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Abstract

Backrgound : Long—term exposure to ozone (O3), nitrogen dioxide
(NO2), and carbon monoxide (CO) is known to cause various
diseases and increase mortality. For that reason, estimating
ground—level O3, NO2, and CO concentrations with a high spatial
resolution is crucial for assessing the health effects associated with
these air pollutants. However, related studies are limited in South
Korea. This study aimed to develop machine learning—based models
to predict the monthly O3 (average of daily 8 —hour maximums),
NOg, and CO at a spatial resolution of 1 km X 1 km across South
Korea from 2002 to 2020.

Methods : Approximately 80% of the monitoring stations were used
to train the three machine learning models (random forest, light
gradient boosting, and neural network) with a 10—fold cross—
validation, and 20% of the monitoring stations were used to test the
model performance. The author also applied ensemble models to
integrate the variation in predictions among the models. Multiple
predictors with satellite—based remote sensing data, inverse
distance weighted ground—level air pollutants, land use variables,
reanalysis datasets for meteorological wvariables, and regional

socioeconmoic variables collected from various databases were



included in the prediction model.

Results : For Os, the overall R? of the ensemble model was 0.841
during the entire study period. Urban areas showed a better model
performance (R? = 0.845) than rural areas (R* = 0.762). For NOg,
the highest overall R? was 0.756, which best fit in autumn (R? =
0.768). For CO, the overall R? value was 0.506. This study provides
high spatial resolution monthly average O3 and NO3z estimates with
excellent performance (R?> 0.75).

Conclusion : The author’s predictions can be used to analyze the
spatial patterns in pollutants in relation to population characteristics
and studies on the health effects of long—term exposure to air
pollution using geocode—based health information and local health

data.

Keywords : Gaseous air pollution, Exposure assessment, High
spatial resolution, Machine learning model, Ensemble model
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Chapter 1. Introduction

Numerous studies have consistently identified that exposure to
ground—level gaseous air pollutants, such as ozone (O3), nitrogen
dioxide (NO2), and carbon monoxide (CO), affects various health
outcomes. Exposure to O3 can cause diabetes mellitus (Li et al.,
2021) and respiratory diseases (Lin et al., 2008; Rhee et al., 2019).
Exposure to NO2 is associated with cardiopulmonary system
disorders (Dijkema et al., 2016), and mortality rate could be
elevated by exposed to O3 and NO. (Heinrich et al., 2013; Huang et
al., 2021b; Lim et al., 2019; Niu et al., 2022). Also, long—term
exposure to Oz, NOg, and CO is related to cardiovascular diseases
(Kim et al., 2017). Other studies found that the risk of lung and
liver cancers might be associated with the gaseous air pollutants
(Bala et al., 2021; So et al.,, 2021; Yazdi et al.,, 2019), and the
negative effects on health have been observed across all age
groups: from newborns to elderly (Dimakopoulou et al., 2020;
Heinrich et al., 2013; Huang et al., 2021b; Lin et al., 2008; Rhee et
al.,, 2019). Recent studies have suggested that an increase in air
pollution can affect Coronavirus 2019 infection (COVID—19)
(Travaglio et al., 2021; Zheng et al., 2021) and its fatality (Garcia

et al., 2022; Konstantinoudis et al., 2021).
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Monitors of air pollution have been used in numerous studies to
investigate how exposure to air pollution impacts human health
outcomes, monitoring networks generally are disproportionately
located in urban areas and even within cities do not fully capture
spatial heterogeneity of air pollution exposure. Further, several
studies have shown that air pollution monitors in some countries
such as the United States and Brazil are disproportionately located
in some communities, providing less information for other
communities (Bravo et al., 2016; Ebisu et al., 2014). Further, some
monitoring networks do not provide daily data. Regional air quality
modeling, such as the Weather Research and Forecasting Model —
Community Muldiscale Air Quality Modeling System (WRF—-CMAQ)
(Wong et al., 2012) can provide full spatial and temporal coverage,
but are often time consuming and computationally costly to conduct

for large areas at high spatial resolution.

