481 research outputs found

    Unfamiliar facial identity registration and recognition performance enhancement

    Get PDF
    The work in this thesis aims at studying the problems related to the robustness of a face recognition system where specific attention is given to the issues of handling the image variation complexity and inherent limited Unique Characteristic Information (UCI) within the scope of unfamiliar identity recognition environment. These issues will be the main themes in developing a mutual understanding of extraction and classification tasking strategies and are carried out as a two interdependent but related blocks of research work. Naturally, the complexity of the image variation problem is built up from factors including the viewing geometry, illumination, occlusion and other kind of intrinsic and extrinsic image variation. Ideally, the recognition performance will be increased whenever the variation is reduced and/or the UCI is increased. However, the variation reduction on 2D facial images may result in loss of important clues or UCI data for a particular face alternatively increasing the UCI may also increase the image variation. To reduce the lost of information, while reducing or compensating the variation complexity, a hybrid technique is proposed in this thesis. The technique is derived from three conventional approaches for the variation compensation and feature extraction tasks. In this first research block, transformation, modelling and compensation approaches are combined to deal with the variation complexity. The ultimate aim of this combination is to represent (transformation) the UCI without losing the important features by modelling and discard (compensation) and reduce the level of the variation complexity of a given face image. Experimental results have shown that discarding a certain obvious variation will enhance the desired information rather than sceptical in losing the interested UCI. The modelling and compensation stages will benefit both variation reduction and UCI enhancement. Colour, gray level and edge image information are used to manipulate the UCI which involve the analysis on the skin colour, facial texture and features measurement respectively. The Derivative Linear Binary transformation (DLBT) technique is proposed for the features measurement consistency. Prior knowledge of input image with symmetrical properties, the informative region and consistency of some features will be fully utilized in preserving the UCI feature information. As a result, the similarity and dissimilarity representation for identity parameters or classes are obtained from the selected UCI representation which involves the derivative features size and distance measurement, facial texture and skin colour. These are mainly used to accommodate the strategy of unfamiliar identity classification in the second block of the research work. Since all faces share similar structure, classification technique should be able to increase the similarities within the class while increase the dissimilarity between the classes. Furthermore, a smaller class will result on less burden on the identification or recognition processes. The proposed method or collateral classification strategy of identity representation introduced in this thesis is by manipulating the availability of the collateral UCI for classifying the identity parameters of regional appearance, gender and age classes. In this regard, the registration of collateral UCI s have been made in such a way to collect more identity information. As a result, the performance of unfamiliar identity recognition positively is upgraded with respect to the special UCI for the class recognition and possibly with the small size of the class. The experiment was done using data from our developed database and open database comprising three different regional appearances, two different age groups and two different genders and is incorporated with pose and illumination image variations

    Machine learning methods for sign language recognition: a critical review and analysis.

    Get PDF
    Sign language is an essential tool to bridge the communication gap between normal and hearing-impaired people. However, the diversity of over 7000 present-day sign languages with variability in motion position, hand shape, and position of body parts making automatic sign language recognition (ASLR) a complex system. In order to overcome such complexity, researchers are investigating better ways of developing ASLR systems to seek intelligent solutions and have demonstrated remarkable success. This paper aims to analyse the research published on intelligent systems in sign language recognition over the past two decades. A total of 649 publications related to decision support and intelligent systems on sign language recognition (SLR) are extracted from the Scopus database and analysed. The extracted publications are analysed using bibliometric VOSViewer software to (1) obtain the publications temporal and regional distributions, (2) create the cooperation networks between affiliations and authors and identify productive institutions in this context. Moreover, reviews of techniques for vision-based sign language recognition are presented. Various features extraction and classification techniques used in SLR to achieve good results are discussed. The literature review presented in this paper shows the importance of incorporating intelligent solutions into the sign language recognition systems and reveals that perfect intelligent systems for sign language recognition are still an open problem. Overall, it is expected that this study will facilitate knowledge accumulation and creation of intelligent-based SLR and provide readers, researchers, and practitioners a roadmap to guide future direction

    Signboard Text Translator: A Guide to Tourist

    Get PDF
    The travelers face troubles in understanding the signboards which are written in local language. The travelers can rely on smart phone for traveling purposes. Smart phones become most popular in recent years in terms of market value and the number of useful applications to the users. This work intends to build up a web application that can recognize the English content present on signboard pictures captured using a smart phone, translate the content from English to Telugu, and display the translated Telugu text back onto the screen of the phone. Experiments have been conducted on various signboard pictures and the outcomes demonstrate the viability of the proposed approach

    Image analysis, modeling, enhancement, restoration, feature extraction and their applications in nondestructive evaluation and radio astronomy

    Get PDF
    The principal topic of this dissertation is the development and application of signal and image processing to Nondestructive Evaluation (NDE) and radio astronomy;The dissertation consists of nine papers published or submitted for publication. Each of them has a specific and unique topic related to signal processing or image processing in NDE or radio astronomy. Those topics are listed in the following. (1) Time series analysis and modeling of Very Large Array (VLA) phase data. (2) Image analysis, feature extraction and various applied enhancement methods for industrial NDE X-ray radiographic images. (3) Enhancing NDE radiographic X-ray images by adaptive regional Kalman filtering. (4) Robotic image segmentation, modeling, and restoration with a rule based expert system. (5) Industrial NDE radiographic X-ray image modeling and Kalman filtering considering signal-dependent colored noise. (6) Computational study of Kalman filtering VLA phase data and its computational performance on a supercomputer. (7) A practical and fast maximum entropy deconvolution method for deblurring industrial NDE X-ray and infrared images. (8) Local feature enhancement of synthetic radio images by adaptive Kalman filtering. (9) A new technique for correcting phase data of a synthetic-aperture antenna array

