3 research outputs found

    ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•œ 2002~2020๋…„ ํ•œ๊ตญ์˜ O3, NO2, CO ๋†๋„์˜ ๊ณ ํ•ด์ƒ๋„ ์ถ”์ •

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๋ณด๊ฑด๋Œ€ํ•™์› ๋ณด๊ฑดํ•™๊ณผ, 2023. 2. ๊น€ํ˜ธ.Backrgound : Long-term exposure to ozone (O3), nitrogen dioxide (NO2), and carbon monoxide (CO) is known to cause various diseases and increase mortality. For that reason, estimating ground-level O3, NO2, and CO concentrations with a high spatial resolution is crucial for assessing the health effects associated with these air pollutants. However, related studies are limited in South Korea. This study aimed to develop machine learning-based models to predict the monthly O3 (average of daily 8-hour maximums), NO2, and CO at a spatial resolution of 1 km ร— 1 km across South Korea from 2002 to 2020. Methods : Approximately 80% of the monitoring stations were used to train the three machine learning models (random forest, light gradient boosting, and neural network) with a 10-fold cross-validation, and 20% of the monitoring stations were used to test the model performance. The author also applied ensemble models to integrate the variation in predictions among the models. Multiple predictors with satellite-based remote sensing data, inverse distance weighted ground-level air pollutants, land use variables, reanalysis datasets for meteorological variables, and regional socioeconmoic variables collected from various databases were included in the prediction model. Results : For O3, the overall R2 of the ensemble model was 0.841 during the entire study period. Urban areas showed a better model performance (R2 = 0.845) than rural areas (R2 = 0.762). For NO2, the highest overall R2 was 0.756, which best fit in autumn (R2 = 0.768). For CO, the overall R2 value was 0.506. This study provides high spatial resolution monthly average O3 and NO2 estimates with excellent performance (R2 > 0.75). Conclusion : The authors predictions can be used to analyze the spatial patterns in pollutants in relation to population characteristics and studies on the health effects of long-term exposure to air pollution using geocode-based health information and local health data.์—ฐ๊ตฌ๋ฐฐ๊ฒฝ : ์˜ค์กด(O3), ์ด์‚ฐํ™”์งˆ์†Œ(NO2), ์ผ์‚ฐํ™”ํƒ„์†Œ(CO)์— ์žฅ๊ธฐ๊ฐ„ ๋…ธ์ถœ๋˜๋ฉด ๊ฐ์ข… ์งˆ๋ณ‘์„ ์œ ๋ฐœํ•˜๊ณ  ์‚ฌ๋ง๋ฅ ์„ ๋†’์ด๋Š” ๊ฒƒ์œผ๋กœ ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ๊ทธ๋ ‡๊ธฐ์—, ๊ณ ํ•ด์ƒ๋„๋กœ ์ง€ํ‘œ๋ฉด O3, NO2, CO ๋†๋„๋ฅผ ์ถ”์ •ํ•˜๋Š” ๊ฒƒ์€ ์ด๋Ÿฌํ•œ ๋Œ€๊ธฐ์˜ค์—ผ๋ฌผ์งˆ๊ณผ ๊ด€๋ จ๋œ ๊ฑด๊ฐ• ์˜ํ–ฅ์„ ํ‰๊ฐ€ํ•˜๋Š” ๋ฐ ๋งค์šฐ ์ค‘์š”ํ•˜๋‹ค. ํ•˜์ง€๋งŒ, ์žฅ๊ธฐ๊ฐ„์— ๊ฑธ์ณ ๊ณ ํ•ด์ƒ๋„๋กœ ๊ฐ€์Šค์ƒ ๋Œ€๊ธฐ์˜ค์—ผ๋ฌผ์งˆ(O3, NO2, CO)๋ฅผ ์ถ”์ •ํ•œ ์—ฐ๊ตฌ๋Š” ๊ตญ๋‚ด์—์„œ ์•„์ง ์ง„ํ–‰๋œ ๋ฐ”๊ฐ€ ์—†๋‹ค. ๋”ฐ๋ผ์„œ, ๋ณธ ์—ฐ๊ตฌ๋Š” 2002๋…„๋ถ€ํ„ฐ 2020๋…„๊นŒ์ง€ ๋Œ€ํ•œ๋ฏผ๊ตญ ์ „์—ญ์—์„œ 1km ร— 1km์˜ ๊ณต๊ฐ„ํ•ด์ƒ๋„๋กœ ์›”๋ณ„ O3(์ผํ‰๊ท  8์‹œ๊ฐ„ ์ตœ๋Œ€์น˜), NO2, CO๋ฅผ ๋จธ์‹ ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ๋ชจ๋ธ ๋ฐ ๊ทธ๋“ค์˜ ์•™์ƒ๋ธ” ๋ชจํ˜•์„ ํ†ตํ•ด ์˜ˆ์ธกํ•˜๊ณ ์ž ํ•œ๋‹ค. ์—ฐ๊ตฌ๋ฐฉ๋ฒ• : 3๊ฐ€์ง€ ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ(๋žœ๋ค ํฌ๋ ˆ์ŠคํŠธ, ๋ผ์ดํŠธ ๊ทธ๋ž˜๋””์–ธํŠธ ๋ถ€์ŠคํŒ…, ์‹ ๊ฒฝ๋ง)์˜ ์ตœ์ ์˜ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ฐพ๊ธฐ ์œ„ํ•ด ๋ชจ๋‹ˆํ„ฐ๋ง ์Šคํ…Œ์ด์…˜์˜ ์•ฝ 80%๋ฅผ ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ๋กœ ์‚ฌ์šฉํ•˜์˜€๊ณ , 10-fold ๊ต์ฐจ๊ฒ€์ฆ์„ ํ†ตํ•ด ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ ๋‚ด์—์„œ ํ›ˆ๋ จ/ํ‰๊ฐ€ ๋‹จ๊ณ„๋ฅผ ๊ฑฐ์ณค์œผ๋ฉฐ, ๋‚˜๋จธ์ง€ ๋ชจ๋‹ˆํ„ฐ๋ง ์Šคํ…Œ์ด์…˜์˜ 20%๋ฅผ ๋ชจ๋ธ ํ‰๊ฐ€์— ์‚ฌ์šฉํ•˜์˜€๋‹ค. ์—ฌ๊ธฐ์— ์ถ”๊ฐ€๋กœ ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ ๊ฐ„์˜ ์˜ˆ์ธก ๋ณ€๋™์„ ํ†ตํ•ฉํ•˜๊ธฐ ์œ„ํ•ด ์•™์ƒ๋ธ” ๋ชจ๋ธ์„ ์ ์šฉํ–ˆ๋‹ค. ๋ฐ์ดํ„ฐ์—๋Š” ์œ„์„ฑ ๊ธฐ๋ฐ˜ ์›๊ฒฉ ๊ฐ์ง€ ๋ฐ์ดํ„ฐ, ์—ญ๊ฑฐ๋ฆฌ ๊ฐ€์ค‘์น˜ ๊ธฐ๋ฐ˜ ๋Œ€๊ธฐ์˜ค์—ผ๋†๋„, ํ† ์ง€ ์ด์šฉ ๋ณ€์ˆ˜, ๊ธฐ์ƒ ์žฌ๋ถ„์„ ์ž๋ฃŒ, ๋‹ค์–‘ํ•œ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค์—์„œ ์ˆ˜์ง‘๋œ ์ง€์—ญ ์‚ฌํšŒ๊ฒฝ์ œ์  ๋ณ€์ˆ˜ ๋“ฑ์ด ํฌํ•จ๋˜์—ˆ๋‹ค. ์—ฐ๊ตฌ๊ฒฐ๊ณผ : O3์˜ ๊ฒฝ์šฐ, ์ „์ฒด ์—ฐ๊ตฌ ๊ธฐ๊ฐ„ ๋™์•ˆ ์•™์ƒ๋ธ” ๋ชจ๋ธ์˜ R2๊ฐ€ 0.841์„ ๊ธฐ๋กํ–ˆ์œผ๋ฉฐ, ๋„์‹œ ์ง€์—ญ์ด ๋†์ดŒ ์ง€์—ญ(R2 = 0.762)๋ณด๋‹ค ์šฐ์ˆ˜ํ•œ ์˜ˆ์ธก ์„ฑ๋Šฅ(R2 = 0.845)์„ ๋ณด์˜€๋‹ค. NO2์˜ ๊ฒฝ์šฐ, ์•™์ƒ๋ธ”(ํ‰๊ท ) ๋ชจ๋ธ์˜ R2๊ฐ€ 0.756์œผ๋กœ ๊ฐ€์žฅ ๋†’์•˜์œผ๋ฉฐ, ๊ณ„์ ˆ๋กœ ๋ณด๋ฉด ๊ฐ€์„์— ์˜ˆ์ธก ์„ฑ๋Šฅ์ด ๊ฐ€์žฅ ๋†’์•˜๋‹ค(R2 = 0.768). CO์˜ ๊ฒฝ์šฐ, R2๊ฐ€ 0.506 ์„ ๊ธฐ๋กํ–ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” O3 ๋ฐ NO2 ์—์„œ R2 > 0.75 ์œผ๋กœ ๋†’์€ ์˜ˆ์ธก๋ ฅ์˜ ๊ณ ํ•ด์ƒ๋„ ์›”ํ‰๊ท  ์ถ”์ •์น˜๋ฅผ ์ œ๊ณตํ•œ๋‹ค. ๊ฒฐ๋ก  : ๋ณธ ์—ฐ๊ตฌ์—์„œ ์–ป์–ด์ง„ ๋Œ€๊ธฐ์˜ค์—ผ ์ถ”์ • ๊ฒฐ๊ณผ๋Š” ์ธ๊ตฌ ํŠน์„ฑ๊ณผ ๊ด€๋ จ๋œ ๊ฐ€์Šค์ƒ ๋Œ€๊ธฐ์˜ค์—ผ๋ฌผ์งˆ์˜ ๊ณต๊ฐ„ ํŒจํ„ด์„ ๋ถ„์„ํ•˜๊ฑฐ๋‚˜, ์œ„์น˜ ๊ธฐ๋ฐ˜ ๊ฑด๊ฐ• ์ •๋ณด์™€ ํ–‰์ •๊ตฌ์—ญ ๋‹จ์œ„ ๊ฑด๊ฐ• ๋ฐ์ดํ„ฐ์™€ ์—ฎ์—ฌ์„œ ์žฅ๊ธฐ๊ฐ„ ๋Œ€๊ธฐ์˜ค์—ผ ๋…ธ์ถœ์˜ ๊ฑด๊ฐ• ์˜ํ–ฅ์„ ํ‰๊ฐ€ํ•˜๋Š” ์—ฐ๊ตฌ์— ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค.Chapter 1. Introduction 1 Chapter 2. Materials and Methods 6 2.1. Study area 6 2.2. Air pollution monitoring data 6 2.3. Satellite-based remote sensing data 7 2.3.1. Meteorological data 7 2.3.2. Land-use data 10 2.3.3. Surface reflectance 11 2.4. Regional socioeconomic predictors 12 2.5. Modeling procedures 13 2.5.1. Data Preprocessing 14 2.5.2. Machine learning-based model 15 2.5.3. Ensemble Model 16 