Therefore, to estimate and prevent health impacts attributable to
these gas pollutants, many studies have developed models to
predict the group—level concentration of gaseous air pollutants in
order to provide estimates of concentrations at times and locations
for which monitoring data are not available. Most of these studies
used spatial interpolation approaches with dispersion models with

O3, NOg, and CO (Liu et al., 2019b), land use regression models
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(LUR) for Oz and NOz (Kerckhoffs et al., 2015; Rosenlund et al.,
2008), LUR with chemical transport modeling approaches for Os
(Wang et al., 2016), and LUR with satellite—based models for NO3
(Chen et al., 2020; Vienneau et al., 2013; Young et al., 2016). In the
case of NOg, LUR with traffic—related factors has been widely used
to estimate ground—Ilevel concentrations (Bechle et al., 2015; Chen
et al., 2020; Larkin et al., 2017; Vienneau et al., 2013; Young et al.,

2016).

However, these modeling approaches have limitations. First,
spatial interpolation methods, such as inverse distance weighting
(IDW) and kriging, are based on the hypothesis that air pollutants
have a distance—decay relationship over the study area. However,
considering only spatial correlation with a variogram is inadequate
for considering complex geographical information (Lu and Wong,
2008) and the interpolation methods do not address geographical
and meteorological factors that could affect air pollutants (Chen et
al., 2012; Rosenlund et al., 2008). Further, such approaches are
limited by the existing air pollution monitoring network, which may
not well represent all areas. As an alternative approach, LUR with
geographical and meteorological predictors has been widely
performed (Chen et al., 2012; Chen et al.,, 2020), and while this

approach is useful, it has disadvantages because it is based on
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linear regression methods. Particularly, limitations can exist if some
of the predictors have complex nonlinear relationships with air
pollutants, if some variables are not fully available for the whole
study area and time period, or if there are high—order interactions
among predictors and pollutants (Zhan et al., 2018). Also, the same
problem can arise with mixed—effect models and geographically
welghted regression because these models assumed a linear

relationship between predictor variables and outcome variable (Di

et al., 2019b).

To address the limitations of conventional prediction models,
recent studies have conducted prediction modeling based on
machine —learning methods (Araki et al., 2021; Chen et al., 2021;
Zhan et al., 2018). Nonetheless, few studies can address various
types of predictors that may crucially contribute to the performance
of prediction models because of limited data sources and problems
in computational time and memory storage capacity, especially in
relation to satellite—based remote sensing data that include multiple
environmental, land—use, demographic, and meteorological variables

(Gorelick et al., 2017).

This study aimed to develop machine learning—based prediction

models for the monthly average concentrations of gaseous air

4 2] .
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pollutants covering Oz, NOg9, and CO at a resolution of 1 km X 1 km
across South Korea from 2002 to 2020. Satellite—based remote
sensing data were mainly obtained from Google Earth Engine (GEE)
(Tamiminia et al., 2020) and other predictors to increase prediction
performance were collected from the Socioeconomic Data and
Applications Center (SEDAC) and a database of community health
outcomes and health determinants (hereafter, regional
socioeconomic database) provided by the Korean Disease Control
and Prevention Agency. To the best of the author’s knowledge, this
is the first study to develop machine learning—based air pollution
prediction models that cover all areas in South Korea with high

spatial resolution and long timeframe.



Chapter 2. Materials and Methods

2.1. Study area

This study covered the entire region of South Korea for January
2002 to December 2020. Because there were limitations in
collecting reliable remote sensing data, the author excluded island
areas from this study. The total number of grids was 97,653 in the

entire study area, with gridcell resolution at 1 km X 1 km.

2.2.  Air pollution monitoring data

As response variables for prediction models, the author collected
ground—level hourly measured O3, NO2z, and CO concentrations from
the Air Korea database provided by the Korea Environment
Corporation (URL is presented in Table S1). To reduce potential
observation biases, the author used concentration data from
monitoring sites with observations for = 9 months per year for a
given pollutant. The total number of selected monitoring sites was
480 for O3 and NOg, and 447 for CO. From the selected monitoring
sites, the author calculated the monthly average of daily maximum
8—h Os, monthly average of daily NO: values, and monthly average

of daily CO.