    Hierarchical feature extraction from spatiotemporal data for cyber-physical system analytics

    Get PDF
    With the advent of ubiquitous sensing, robust communication and advanced computation, data-driven modeling is increasingly becoming popular for many engineering problems. Eliminating difficulties of physics-based modeling, avoiding simplifying assumptions and ad hoc empirical models are significant among many advantages of data-driven approaches, especially for large-scale complex systems. While classical statistics and signal processing algorithms have been widely used by the engineering community, advanced machine learning techniques have not been sufficiently explored in this regard. This study summarizes various categories of machine learning tools that have been applied or may be a candidate for addressing engineering problems. While there are increasing number of machine learning algorithms, the main steps involved in applying such techniques to the problems consist in: data collection and pre-processing, feature extraction, model training and inference for decision-making. To support decision-making processes in many applications, hierarchical feature extraction is key. Among various feature extraction principles, recent studies emphasize hierarchical approaches of extracting salient features that is carried out at multiple abstraction levels from data. In this context, the focus of the dissertation is towards developing hierarchical feature extraction algorithms within the framework of machine learning in order to solve challenging cyber-physical problems in various domains such as electromechanical systems and agricultural systems. Furthermore, the feature extraction techniques are described using the spatial, temporal and spatiotemporal data types collected from the systems. The wide applicability of such features in solving some selected real-life domain problems are demonstrated throughout this study

    Improving the Speech Intelligibility By Cochlear Implant Users

    Get PDF
    In this thesis, we focus on improving the intelligibility of speech for cochlear implants (CI) users. As an auditory prosthetic device, CI can restore hearing sensations for most patients with profound hearing loss in both ears in a quiet background. However, CI users still have serious problems in understanding speech in noisy and reverberant environments. Also, bandwidth limitation, missing temporal fine structures, and reduced spectral resolution due to a limited number of electrodes are other factors that raise the difficulty of hearing in noisy conditions for CI users, regardless of the type of noise. To mitigate these difficulties for CI listener, we investigate several contributing factors such as the effects of low harmonics on tone identification in natural and vocoded speech, the contribution of matched envelope dynamic range to the binaural benefits and contribution of low-frequency harmonics to tone identification in quiet and six-talker babble background. These results revealed several promising methods for improving speech intelligibility for CI patients. In addition, we investigate the benefits of voice conversion in improving speech intelligibility for CI users, which was motivated by an earlier study showing that familiarity with a talker’s voice can improve understanding of the conversation. Research has shown that when adults are familiar with someone’s voice, they can more accurately – and even more quickly – process and understand what the person is saying. This theory identified as the “familiar talker advantage” was our motivation to examine its effect on CI patients using voice conversion technique. In the present research, we propose a new method based on multi-channel voice conversion to improve the intelligibility of transformed speeches for CI patients

    Multispectral Imaging For Face Recognition Over Varying Illumination

    Get PDF
    This dissertation addresses the advantage of using multispectral narrow-band images over conventional broad-band images for improved face recognition under varying illumination. To verify the effectiveness of multispectral images for improving face recognition performance, three sequential procedures are taken into action: multispectral face image acquisition, image fusion for multispectral and spectral band selection to remove information redundancy. Several efficient image fusion algorithms are proposed and conducted on spectral narrow-band face images in comparison to conventional images. Physics-based weighted fusion and illumination adjustment fusion make good use of spectral information in multispectral imaging process. The results demonstrate that fused narrow-band images outperform the conventional broad-band images under varying illuminations. In the case where multispectral images are acquired over severe changes in daylight, the fused images outperform conventional broad-band images by up to 78%. The success of fusing multispectral images lies in the fact that multispectral images can separate the illumination information from the reflectance of objects which is impossible for conventional broad-band images. To reduce the information redundancy among multispectral images and simplify the imaging system, distance-based band selection is proposed where a quantitative evaluation metric is defined to evaluate and differentiate the performance of multispectral narrow-band images. This method is proved to be exceptionally robust to parameter changes. Furthermore, complexity-guided distance-based band selection is proposed using model selection criterion for an automatic selection. The performance of selected bands outperforms the conventional images by up to 15%. From the significant performance improvement via distance-based band selection and complexity-guided distance-based band selection, we prove that specific facial information carried in certain narrow-band spectral images can enhance face recognition performance compared to broad-band images. In addition, both algorithms are proved to be independent to recognition engines. Significant performance improvement is achieved by proposed image fusion and band selection algorithms under varying illumination including outdoor daylight conditions. Our proposed imaging system and image processing algorithms lead to a new avenue of automatic face recognition system towards a better recognition performance than the conventional peer system over varying illuminations

    Advances in Character Recognition

    Get PDF
    This book presents advances in character recognition, and it consists of 12 chapters that cover wide range of topics on different aspects of character recognition. Hopefully, this book will serve as a reference source for academic research, for professionals working in the character recognition field and for all interested in the subject

    State of the Art in Face Recognition

    Get PDF
    Notwithstanding the tremendous effort to solve the face recognition problem, it is not possible yet to design a face recognition system with a potential close to human performance. New computer vision and pattern recognition approaches need to be investigated. Even new knowledge and perspectives from different fields like, psychology and neuroscience must be incorporated into the current field of face recognition to design a robust face recognition system. Indeed, many more efforts are required to end up with a human like face recognition system. This book tries to make an effort to reduce the gap between the previous face recognition research state and the future state
    corecore