2.5.4. Model Prediction 17 Chapter 3. Results 19 Chapter 4. Discussion 29 Chapter 5. Conclusion 34 Supplementary materials 47 ๊ตญ๋ฌธ ์ดˆ๋ก 82 Tables Table 1. Model performance for O3, NO2, and CO overall and in three- and four-year periods 21 Table S1. Detailed information about data sources 61 Table S2. Variables sorted by % missing values 65 Table S3. Results of parameter grid search using 10-fold cross-validation for O3, NO2 and CO 68 Table S4. Yearly ensemble (GAM) performance for O3, NO2, and CO 70 Table S5. Model performances for O3, NO2, and CO by season and urbanity 71 Table S6. Number of monitoring stations by year for O3, NO2 and CO in urban and rural areas 73 Figures Fig. 1. Flowchart of the modeling process. GEE: Google Earth Engine, SEDAC: Socioeconomic Data and Applications Center, RSD: Regional Socioeconomic Database from Korean Disease Control and Prevention Agency 18 Fig. 2. Density scatter plot for monthly averages of the monitored and predicted concentrations of O3, NO2, and CO 26 Fig. 3. Maps of monitored and predicted O3, NO2 and CO during 2002~2020 27 Fig. 4. Percentage decrease in R2 when excluding grouped variables from each machine learning model of O3, NO2, and CO. The closer the color is to red, the greater the effect of the variables on the model performance 28 Fig. S1. Urban/Rural and Metropolitan (Metro) area for entire contiguous regions of South Korea 74 Fig. S2. Distribution maps of predicted O3 (ppb) by year and season for contiguous South Korea 75 Fig. S3. Distribution maps of predicted NO2 (ppb) by year and season for contiguous South Korea 76 Fig. S4. Distribution maps of predicted CO (ppm) by year and season for contiguous South Korea 77 Fig. S5. Monthly fluctuations in the number of monitoring stations for O3, NO2, and CO between 2002 and 2020 78 Fig. S6. Density scatter plot for monthly averages of the monitored and predicted concentrations of O3, NO2, and CO with seasonal discrimination 79์„

    ๊ณ„ํ†ต์†์‹ค ๊ฐ์†Œ๋ฅผ ์œ„ํ•œ ๋นŒ๋”ฉ ๋‚ด PHEV ์ถฉ๋ฐฉ์ „ ์Šค์ผ€์ค„๋ง

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2012. 8. ๋ฌธ์Šน์ผ.์ง€๊ตฌ์˜จ๋‚œํ™”์— ์˜ํ•œ ์ด์ƒ๊ธฐํ›„ํ˜„์ƒ์ด ์‹ฌํ•ด์ง€๋ฉด์„œ ์ด์‚ฐํ™”ํƒ„์†Œ์˜ ๋ฐฐ์ถœ์ด ์ „ํ˜€ ์—†๋Š” ์ „๊ธฐ์ž๋™์ฐจ์— ๋Œ€ํ•œ ๊ด€์‹ฌ์ด ๋†’์•„์ง€๊ณ  ์žˆ๋‹ค. ํŠนํžˆ ๋ฐค์‹œ๊ฐ„ ๋™์•ˆ ๋‹ค์ˆ˜์˜ Onboard Charger PHEV ์ถฉ์ „์œผ๋กœ ์ธํ•ด ๋ถ€ํ•˜๊ฐ€ ์ฆ๊ฐ€ํ•˜๊ฒŒ ๋˜๋ฉด ๋ฐฐ์ „๋‹จ์˜ ์ „์••์ด ๋–จ์–ด์งˆ ์ˆ˜ ์žˆ๊ณ  off peak๊ฐ€ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ ์ „๋ ฅ ์†์‹ค๋„ ์ฆ๊ฐ€ํ•˜๊ฒŒ ๋˜์–ด ๋ฐฐ์ „๊ณ„ํ†ต์— ์•…์˜ํ–ฅ์„ ๋ฏธ์น  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ ์„ ๋กœ์šฉ๋Ÿ‰์˜ ์ œ์•ฝ์— ๊ฑธ๋ ค ์„ ๋กœ์šฉ๋Ÿ‰์˜ ์ฆ๊ฐ€๋ฅผ ์œ„ํ•ด ๋น„์šฉ์ด ๋“ค๊ฑฐ๋‚˜ ์ผ๋ถ€์˜ ์ž๋™์ฐจ๋Š” ์ถฉ์ „์„ ๋ชปํ•˜๊ณ  ๊ธฐ๋‹ค๋ ค์•ผ ํ•˜๋Š” ๋ฌธ์ œ์ ์ด ๋ฐœ์ƒํ•œ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๊ฑด๋ฌผ์— ๋‹ค์ˆ˜์˜ PHEV๊ฐ€ ๊ฐ๊ฐ ๊ฑด๋ฌผ์˜ 3์ƒ ์ค‘ ํ•˜๋‚˜์˜ ์ƒ์— ๋ฌด์ž‘์œ„๋กœ ์—ฐ๊ฒฐ๋˜์–ด ์ถฉ์ „์„ ํ•˜๋ฉด ๋นŒ๋”ฉ ๋ถ€ํ•˜์˜ 3์ƒ ๋ถˆ๊ท ํ˜• ์ •๋„๊ฐ€ ์‹ฌํ•ด์งˆ ์ˆ˜ ์žˆ๋‹ค. ์ด์— ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋ฐฐ์ „๊ณ„ํ†ต์˜ ๋ชจ๋“  ๋ชจ์„ ์˜ ์ „์••์„ ๊ทœ์ • ๋ฒ”์œ„ ๋‚ด์—์„œ ์œ ์ง€ํ•˜๋ฉด์„œ ์‚ฌ์šฉ์ž๊ฐ€ ์›ํ•˜๋Š” ์‹œ๊ฐ„๊นŒ์ง€ ์ถฉ์ „์„ ์™„๋ฃŒํ•˜๋ฉฐ PHEV ์ถฉ์ „์œผ๋กœ ์ธํ•œ ์„ ๋กœ ์šฉ๋Ÿ‰์˜ ์ฆ๊ฐ€๋ฅผ ๊ฐ์†Œ์‹œํ‚ค๋ฉด์„œ ๋นŒ๋”ฉ์˜ 3์ƒ ๋ถ€ํ•˜ ๋ถˆํ‰ํ˜•์„ ์ค„์ด๊ณ  ๊ณ„ํ†ต ์ „์ณฌ์˜ ์œ ํšจ์ „๋ ฅ ์†์‹ค์„ ๊ฐ์†Œ ์‹œํ‚ค๊ธฐ ์œ„ํ•œ PHEV์˜ ์œ ํšจ์ „๋ ฅ๊ณผ ๋ฌดํšจ์ „๋ ฅ ์ œ์–ด ๋ฐฉ์•ˆ์„ ์ œ์•ˆํ•œ๋‹ค. ์ด์™€ ๊ฐ™์€ ์Šค์ผ€์ค„๋ง์„ ์œ„ํ•ด์„œ ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” Linear Programming(LP)์„ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ์•„์šธ๋Ÿฌ ๋ณธ ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆ๋œ PHEV ์œ ํšจ์ „๋ ฅ, ๋ฌดํšจ์ „๋ ฅ ์ œ์–ด ๋ฐฉ์•ˆ์„ ์ด๋ก ์ ์œผ๋กœ ๋ถ„์„ํ•˜์˜€๊ณ , ๋นŒ๋”ฉ ๋ถ€ํ•˜๊ฐ€ 3์ƒ ํ‰ํ˜•์ธ ๊ฒฝ์šฐ, 3์ƒ ๋ถˆํ‰ํ˜•์ธ ๊ฒฝ์šฐ, ์ž๋™์ฐจ์˜ ๋Œ€์ˆ˜๊ฐ€ ๋ณ€ํ•˜๋Š” ๊ฒฝ์šฐ ๋“ฑ์˜ ์‚ฌ๋ก€ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์„ ๊ฒ€์ฆํ•˜์˜€๋‹ค.๊ตญ๋ฌธ ์ดˆ๋ก......................................................................................................................................โ…ฐ ๋ชฉ์ฐจ.................................................................................................................................................โ…ฑ ๊ทธ๋ฆผ๋ชฉ์ฐจ.........................................................................................................................................โ…ณ ํ‘œ๋ชฉ์ฐจ.............................................................................................................................................โ…ด ์ œ 1 ์žฅ ์„œ๋ก .................................................................................................1 1.1 ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ์—ฐ๊ตฌ ๋‚ด์šฉ............................................................................................1 1.2 ๋…ผ๋ฌธ์˜ ๊ตฌ์„ฑ ๋ฐ ๊ฐœ์š”..................................................................................................4 ์ œ 2 ์žฅ PHEV P, Q ์Šค์ผ€์ค„๋ง์„ ํ†ตํ•œ ๊ณ„ํ†ต์†์‹ค์ตœ์†Œํ™”...................6 2.1 ๊ณ„ํ†ต์†์‹ค์ตœ์†Œํ™”๋ฅผ ์œ„ํ•œ PHEV P, Q ํ˜‘์กฐ ์Šค์ผ€์ค„๋ง์˜ ํƒ€๋‹น์„ฑ......................6 2.2 ์ด๋ก ์  ๋ถ„์„์„ ํ†ตํ•œ PHEV์˜ ๋ฌดํšจ์ „๋ ฅ ๊ณต๊ธ‰ ํšจ๊ณผ ๊ณ ์ฐฐ.................................8 ์ œ 3 ์žฅ LP๋ฅผ ์ด์šฉํ•œ PHEV์˜ P, Q ์Šค์ผ€์ค„๋ง.................................13 