Because monitoring stations are not equally distributed across the
study area and the monitoring data from nearby monitoring sites are
more correlated than data from faraway sites, the author used the
IDW, a commonly applied spatial interpolation method. Specifically,
the author used monitoring data to compute the IDW for Os, NOg,
and CO at each 1 km X 1 km grid and added these estimations as

predictor variables in the author’s model.

2.3. Satellite-based remote sensing data

The author extracted multiple remote sensing variables from the
GEE and SEDAC, including meteorological data (with AOD), land—
use data, and surface reflectance. The author aggregated all
collected predictor variables at each 1 km X 1 km grid cell, and
calculated the monthly averages or categorical value that appears
most in the month for each grid cell. If provided resolution of a
variable is coarser than 1 km X 1 km (e.g. 11 km X 11 km), the
author assigned the value of the coarser resolution grid cell to all 1
km X 1 km grid cells within that larger grid cell. A full list of 78
remote sensing variables can be found in the supplementary

material (Section 1.2 and Table S1).

2.3.1. Meteorological data



O3, NOg, and CO concentrations can be affected spatially and
temporally by meteorological factors such as temperature, wind
speed and direction, precipitation, humidity, and cloud droplets
(Requia et al., 2020; Yinusa et al.,, 2019; Zhan et al., 2018).
Meteorological variables were collected from various reanalysis
datasets, and monthly aggregates of air temperature, soil
temperature, surface pressure, 10—m u—component, and v-—
component of wind (eastward and northward components of the
10—m wind) were collected from the 5" generation European
Center for Medium—Range Weather Forecasts
atmospheric reanalysis (ERA5) and surface—based reanalysis
(ERA5—-Land). The author aggregated the temporal resolutions of
these datasets from daily values to month. The author also obtained
the total water column density, which is the percentage of total
cloud cover, from the National Centers for Environmental Prediction
(NCEP). To obtain more information about sky coverage, the author
also collected day and night clear—sky coverage from MODI1Al
v061, cloud cirrus area fraction, and liquid water cloud optical
thickness from MODO8_M3 v061. The author retrieved merged
satellite—gauge precipitation estimates and accumulation—weighted
probabilities of the liquid precipitation phase from global

precipitation measurement (GPM).
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Due to the influence of aerosols on UV flux and photochemical
reaction (Bian et al., 2007) the fact that sharing the same source of
emissions between CO and AOD (e.g. biomass burning emission)
(Andreae, 2019; Buchholz et al., 2021), O3 and CO are generally
considered to be related to AOD (Buchholz et al., 2021; Liu et al.,
2019a). The Moderate Resolution Imaging Spectroradiometer
(MODIS) is a widely used satellite—based sensor that provides
various remote sensing data types, including AOD. Since AOD is
dependent on wavelength, the author obtained AOD data retrieved
at 0.47 p¢m and 0.55 gm from Terra & Aqua combined Multi—
angle Implementation of Atmospheric Correction (MAIAC) Land
Aerosol Optical Depth (MCD19A2 v006). AOD at 0.55 xm for both
ocean and land, and corrected AOD (land) at 0.47 gm were
collected from MODO8_M3 v061. Besides AOD, by referring to the
variables used in the previous ozone estimation study (Requia et al.,
2020), the author collected the total column Oz from the Total
Ozone Mapping Spectrometer (TOMS) and Ozone Monitoring
Instrument (OMI) data (Parsons et al., 2010) as satellite—based air
quality data to potentially account for ground—level ozone
concentrations (Colombi et al., 2021).

The SEDAC dataset provides global annual PMqs estimates by

combining AOD from various data sources by combining MODIS.
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Since this dataset is accessible online with fine spatial grid
resolution (0.02° X 0.02° ), the author extracted the annual
global surface PMoss concentrations for each gridcell from the
SEDAC. Detailed information is presented in the supplementary

material (Section 1.2 and Table S1).

