ÿฌ๋‹ ๊ธฐ์ˆ  ๋ฐ ๊ตฌ์กฐ๋ฐฉ์ •์‹ ๋ชจ๋ธ์˜ ๊ฒฝ๋กœ๋ถ„์„์„ ํ™œ์šฉํ•˜์—ฌ ์•”ํ™˜์ž์˜ ์ž๊ฐ€๊ด€๋ฆฌ์ „๋žต, ๊ฑด๊ฐ•๊ด€๋ จ ์‚ถ์˜ ์งˆ ๋ฐ ์ƒ์กด ๊ฐ„์˜ ๊ด€๊ณ„๋ฅผ ๊ทœ๋ช…ํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ์—ฐ๊ตฌ ๋ฐฉ๋ฒ•: ์•”์ƒ์กด์ž์˜ ๊ฒฝ์šฐ, ์ƒˆ๋กญ๊ฒŒ ๊ฐœ๋ฐœํ•œ ๊ฑด๊ฐ•๊ฒฝ์˜์ „๋žต(Smart Management Strategies for Health Assessment Tool, SAT)์œผ๋กœ ์ž๊ฐ€๊ด€๋ฆฌ์ „๋žต์„ ์ธก์ •ํ•˜์—ฌ SAT ์ „๋žต๋“ค ๊ฐ„์˜ ์ƒํ˜ธ๊ด€๊ณ„๋ฅผ ์กฐ์‚ฌํ•˜๊ธฐ ์œ„ํ•ด ์ฃผ์„ฑ๋ถ„ ๋ถ„์„๊ณผ K-mean ํด๋Ÿฌ์Šคํ„ฐ๋ง ๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉํ•œ ๊ตฐ์ง‘ ๋ถ„์„์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๋˜ํ•œ SAT ์ „๋žต๊ณผ 6๊ฐœ์›” ํ›„์˜ HRQoL ๊ฐ„์˜ ์—ฐ๊ด€์„ฑ์„ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค๋ณ€๋Ÿ‰ ๋ถ„์„์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์•”์ƒ์กด์ž์˜ HRQoL ์˜ˆ์ธก ๋ชจ๋ธ ๊ฐœ๋ฐœ ๋ฐ ๊ฒ€์ฆ์„ ์œ„ํ•ด์„œ๋Š” ์˜ˆ์ธก ๋ชจ๋ธ์„ ๊ตฌ์„ฑํ•˜๊ณ , ๊ฒฐ์ • ํŠธ๋ฆฌ, ๋žœ๋ค ํฌ๋ ˆ์ŠคํŠธ, ๊ฒฝ์‚ฌ ๋ถ€์ŠคํŒ… (Gradient boosting), XGBoost, and LightGBM์˜ ์•™์ƒ๋ธ” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์„ ๋น„๊ตํ•˜์˜€๋‹ค. ๋ชจ๋ธ ๋น„๊ต ํ›„, ์ถ”๊ฐ€ ๋ถ„์„์„ ์œ„ํ•ด ์ตœ์ข…์ ์œผ๋กœ XGBoost ๋ชจ๋ธ์ด ์„ ํƒ๋˜์—ˆ๊ณ , XGBoost์˜ HRQoL ์˜ˆ์ธก ๋ชจ๋ธ์˜ ์ค‘์š”ํ•œ ๋ณ€์ˆ˜๋ฅผ ์ฐพ๊ณ ์ž SHAP์„ ์‚ฌ์šฉํ•˜์—ฌ ํŠน์„ฑ ์ค‘์š”๋„ (Feature importance) ๋ฐ ๊ฐœ๋ณ„ ์˜ˆ์ธก (Individual