3.1 ๋ฌธ์ œ์˜ ์ •์‹ํ™”.............................................................................................................13 3.1.1 ๋ชฉ์ ํ•จ์ˆ˜............................................................................................................14 3.1.2 ์ œ์•ฝ์กฐ๊ฑด............................................................................................................15 3.2 PHEV์˜ ์œ ํšจ์ „๋ ฅ, ๋ฌดํšจ์ „๋ ฅ์˜ ์Šค์ผ€์ค„๋ง์„ ์œ„ํ•œ LP......................................16 ์ œ 4 ์žฅ ์‚ฌ๋ก€ ์—ฐ๊ตฌ.....................................................................................20 4.1 ๋ชจ์˜ ๊ณ„ํ†ต์˜ ๊ตฌ์„ฑ......................................................................................................20 4.2 ์‚ฌ๋ก€ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ..........................................................................................................23 4.2.1 ๋นŒ๋”ฉ ๋ถ€ํ•˜๊ฐ€ 3์ƒ ํ‰ํ˜•์ธ ๊ฒฝ์šฐ....................................................................23 4.2.2 ๋นŒ๋”ฉ ๋ถ€ํ•˜๊ฐ€ 3์ƒ ๋ถˆํ‰ํ˜•์ธ ๊ฒฝ์šฐ................................................................25 4.2.3 ์‹œ๊ฐ„ ๋งˆ๋‹ค PHEV ๋Œ€์ˆ˜๊ฐ€ ๋ฐ”๋€Œ๋Š” ๊ฒฝ์šฐ....................................................27 ์ œ 5 ์žฅ ๊ฒฐ๋ก ................................................................................................30Maste

    A New Control Scheme and Modeling Method for Enhancing Normal Operation and Abnormal Estimation of LCC HVDC System

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2018. 2. ๋ฌธ์Šน์ผ.A new modeling method for high voltage direct current (HVDC) systems and associated controllers is presented for the Power System Simulator for Engineering (PSS/E) simulation environment. The aim is to improve the estimation of transient DC voltages and currents during temporary AC line-to-ground faults. The proposed method consists mainly of three interconnected modules for (a) equation conversion, (b) control-mode selection, and (c) DC-line modeling. Simulation case studies were carried out using PSS/E and a PSCAD/EMTDC model of the Jeju-Haenam HVDC system in Korea. Moreover, a new control method for a line-commutated converter-based (LCC) high-voltage direct-current (HVDC) system is presented and compared to a conventional strategy. In the proposed method, both the DC voltage and current of an LCC HVDC system are regulated to increase the short-term operating margin of DC power transfer and improve transient responses to DC power references. In particular, an increased operating margin of DC power transfer is achieved via the DC voltage regulation