2.3.2. Land-use data

Land—use information 1is important to enhance prediction
performance, especially for estimates of air pollutant concentrations,
because it can partly explain the fine—scale spatial pattern or
distribution of air pollutants (Huang et al., 2021a). Previous studies
have reported that land types and land covers, such as vegetation
index and various types of land cover fractions, were also
considered relevant variables for estimating air pollutants (Chen et
al., 2020; Kerckhoffs et al., 2015; Zhu et al., 2022). Thus, the
author extracted land—use variables related to greenness from
MODIS, Copernicus Global Land Cover Layers, and the Global Land
Cover Map. The normalized difference vegetation index (NDVI) and
enhanced vegetation index (EVI) were derived (MOD13AZ2 v006),
and the leaf area index (LAI) and the fraction of absorbed
photosynthetically active radiation (FPAR) were derived

(MCD15A3H v061). The leaf area index with high/low vegetation
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was obtained from the ERA5—Land reanalysis dataset.

The author also accessed several land cover layer datasets with
information about land types (non—vegetated barren, forests, water
bodies, shrubland, and others). The MCD12Q1 V6 product provides
the global land cover types for each year. Land—cover types 1—5
were collected from MCD12Ql1 V6. The FAO-Land Cover
Classification System 1 (LCCS1) land cover layer, FAO—-LCCS2
land use layer, FAO—LCCS3 surface hydrology layer, and their
confidence levels (0-100%) were collected from MCD12Q1 V6.
Other types of land cover layers from the Copernicus Global Land
Cover Layers and land cover map variables from the Global Land
Cover Map were included as predictor variables in the modeling
procedure. More detailed information about the land—use data is
provided in the supplementary material (Section 1.2.1 and Table
S1).

2.3.3. Surface reflectance

Surface albedo and reflectivity may be associated with ground—
level O3 and NO. concentrations through interactions with other
materials (Jandaghian and Akbari, 2020; Taha, 1997). To consider
this in the process of estimating gaseous pollutants, the author

retrieved the black/white sky and bidirectional reflectance



distribution function (BRDF) albedo from MCD43A3 V6. The author
also collected Band 1—5, Band 7 of surface reflectance, and Band 6
of surface temperature from Landsat 7 created using the Landsat
Ecosystem Disturbance Adaptive Processing System (LEDAPS)
algorithm. Similarly, the emissivities from bands 31 and 32 were

obtained from MOD11A1 vO61.

2.4. Regional socioeconomic predictors

Various regional demographic, socioeconomic, and environmental
factors from various data sources have been collected across all
district—level regions annually by the Korea Disease Control and
Prevention Agency, and then incorporated into the community
health outcomes and regional socioeconomic database, with
thousands of variables since 2008. Since this database consists of
the district—level regions, the grid values were set as allocated
district—level variables by finding the grids included in each district.
The author selected from this database 24 regional variables that

could potentially be related to air pollutant concentrations.

O3 1s produced by a chemical reaction between NOyx and VOCs
under various meteorological conditions. The main factors
generating NOz and CO are emissions from traffic and industrial
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sources (Kim et al., 2013; Rosenlund et al., 2008). These factors
can be considered urbanized characteristics, such as population
density, greenness area, number of cars, wastewater, and organic
material load discharge (Araki et al., 2021; Carslaw and Rhys—
Tyler, 2013; Khalid, 2021). These factors are also associated with
differences in the demographic structure and infrastructure among
districts (Glover and Simon, 1975; Khalid, 2021). Thus, the author
obtained variable that represents urbanization from the regional
socioeconomic database. A more detailed description and the full
list of wvariables are presented in the supplementary material

(Section 1.2.3 and Table S1).

2.5. Modeling procedures

The author adopted three machine learning—based models,
namely random forest, light gradient boosting, and neural network,
to predict monthly O3, NO2, and CO averages using a 1 km X 1 km
grid during 2002-2020. Previous studies have also used these
models to predict air pollutant concentrations in other locations (Di
et al., 2019a; Di et al., 2019b; Requia et al., 2020). A total of 112
predictor variables collected from the GEE, SEDAC, regional

socioeconomic database, and others were used as input variables,
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and each air pollutant concentration was predicted as the outcome
value. Missing values in the predictor variables were replaced with
values from the imputation procedure (supplementary material
Section 2.1). Randomly selected 80% of the monitoring stations
were used to train the model, and the remaining 20% of the
monitoring stations were used to test the model performance. To
avoid overfitting and the possibility that the dataset was extracted
by chance, the author trained each of the three machine learning
models with 10—fold cross—validation (CV) in the training set. With
these trained models, the author checked the model performance of
three machine learning models and simple averages among models
(ensemble model) in the test set using R? and root mean squared
error (RMSE). Finally, the author predicted monthly averages of
each air pollutant with a 1 km X 1 km grid during 2002-2020 using
the three machine learning—based and ensemble models. The

overall process is illustrated in Fig. 1.

