243 research outputs found

    Review of Facial Recognition and Liveness Detect

    Get PDF
    Facial recognition technology has been dramatically integrated into almost all the aspects of human life, such as mobile payment, identification applications, security management, and criminal cases, etc. However, these applications can be easily fooled by deliberate spoofing strategies. To ensure the identifications of users and avoid being spoofed are the central cores of this technology. As a result, its safeness and accuracy issues attract researchers to dig into this field. In terms of present existing deception and spoofing strategies, liveness detection plays a significant role in improving the robustness of facial recognition techniques. This paper will summarize the current mainstream facial recognition technology methods. The basic ideas, methods, implementations, and corresponding drawbacks of current facial recognition methods are in this paper. The future trends of facial recognition and liveness detection are also discussed and concluded

    Unmasking the imposters: towards improving the generalisation of deep learning methods for face presentation attack detection.

    Get PDF
    Identity theft has had a detrimental impact on the reliability of face recognition, which has been extensively employed in security applications. The most prevalent are presentation attacks. By using a photo, video, or mask of an authorized user, attackers can bypass face recognition systems. Fake presentation attacks are detected by the camera sensors of face recognition systems using face presentation attack detection. Presentation attacks can be detected using convolutional neural networks, commonly used in computer vision applications. An in-depth analysis of current deep learning methods is used in this research to examine various aspects of detecting face presentation attacks. A number of new techniques are implemented and evaluated in this study, including pre-trained models, manual feature extraction, and data aggregation. The thesis explores the effectiveness of various machine learning and deep learning models in improving detection performance by using publicly available datasets with different dataset partitions than those specified in the official dataset protocol. Furthermore, the research investigates how deep models and data aggregation can be used to detect face presentation attacks, as well as a novel approach that combines manual features with deep features in order to improve detection accuracy. Moreover, task-specific features are also extracted using pre-trained deep models to enhance the performance of detection and generalisation further. This problem is motivated by the need to achieve generalization against new and rapidly evolving attack variants. It is possible to extract identifiable features from presentation attack variants in order to detect them. However, new methods are needed to deal with emerging attacks and improve the generalization capability. This thesis examines the necessary measures to detect face presentation attacks in a more robust and generalised manner

    Enhanced Deep Learning Architectures for Face Liveness Detection for Static and Video Sequences

    Get PDF
    The major contribution of this research is the development of deep architectures for face liveness detection on a static image as well as video sequences that use a combination of texture analysis and deep Convolutional Neural Network (CNN) to classify the captured image or video as real or fake. Face recognition is a popular and efficient form of biometric authentication used in many software applications. One drawback of this technique is that, it is prone to face spoofing attacks, where an impostor can gain access to the system by presenting a photograph or recorded video of a valid user to the sensor. Thus, face liveness detection is a critical preprocessing step in face recognition authentication systems. The first part of our research was on face liveness detection on a static image, where we applied nonlinear diffusion based on an additive operator splitting scheme and a tri-diagonal matrix block-solver algorithm to the image, which enhances the edges and surface texture in the real image. The diffused image was then fed to a deep CNN to identify the complex and deep features for classification. We obtained high accuracy on the NUAA Photograph Impostor dataset using one of our enhanced architectures. In the second part of our research, we developed an end-to-end real-time solution for face liveness detection on static images, where instead of using a separate preprocessing step for diffusing the images, we used a combined architecture where the diffusion process and CNN were implemented in a single step. This integrated approach gave promising results with two different architectures, on the Replay-Attack and Replay-Mobile datasets. We also developed a novel deep architecture for face liveness detection on video frames that uses the diffusion of images followed by a deep CNN and Long Short-Term Memory (LSTM) to classify the video sequence as real or fake. Performance evaluation of our architecture on the Replay-Attack and Replay-Mobile datasets gave very competitive results. We performed liveness detection on video sequences using diffusion and the Two-Stream Inflated 3D ConvNet (I3D) architecture, and our experiments on the Replay-Attack and Replay-Mobile datasets gave very good results

    Enhanced Face Liveness Detection Based on Features From Nonlinear Diffusion Using Specialized Deep Convolution Network And Its Application In OAuth

    Get PDF
    The major contribution of this research is the development of enhanced algorithms that will prevent face spoofing attacks by utilizing a single image captured from a 2-D printed image or a recorded video. We first apply a nonlinear diffusion based on an additive operator splitting (AOS) scheme with a large time step to acquire a diffused image. The AOS-based scheme enables fast diffusion that successfully reveals the depth information and surface texture in the input image. Then a specialized deep convolution neural network is developed that can extract the discriminative and high-level features of the input diffused image to differentiate between a fake face and a real face. Our proposed method yields higher accuracy as compared to the previously implemented state-of-the-art methods. As an application of the face liveness detection, we develop face biometric authentication in an Open Authorization (OAuth) framework for controlling secure access to web resources. We implement a complete face verification system that consists of face liveness detection followed by face authentication that uses Local Binary Pattern as features for face recognition. The entire face authentication process consists of four services: an image registration service, a face liveness detection service, a verification service, and an access token service for use in OAuth

    Face Liveness Detection under Processed Image Attacks

    Get PDF
    Face recognition is a mature and reliable technology for identifying people. Due to high-definition cameras and supporting devices, it is considered the fastest and the least intrusive biometric recognition modality. Nevertheless, effective spoofing attempts on face recognition systems were found to be possible. As a result, various anti-spoofing algorithms were developed to counteract these attacks. They are commonly referred in the literature a liveness detection tests. In this research we highlight the effectiveness of some simple, direct spoofing attacks, and test one of the current robust liveness detection algorithms, i.e. the logistic regression based face liveness detection from a single image, proposed by the Tan et al. in 2010, against malicious attacks using processed imposter images. In particular, we study experimentally the effect of common image processing operations such as sharpening and smoothing, as well as corruption with salt and pepper noise, on the face liveness detection algorithm, and we find that it is especially vulnerable against spoofing attempts using processed imposter images. We design and present a new facial database, the Durham Face Database, which is the first, to the best of our knowledge, to have client, imposter as well as processed imposter images. Finally, we evaluate our claim on the effectiveness of proposed imposter image attacks using transfer learning on Convolutional Neural Networks. We verify that such attacks are more difficult to detect even when using high-end, expensive machine learning techniques
    corecore