prediction) ๋ถ„์„์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์ง„ํ–‰์„ฑ ์•”ํ™˜์ž์—์„œ HRQoL๊ณผ SAT ์ „๋žต์˜ ์—ฐ๊ด€์„ฑ์„ ์กฐ์‚ฌํ•˜๊ธฐ ์œ„ํ•œ ํด๋Ÿฌ์Šคํ„ฐ๋ง ๋ฐ ๋‹ค๋ณ€๋Ÿ‰ ๋ถ„์„ ๋ฐฉ๋ฒ•์€ ์•”์ƒ์กด์ž์—์„œ ์ˆ˜ํ–‰ํ–ˆ๋˜ ๋ฐฉ๋ฒ•๊ณผ ๋™์ผํ•˜์˜€๋‹ค. ์ƒ์กด ์˜ˆ์ธก ๋ชจ๋ธ ๊ฐœ๋ฐœ์„ ์œ„ํ•ด ๊ธฐ์กด์˜ ํ†ต๊ณ„๋ถ„์„์„ ์‚ฌ์šฉํ•˜์—ฌ ์ฐจ์› ๋‹ค์ค‘ Cox ๋น„๋ก€ ์œ„ํ—˜ ํšŒ๊ท€ ๋ถ„์„์„ ์ˆ˜ํ–‰ํ•˜์˜€๊ณ , ๋จธ์‹ ๋Ÿฌ๋‹ ๊ธฐ๋ฒ•์˜ XGBoost๋ฐฉ๋ฒ•์œผ๋กœ ์ƒ์กด ์˜ˆ์ธก ๋ชจ๋ธ์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ „ํ†ต์  ํ†ต๊ณ„ ๋ฐฉ๋ฒ•์— ์˜ํ•ด ์„ ํƒ๋œ ๋ณ€์ˆ˜์™€ ๋จธ์‹ ๋Ÿฌ๋‹ ๊ธฐ๋ฒ•์— ์˜ํ•ด ์„ ํƒ๋œ ๋ณ€์ˆ˜ ๋ฐ ๋‘ ๋ฐฉ๋ฒ•์— ์˜ํ•ด ์„ ํƒ๋œ ๋ณ€์ˆ˜๋ฅผ ๊ฒฐํ•ฉํ•˜์—ฌ ์˜ˆ์ธก๋ชจ๋ธ์„ ๊ฐœ๋ณ„์ ์œผ๋กœ ๊ตฌ์„ฑํ•˜์˜€๊ณ , ์„ฑ๋Šฅ์„ ๋น„๊ตํ•˜์˜€๋‹ค. ๋˜ํ•œ ๊ตฌ์กฐ๋ฐฉ์ •์‹ ๋ชจ๋ธ์„ ํ™œ์šฉํ•œ ๊ฒฝ๋กœ๋ถ„์„์„ ํ†ตํ•ด SAT ์ „๋žต๊ณผ HRQoL, ์ƒ์กด ๊ฐ„์˜ ์ธ๊ณผ๊ด€๊ณ„๋ฅผ ๊ทœ๋ช…ํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ์—ฐ๊ตฌ ๊ฒฐ๊ณผ: ์•”์ƒ์กด์ž ๋ฐ ์ง„ํ–‰์„ฑ ์•”ํ™˜์ž์˜ SAT ์ „๋žต ํด๋Ÿฌ์Šคํ„ฐ๋ง์€ ์•”๋ณ‘๊ธฐ์— ๋”ฐ๋ผ ๋‹ค๋ฅด๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ค‘๊ธฐ-๋ง๊ธฐ ๋‹จ๊ณ„ ์•” ํ™˜์ž๋“ค์€ ์ดˆ๊ธฐ ๋‹จ๊ณ„ ์•”ํ™˜์ž๋“ค์— ๋น„ํ•ด ์œ„๊ธฐ๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ์ž๊ฐ€๊ด€๋ฆฌ์ „๋žต์—์„œ ์น˜๋ฃŒ ์‹œ๊ธฐ ๋ฐ ์•”๋ณ‘๊ธฐ์— ๊ด€๊ณ„์—†์ด ๋ชจ๋“  ๋‹จ๊ณ„์—์„œ ์ค‘์š”ํ•œ ํ•ต์‹ฌ ์ „๋žต์„ ์ค€๋น„ ๋ฐ ์‹คํ–‰์ „๋žต๊ณผ ํ•จ๊ป˜ ์‚ฌ์šฉํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋˜ํ•œ ์ด๋Ÿฌํ•œ SAT ์ „๋žต์€ ์ง„ํ–‰์„ฑ ์•”ํ™˜์ž๋ฅผ ํฌํ•จํ•˜์—ฌ ๋ชจ๋“  ์•”ํ™˜์ž์—๊ฒŒ์„œ ๊ฐœ์„ ๋œ HRQoL๊ณผ ๊ธ์ •์ ์ธ ์—ฐ๊ด€์„ฑ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ๋จธ์‹ ๋Ÿฌ๋‹์„ ํ™œ์šฉํ•œ HRQoL์˜ ์˜ˆ์ธก ๋ชจ๋ธ์€ ์•”์ƒ์กด์ž์—์„œ ๋†’์€ ์˜ˆ์ธก ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ๊ฐ HRQoL ์š”์ธ์— ๋Œ€ํ•œ ์ค‘์š” ๋ณ€์ˆ˜๋Š” ์„œ๋กœ ๋‹ค๋ฅด๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋˜ํ•œ ๋ณธ ์—ฐ๊ตฌ๋Š” ์•”์ƒ์กด์ž๋ฅผ ๋Œ€์ƒ์œผ๋กœ ํ•œ ์›น ๊ธฐ๋ฐ˜ ์„ค๋ฌธ ์กฐ์‚ฌ ์—ฐ๊ตฌ์™€ ์ƒˆ๋กญ๊ฒŒ ์ฐพ์•„๋‚ธ SHAP์„ ํ†ตํ•œ ๊ฐœ์ธ ์˜ˆ์ธก ๋ฐฉ๋ฒ•์„ ์ ‘๋ชฉํ•จ์œผ๋กœ์จ ์•”์ƒ์กด์ž๋ฅผ ๋Œ€์ƒ์œผ๋กœ ํ•œ ๊ฐœ์ธ ๋งž์ถคํ˜• ์˜๋ฃŒ ์„œ๋น„์Šค ์ œ๊ณต ๋ฐฉ์•ˆ์„ ๊ตฌ์ฒด์ ์œผ๋กœ ์ œ์‹œํ•˜์˜€๋‹ค. ์ง„ํ–‰์„ฑ ์•”ํ™˜์ž์—์„œ ์ฐจ์›๋ณ„ ๋‹จ๋ณ€๋Ÿ‰ Cox ๋ชจ๋ธ์—์„œ๋Š” ECOG ์ˆ˜ํ–‰ ์ƒํƒœ, ์„ฑ๋ณ„, ๊ฒฐํ˜ผ์ƒํƒœ, ์ง„๋‹จ์‹œ์ ์—์„œ์˜ ์ผ๋ฐ˜์  ์‚ถ์˜ ์งˆ ์ €ํ•˜, ํ˜ธํก๊ณค๋ž€, ํ†ต์ฆ, ์‹์š•๊ฐํ‡ด, ๋ณ€๋น„, ์šฐ์šธ, 12์ฃผ ๋™์•ˆ์˜ ์ž„์ƒ์ ์œผ๋กœ ์˜๋ฏธ ์žˆ๋Š” ์ •์„œ์  ๊ธฐ๋Šฅ ๋ฐ ์‚ฌํšŒ์  ์ง€์ง€์˜ ๋ณ€ํ™”๊ฐ€ ์ตœ์ข…์ ์œผ๋กœ ๋” ์ €ํ•˜๋œ ์ƒ์กด๊ณผ ๊ด€๋ จ์ด ์žˆ๋Š” ์š”์ธ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋จธ์‹ ๋Ÿฌ๋‹๋ฐฉ๋ฒ•์„ ํ™œ์šฉํ•œ ์˜ˆ์ธก ๋ชจํ˜•์—์„œ๋„ ๋†’์€ ์ƒ์กด ์˜ˆ์ธก ์„ฑ๋Šฅ์ด ๋‚˜ํƒ€๋‚ฌ๊ณ , BorutaSHAP์„ ํ†ตํ•ด์„œ๋Š” ์šฐ์šธ, ํ†ต์ฆ, ์‹์š•๊ฐํ‡ด, ๋ณ€๋น„, ์„ฑ๋ณ„์ด ์ƒ์กด๊ณผ ์—ฐ๊ด€๋œ ์ค‘์š”ํ•œ ์š”์ธ์œผ๋กœ ์„ ๋ณ„๋˜์—ˆ๋‹ค. ๊ธฐ์กด์˜ ์ „ํ†ต์  ํ†ต๊ณ„๋ฐฉ๋ฒ•๊ณผ ๋จธ์‹ ๋Ÿฌ๋‹ ๊ธฐ๋ฒ•์œผ๋กœ ์„ ์ •๋œ ๋ณ€์ˆ˜๋ฅผ ๊ฒฐํ•ฉํ•˜์—ฌ ๋ชจ๋ธ์„ ๊ตฌ์„ฑํ•˜์˜€์„ ๋•Œ, ์ƒ์กด ์˜ˆ์ธก ๋ชจํ˜•์—์„œ ๊ฐ€์žฅ ๋†’์€ ์„ฑ๋Šฅ์ด ๋ฐœ๊ฒฌ๋˜์—ˆ๋‹ค. ๊ฒฝ๋กœ๋ถ„์„์—์„œ๋Š” SAT์ „๋žต, ์šฐ์šธ, ์ƒ์กด ๊ฐ„์˜ ์ธ๊ณผ๊ด€๊ณ„๋ฅผ ๋ฐํ˜”์œผ๋ฉฐ, ์šฐ์šธ ๋ณ€์ˆ˜๋ฅผ ์™„์ „ ๋งค๊ฐœ๋กœ SAT ์ „๋žต์˜ ์ƒ์กด์— ๋Œ€ํ•œ ๊ฐ„์ ‘ํšจ๊ณผ๊ฐ€ ์žˆ๋Š” ๊ฒƒ์ด ๋ฐœ๊ฒฌ๋˜์—ˆ๋‹ค. ์—ฐ๊ตฌ ๊ฒฐ๋ก : ๋ณธ ์—ฐ๊ตฌ๋Š” ์ฒ˜์Œ์œผ๋กœ ์•”์ƒ์กด์ž ๋ฐ ์ง„ํ–‰์„ฑ ์•”ํ™˜์ž๋ฅผ ๋ชจ๋‘ ํฌํ•จํ•˜์—ฌ ์•”๋ณ‘๊ธฐ๋ฅผ ๊ณ ๋ คํ•œ ์ž๊ฐ€๊ด€๋ฆฌ์ „๋žต ์‚ฌ์šฉ ๊ตฐ์ง‘ ๋ถ„์„์„ ์‹œ๋„ํ•˜์˜€๋‹ค. ๋˜ํ•œ ๋ณธ ์—ฐ๊ตฌ๋Š” ์ฒ˜์Œ์œผ๋กœ ์•”์ƒ์กด์ž์—๊ฒŒ ์ค‘์š”ํ•œ ๊ฑด๊ฐ•๊ด€๋ จ ์‚ถ์˜ ์งˆ์„ ์˜ˆ์ธกํ•˜๋Š” ๋‹จ์ˆœํ•œ ๋ชจ๋ธ์„ ๊ฐœ๋ฐœ ๋ฐ ๊ฒ€์ฆํ•˜์˜€๊ณ , ์„ค๋ช… ๊ฐ€๋Šฅํ•œ ์ธ๊ณต์ง€๋Šฅ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ™œ์šฉํ•˜์—ฌ ๋ชจ๋ธ์„ ํ•ด์„ํ•˜๊ณ , ์•”์ƒ์กด์ž๋ฅผ ์œ„ํ•ด ์ž„์ƒํ™˜๊ฒฝ์—์„œ ๋ณธ ์—ฐ๊ตฌ์˜ ๊ฒฐ๊ณผ ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ์•ˆ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋˜ํ•œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋จธ์‹ ๋Ÿฌ๋‹ ๊ธฐ๋ฒ•๊ณผ ๊ฒฝ๋กœ๋ถ„์„์„ ์‚ฌ์šฉํ•˜์—ฌ ์ง„ํ–‰์„ฑ ์•”ํ™˜์ž์˜ ์ž๊ฐ€๊ด€๋ฆฌ์ „๋žต๊ณผ ๊ฑด๊ฐ•๊ด€๋ จ ์‚ถ์˜ ์งˆ ๋ฐ ์ƒ์กด ๊ฐ„์— ์งยท๊ฐ„์ ‘์ ์œผ๋กœ ๊ธ์ •์ ์ธ ์—ฐ๊ด€์„ฑ์ด ์žˆ์Œ์„ ๋ฐœ๊ฒฌํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ์—ฐ๊ตฌ๊ฒฐ๊ณผ๋Š” ์ƒˆ๋กญ๊ฒŒ ๊ฐœ๋ฐœํ•œ SAT ์ž๊ฐ€๊ด€๋ฆฌ์ „๋žต์ด ์ž„์ƒ์žฅ๋ฉด์—์„œ ์•”ํ™˜์ž์—๊ฒŒ ์œ ์šฉํ•œ ๊ฐœ์ž… ๋„๊ตฌ๋กœ ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์—ฌ์ค€๋‹ค. ์ข…ํ•ฉ์ ์œผ๋กœ ๋ณธ ์—ฐ๊ตฌ๋Š” ์•”ํ™˜์ž์˜ ์ž๊ฐ€๊ด€๋ฆฌ์ „๋žต ์‚ฌ์šฉ ๋ฐ ๊ทธ ํšจ๊ณผ์„ฑ์— ๋Œ€ํ•œ ์ดํ•ด์˜ ํญ์„ ๋„“ํ˜”๊ณ , ์˜๋ฃŒ์ œ๊ณต์ž๊ฐ€ ์•” ์ผ€์–ด ์—ฐ์†์„ ์ƒ์—์„œ ์•”ํ™˜์ž์—๊ฒŒ ๋„์›€์ด ๋˜๋Š” ์˜๋ฃŒ ์„œ๋น„์Šค๋ฅผ ์ œ๊ณตํ•˜๋Š”๋ฐ ์ž๊ฐ€๊ด€๋ฆฌ์ „๋žต์„ ์–ด๋–ป๊ฒŒ ํ™œ์šฉํ•  ์ˆ˜ ์žˆ์„์ง€ ์ข…ํ•ฉ์ ์ธ ๊ฒฐ๊ณผ ๋ฐ ์ž„์ƒ์  ํ™œ์šฉ๋ฐฉ์•ˆ์„ ์ œ์‹œํ•˜์˜€๋‹ค๋Š”๋ฐ ์˜์˜๊ฐ€ ์žˆ๋‹ค.Chapter 1. Introduction 1 1.1. Study Background 1 1.2. Literature Review 7 1.3. Research Objectives and Hypothesis 16 1.4. Definition of cancer survivors and advanced cancer patients in this study 19 Chapter 2. Methods 21 2.1. Study Design 21 2.2. Study Participants 23 2.3. Measurements 25 2.4. Statistical Methods 30 Chapter 3. Results 42 3.1. Study Participantscharacteristics 42 3.2. Self-management clustering results 45 3.3. The association of self-management clustering with HRQoL 51 3.4. HRQoL prediction model development and validation 55 3.5. Survival prediction model development and validation 72 3.6. Causal relationship among SAT, HRQoL, and Survival 92 Chapter 4. Discussion 96 Chapter 5. Conclusion 104 Bibliography 105 Abstract in Korean 113 Supplementary Information 116๋ฐ•
    • โ€ฆ
    corecore