2.5.1. Data Preprocessing

Missing values were addressed prior to the modeling procedures
(Table S2). The author imputed missing values using the random
forest model and linear interpolation method following previous

studies (Di et al., 2019a; Di et al.,, 2019b; Requia et al., 2020).
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Detailed information about the missing data imputation procedure is
provided in supplementary material (Section 2.1). After the missing
value imputation process, the author standardized all the predictor
variables using average and standard deviation, separately for each
variable, to control the variation within the individual variable. For

detail, the author let “X° be a predictor variable, then the author

X—mean(X)

sagn The author

transformed this variable to Xstandardized =

also added yearly and monthly terms, seasonal terms, binary
indicators of the COVID—19 pandemic period, monthly terms of the
fourth highest value month for each air pollutant, urban binary
indicators, and binary indicators of metropolitan city areas.
(Supplementary material section 1.2.4 and Fig. S1).

2.5.2. Machine learning-based model

In previous studies, random forest, gradient boosting, and neural
networks were used for estimating PMas (Di et al.,, 2019b), O3
(Requia et al., 2020), and NOz (Di et al., 2019a). A random forest is
operated by aggregating decision trees from bootstrapped data to
reduce the correlation between the trees; therefore, the random
forest can reduce the variance of estimations (Hastie et al., 2009).
Otherwise, gradient boosting focused on reducing the bias of

estimations by adding week learners sequentially to fit residuals
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from the previous model prediction. In the neural network case,
which comprises several hidden layers with various activation
functions, repeatedly updates the weights on the hidden layers
across every epoch to reduce bias. Given these characteristics,
prediction performance can differ according to the model used.
Additionally, within each model, the prediction performance can be
affected by hyperparameter settings. For example, the number of
trees and the maximum depth of each tree can affect the random
forest model performance, and the learning rate in gradient boosting
and the number of layers and units in a neural network can also
influence the model performance. Thus, the author optimized the
best parameters with a 10—fold CV for each model in a grid search
process. Detailed information about machine learning models and
results from the grid search process are shown in supplementary

material (Section 2.2 and Table S3).

2.5.3. Ensemble Model

Given the differences in the characteristics of each model, the
performance and estimation results appeared slightly different by
space and time. To aggregate the results, the author calculated the
simple averages of each machine learning estimation.

e
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s

erij' ?gbi}' and ?”"U are air pollution estimations from the

random forest, light gradient boosting, and neural network,

respectively, at location 7 at time J; ?}AU is the simple average

estimation derived by averaging the three estimations at location s
at time j. The author also trained a generalized additive model
(GAM) to consider the geographical variation of each of the three
machine—learning estimations. Detailed information about the GAM
is presented in the supplementary material (Section 2.3 and Table
S4).

2.5.4. Model Prediction

The monthly concentrations of each air pollutant were predicted
using three trained machine learning models, the average prediction
from the machine learning models, and GAM. Consequently, the
author generated five datasets of predicted values of monthly Os,

NOg, and CO averages at a 1 km X 1 km resolution across the

study area from 2002 to 2020.
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Predictors from Random Air pollutant
GEE, SEDAC, Forest Estimation G .
and RSD enerlalhzed
Additive
Model
. Gradient Air pollutant Final Air pollutant
Other predictors Boosting Estimation Estimation
Average
Air pollutant from Estimation
monitoring Neural Air pollutant
stations Network Estimation

Fig. 1. Flowchart of the modeling process. GEE: Google Earth Engine, SEDAC: Socioeconomic Data and
Applications Center, RSD: Regional Socioeconomic Database from Korean Disease Control and Prevention
Agency
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Chapter 3. Results

Table 1 presents the overall R%. The overall R* for O3, NO2, and
CO was 0.841, 0.756, and 0.506, respectively. The overall RMSE
for O3, NO2, and CO were 5.435 (ppb), 4.867 (ppb), and 0.152
(ppm), respectively. The author’s models showed excellent
performances for O3 and NO:. Among the results of the three
machine learning and ensemble models (SA: Simple Average), the
ensemble model outperformed the other models for Os and NOsg,
whereas the random forest model showed slightly better
performance than the ensemble model for CO. The author also fit
the GAM; however, because the predictive performance of the GAM
was lower than that of the SA, the author does not include it in
Table 1 and show its performance in Table S4.