method. To verify the effectiveness of the proposed method, a state space model of an LCC HVDC system is developed considering DC voltage and current references as input variables and analyzed for various values of the DC line inductance and converter controller gains. The state space model can be used for time-efficient analyses of the dynamic characteristics of an LCC HVDC system. Simulation case studies are performed using MATLAB, where the state space model of the Jeju-Haenam HVDC system is implemented as a test case and compared to its comprehensive PSCAD model. The simulation results are compared with real operational data and the PSCAD/EMTDC simulation results of the HVDC system during single-phase and three-phase line-to-ground faults, respectively. These comparisons show that the proposed PSS/E modeling method resulted in improved estimation of the dynamic variations in the DC voltage and current for AC network faults, with significant gains in computational efficiency, making it suitable for real-time analysis of HVDC systems. Another the case study results suggest that the proposed method increases the short-term operating margin and speeds up the transient response of the HVDC system. Therefore, it will effectively improve the real-time grid frequency regulation.Chapter 1 Introduction 1 1.1 Motivations and purposes 1 1.2 Highlights and contributions 7 1.3 Dissertations organization 9 Chapter 2 Modeling Methods of LCC HVDC for PSS/E 10 2.1 PSS/E simulation environment 10 2.2 Proposed modeling method for PSS/E 15 2.2.1 Equation conversion 17 2.2.2 Control-mode selection 21 2.2.3 DC-line modeling 25 Chapter 3 Proposed Control Scheme of an LCC HVDC System 27 3.1 Proposed control of an LCC HVDC system 27 3.1.1 State space model for the proposed control method 28 3.1.2 Shortterm operating margin of DC power transfer 39 3.1.3 Root locus analysis of the state space model 38 Chapter 4 Case Study 43 4.1 Test system and simulation conditions of PSS/E model 43 4.1.1 Test system and simulation condition 43 4.1.2 Case 1-comparisons with the real HVDC system 45 4.1.3 Case 2-comparisons with the PSCAD model 48 4.1.4 Case 3-considering the DC-line models and Rcc 51 4.2 Test system and simulation conditions of proposed model 53 4.2.1 Test system and simulation conditions 53 4.2.2 Comparisons of step responses for control methods 55 4.2.3 Comparisons of step responses for DC line parameters 62 4.2.4 Responses to contimuous time-varying reference 64 4.2.5 Frequency regulation using proposed HVDC system 67 Chapter 5 Conclusions and Further Studies 78 References 80 Abstract 89Docto
    corecore