Table 1 also presents the R? for overall and for three— or four—
year time periods. For Os, the annual R? of ensemble model (SA)
varied from 0.732 to 0.874 across the three— and four—year time
periods. For NO, the annual R? of ensemble model ranged from
0.538 to 0.861. For CO, the R* of ensemble model varied from
0.302 to 0.553. The author’s model performance was higher in
more recent years for Os and NOq. Except for the ensemble model,

the light gradient boosting and random forest models usually
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showed high R? values for NOy and CO. Among the seasons, for O3,
NOg, and CO the predictive R? was highest in autumn (Table S5).
The author’s ensemble model showed the best performance for the
whole season for O3 and NOg2, while the random forest was the best

model for CO.
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Table 1. Model performance for Os, NOg, and CO overall and in three— and four—year periods

R? RMSE

years RF GB NN SA RF GB NN SA

2002~2005 0.715 0.724 0.736T 0.732 6.582 6.532 6.319T 6.402

2006~2008  0.805 0.799 0.801 0.8087 5.762 5.802 5.766 5.6841
O3 2009~2011 0.838 0.836 0.839 0.843T 5.030 5.048 5.017 4.9487
(ppb) 2012~2014  0.853 0.853 0.845 0.854T 5.186 5.216 5.343 5.1721

2015~2017 0.868 0.874 0.869 0.8747 5.259 5.133 5.23 5.1191

2018~2020 0.842 0.841 0.827 0.843T 5.249 5.234 5.488 5.2017T

overall 0.837 0.837 0.834  0.8417 5.524 5.500 5.557 5.435%

R? RMSE

NO:2
years RF GB NN SA RF GB NN SA

(ppb)
2002~2005 0.527 0.541% 0.489 0.538 6.864 6.838 7.189 6.7681
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2006~2008 0.733  0.735  0.736 07467 | 5.181  5.114 5134 5.0377
2009~2011  0.75 0.756  0.763  0.768% | 4.900  4.778 4785  4.7171
2012~2014 0.713  0.733  0.733 07357 | 5.343 51137 5147  5.129
2015~2017 0.715  0.736Y  0.731  0.736 | 4.836  4.634T 4722  4.668
2018~2020 0.844 0.864% 0.849  0.861 | 3.595 3.2667 3482  3.352
overall 0.741  0.754  0.741 0.7567 | 5.035  4.877  5.010 4.8677
R? RMSE

years RF GB NN SA RF GB NN SA
2002~2005 0.3207  0.283  0.212  0.302 | 0.228% 0234  0.246  0.231

<0 2006~2008 0.505  0.502  0.431 0.508" | 0.190 0.189T 0.209  0.193

(ppm

: 2009~2011 0.545  0.544  0.499 0.553%T | 0.148 0.148T 0.162  0.150
2012~2014 0517  0.515  0.492 05277 | 0.134Y  0.134  0.145  0.135
2015~2017 0.430  0.424  0.442 0457 | 0.120 0.120  0.121  0.1187
2018~2020 0.489  0.470  0.451 04917 | 0.095 0.096  0.100  0.095T
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overall 05067  0.492  0.438  0.505 | 0.152%  0.153  0.164  0.153
* RF: Random forest, GB: light gradient boosting, NN: neural network, SA: simple average estimation of RF, GB, and NN.
* The performance for Os and NO2 was calculated based on ppb and for CO on ppm.

T A model that performs better than other models during the period.
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Table S5 also presents the R? by urbanicity (urban or rural), with
higher R? values in urban areas than in rural areas for all air
pollutants. The simple average estimations showed the highest R?
values among the models. The prediction performances of the
random forest and light gradient boosting models were similar. Fig.
S2-S4 shows the spatiotemporal patterns of the Os, NO», and CO
prediction distributions across the study period. Overall, annual and
seasonal Os concentrations increased consistently over time,
whereas decreasing patterns were observed for NO» and CO.

Fig. 2 displays the density scatter plot for the monthly averages
of the monitored and predicted concentrations for each air pollutant.
Although most points approximate a 1:1 straight line of monitored
and predicted relationships for O3 and NOg, representing equal
agreement, this was less so for CO, especially at very high and very
low observed concentrations. Fig. 3 shows a map of the monitored
and predicted concentrations.

The author reported the percentage decrease in R? when omitting
each grouped predictor variable from each model (Fig. 4). The
overall impact of IDW was more significant than the other grouped
variables for O3 and NOgz; however, it was not critical in the random
forest model. The variable with the greatest impact on CO varied by
model. Meteorological and regional variables were slightly more

24 -":rxﬁ-! "%

3 =11 =1
|-1-'l| .J!'

L



important than other grouped variables in the random forest and
gradient boosting models, but in the neural network model, IDW had

a very strong effect.
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Fig. 2. Density scatter plot for monthly averages of the monitored and predicted concentrations of 03,
NO,, and CO

* Dashed lines represent that the monitored and predicted estimations are the same for each air pollutant.

* Red lines represent the fitted line. x : ground—based measurements. y : estimated surface concentrations.
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2
Fig. 4. Percentage decrease in R when excluding grouped variables
from each machine learning model of O,, NO,, and CO. The closer

the color is to red, the greater the effect of the variables on the
model performance
* The main vertical axis represents models, and the main horizontal axis
represents air pollutants.
2
* X—axis (for each figure): % decrease in R .
* Y—axis (for each figure): Classified group variables
— IDW: Inverse Distance Weighted estimations for O,, NO,, and CO

— Meteorological: Meteorological variables (e.g. temperature, humidity,
precipitation)
— AOD: Aerosol Optical Depth variables
- Land—use: Land—use variables (e.g. forest type, landcover,
lc_propl_categorical)
— Regional: District—level variables (e.g. population density, park area per
capita),
— Others: Other satellite—based variables and added terms (e.g. landsat, albedo,
surface reflectance, urban binary indicator)

* RF: Random Forest, GB: light Gradient Boosting, NN: Neural Network

28 = A2t &k



Chapter 4. Discussion

In this study, the author developed machine learning models
(random forest, light gradient boosting, and neural network) to
predict monthly O3, NO., and CO concentrations. Consequently, for
the first time in South Korea, the author estimated the monthly Os,
NOg, and CO averages across the contiguous region of South Korea
at each 1 km X 1 km grid cell for 2002 to 2020. The model
performed well to predict O3 and NO», with R? values of 0.841 and
0.756, respectively.

Many studies have estimated gaseous pollutants using machine
learning models. In the U.S., the estimated daily maximum of 8—h
O3 and daily NOz2 at 1 km X 1 km across the continental United
States using multiple machine learning models and a geographically
weighted generalized additive model during 2000-2016, with an
overall R? of 0.9 and 0.788, respectively (Di et al., 2019a; Requia et
al., 2020). In China, the daily maximum of 8—h O3z and daily NO3
concentrations were predicted at 0.0625° X 0.0625° and 0.1°
X 0.1° grids across mainland China for 2008-2019 and 2013-
2016, respectively (Chen et al., 2021; Zhan et al., 2018), using
hybrid random forest models with site—based monthly R? at 0.82

and 0.65, respectively. Another study conducted in China estimated
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ground—level monthly Os using extreme gradient boosting for
regression with a site—based monthly R? of 0.68 (Liu et al., 2020).
A previous study for Japan predicted national—scale 1 km X 1 km
monthly Os, NOg, and other air pollutants by LUR structure adopting
a random forest model during 2010-2015, with a R? of 0.86 and
0.84 (Araki et al., 2021). The overall predicted performances for O3
and NOg were almost equivalent to or outperformed those of other

related studies.

Most studies estimating gaseous air pollutants for South Korea
used LUR for modeling and focused on specific regions with
relatively short time periods (Choi et al., 2017; Kim and Guldmann,
2011; Kim and Guldmann, 2015). A previous study estimated the
concentrations of Os and NO2 in South Korea using machine learning
models for 2018-2020 (Kang et al., 2021); however, the spatial
resolution was relatively coarse (6 km X 6 km) and the study
period was not sufficient to consider the long—term health impact of
air pollutants. The author addressed the weaknesses of LUR using
multiple machine learning models and their ensemble results by
averaging each prediction estimate. To the best of the author’s
knowledge, this study is the first to cover South Korea with fine

resolution and over a relatively long period.
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The performance of author’s model rapidly improved after 2006
for all the air pollutants. The author postulate that this might be due
to an increase in the number of monitoring stations. Before 2006,
the total number of monitoring stations was less than 200. In 2007,
the number of monitoring stations in urban areas surpassed 200 and
the number in rural areas was 10. Since 2007, a larger number of
observation stations are In operation to better estimate the
distribution of air pollution concentrations across contiguous South
Korea, with over 200 urban areas and about 100 monitors in rural
areas in 2020. Additionally, differences in  monitoring
networkslikely explain differences in performance between urban
and rural areas, with higher model performances in urban areas than
in rural areas (Table S5). There have been fewer monitoring
stations in rural areas than in urban areas in the past (Table S6),
which means the author’s models are better able to estimate
pollution in urban areas in the earlier years of the author’s study
time period. However, as the highest R? of the rural area was over
0.75 for O3 and NOg, this study also performed well, even in rural

areas.

This study had several limitations. First, for NO. and CO,
location—based emission information derived from local industrial

and traffic sources are usually considered primary predictor
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variables (Kim et al., 2013; Rosenlund et al., 2008), such as power
plants, road length, and distance to the road (Araki et al.,, 2021;
Wong et al., 2021). These factors have been important in estimating
NO2 and CO concentrations in previous studies, although datasets
with sufficient information on point sources were not available.
However, the author calculated the R? of each model by removing
district—level wvariables, including the number of vehicle
registrations, wastewater, and organic material load generation and
discharge, which did not appear to have a substantial effect on
model performance. Second, the model performances in each
season were lower than the overall performances for Oz and CO.
This finding was consistent with a previous study for O3 (Araki et
al., 2021); thus, this issue should be addressed in future studies by
adding variables considering the seasonal variation of each air
pollutant. Third, the author did not include some island regions in
the author’s study area to focus on 1improving air pollutant
estimation performance in South Korea, due to the lack of data for
some of the study variables. Further research should consider these
islands. Fourth, as noted above the monitoring network better
reflected urban areas than rural areas, especially in the earlier
years of this study period. Finally, the absence of location—based

emission—related information may affect the prediction performance
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of this models, such as lower predicted CO performance compared
to the other pollutants. Also, measurement error could occur in CO
due to the measurement analyzer. Non—Dispersive Infrared (NDIR)
analyzer are used for monitoring CO concentration, and Gas Filter
Correlation (GFC) are adopted on NDIR for detecting lower CO
concentration (< 1 ppm) to cover the shortcomings of NDIR, which
has a problem of detecting low CO concentrations. However, due to
the interference effects by other gases, the accuracy of GFC
analyzer could be reduced (Dinh et al., 2017). It can be associated

with unstable variation of observed and predicted carbon monoxide.
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Chapter 5. Conclusion

To author’s knowledge, this is the first nationwide study of South
Korea to estimate monthly averages of Os, NO2, and CO for a long
timeframe (from 2002 to 2020) across contiguous South Korea by
aggregating remote sensing data and regional socioeconomic
databases. Random forest, light gradient boosting, and neural
network algorithms were used to train the model with CV. The
author integrated the prediction estimate of each machine learning
method by using simple averaging and GAM, and finally, machine
learning and ensemble models produced monthly averages of Osg,
NOg, and CO at each 1 km X 1 km grid cell. The author’s ensemble
model showed excellent performance compared to previous studies,
with R* values for O3 and NOz of 0.841 and 0.756, respectively. The
author’s predictions can be utilized to estimate the health impact of
each air pollutant with both individual—level geocodes and regional
datasets in South Korea, by providing highly spatially resolved

monthly estimates for times and locations without monitors.
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