
 

 ENHANCED FACE LIVENESS DETECTION BASED 

ON FEATURES FROM NONLINEAR DIFFUSION 

USING SPECIALIZED DEEP CONVOLUTION 

NETWORK AND ITS APPLICATION IN OAUTH 

Aziz Alotaibi 

Under the Supervision of Dr. Ausif Mahmood 

 

 

 

DISSERTATION 
SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS 

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE 

AND ENGINEERING 

THE SCHOOL OF ENGINEERING 

UNIVERSITY OF BRIDGEPORT 

CONNECTICUT 

December, 2016 

  



 
 

ii 

 

  



 
 

iii 

ENHANCED FACE LIVENESS DETECTION BASED ON 

FEATURES FROM NONLINEAR DIFFUSION USING 

SPECIALIZED DEEP CONVOLUTION NETWORK AND ITS 

APPLICATION IN OAUTH 

 

 

 

© Copyright by Aziz Alotaibi 2016 

 



 
 

iv 

ENHANCED FACE LIVENESS DETECTION BASED ON 

FEATURES FROM NONLINEAR DIFFUSION USING 

SPECIALIZED DEEP CONVOLUTION NETWORK AND ITS 

APPLICATION IN OAUTH 

ABSTRACT:  

The major contribution of this research is the development of enhanced algorithms 

that will prevent face spoofing attacks by utilizing a single image captured from a 2-D 

printed image or a recorded video. We first apply a nonlinear diffusion based on an 

additive operator splitting (AOS) scheme with a large time step to acquire a diffused 

image. The AOS-based scheme enables fast diffusion that successfully reveals the depth 

information and surface texture in the input image. Then a specialized deep convolution 

neural network is developed that can extract the discriminative and high-level features of 

the input diffused image to differentiate between a fake face and a real face. Our proposed 

method yields higher accuracy as compared to the previously implemented state-of-the-

art methods. As an application of the face liveness detection, we develop face biometric 

authentication in an Open Authorization (OAuth) framework for controlling secure 

access to web resources. We implement a complete face verification system that consists 

of face liveness detection followed by face authentication that uses Local Binary Pattern 
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as features for face recognition. The entire face authentication process consists of four 

services: an image registration service, a face liveness detection service, a verification 

service, and an access token service for use in OAuth.  
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CHAPTER 1: INTRODUCTION 

1.1. Research Problem and Scope 

Face recognition authentication is vulnerable to several attacks especially face 

spoofing attacks. A spoofing attack manipulates the system by presenting a forgery to the 

acquisition sensor with the goal of penetrating the biometric authentication system. More 

specifically, a face-spoofing attack can be accomplished by presenting a 2D image, digital 

video or 3D mask to the camera, mimicking the user and thus gaining access as a valid 

user. This vulnerability has induced researchers to propose several countermeasures to 

prevent face-spoofing attacks. These countermeasures are intended to detect the “liveness” 

of the face before performing the face recognition operation. Such anti-spoofing 

approaches can be further classified into two groups: static techniques and dynamic 

techniques. The static techniques are based on the analysis of a 2D single static photograph. 

In contrast, dynamic techniques are based on analyzing the temporal features of a sequence 

of input frames. Dynamic techniques are slow and difficult to implement. Furthermore, 

some of the dynamic techniques require users to follow instructions to validate their 

presence, but not all users may cooperate in this respect. This makes the dynamic methods 

unfavorable.     
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OAuth protocol implements traditional credentials to authenticate the resource 

owner which makes the security of users’ information at risk. Therefore, creating reliable, 

scalable, and maintainable systems has become an essential core of function of security. 

Several security methods have been developed to authenticate users’ identities, including 

knowledge-based methods and ownership-based methods. These methods are commonly 

implemented in online user authentication to control access to users’ data and verify their 

identities. However, knowledge-based methods (e.g., username/password, secret 

questions) are vulnerable to attacks, such as the man-in-the-middle attack, the replay attack, 

and stolen-verifier attacks. In contrast, ownership-based methods are based on something 

the user owns, such as a smart card or a token that can be reused, stolen, or manipulated. 

In both knowledge and ownership methods, the authentication system verifies what the 

user knows or possesses rather than truly verifying the identity of the requester.  As an 

alternative, biometric authentication verifies the identity of requesters by using their 

physiological and/or behavioral characteristics.  

 

1.2. Motivation Behind the Research 

The adoption of cloud computing and web services-based software architectures 

has grown rapidly, and these technologies have played a vital role in the information 

technology field [1] [2]. Secure access to the web API has become more important and gets 

more complex with the increasing adoption of cloud and web services. Controlling the user 

level to access the right resources has brought several security issues to the web API field. 

One of the most popular API access control models that has been proposed is a standard 
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known as open authorization (OAuth) [3].  OAuth uses traditional credentials as an 

authentication method for different applications and services.  In OAuth, the authorization 

server is responsible for managing and securing users’ information as well as issuing the 

access token. Since the majority of OAuth providers are implementing traditional 

credentials to authenticate the resource owner, the entire system is exposed to dictionary 

and brute force attacks. If either of these attacks should occur, the attackers have access to 

the user’s system, and thus can grant their third-applications access to all register services. 

To overcome this issue, biometric authentication cabaple of providing security. A system 

that employs biometric authentication ideally exhibits five qualities: robustness, 

distinctiveness, availability, accessibility and acceptability [4]. In online user 

authentication, accessibility and acceptability are the most significant qualities that can be 

found in face and voice characteristics. However, face recognition is commonly favored 

over other biometric traits due to its accessibility and non-intrusive form of interaction. 

Face recognition has been actively explored and researched in the field of security. 

However, any photograph of a valid user (easily obtained by capturing a close-up 

photograph without the user’s consent or obtained via the Internet) can be used to spoof 

face recognition systems. Therefore, developing a face recognition authentication service 

as an authentication mechanism is essential to secure web services and OAuth. 

1.3. Potential Contributions of the Proposed Research 

We developed an efficient and non-intrusive method to counter face spoofing 

attacks that uses a static print photograph, or recorded video, of a valid user. We first apply 

a nonlinear diffusion based on an additive operator splitting (AOS) scheme to acquire a 
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diffused image with a large time step value. To extract the information features from the 

diffused image, previous approaches used handcrafted features, such as the LBP algorithm. 

In contrast, this dissertation developed a specialized deep convolution neural network 

(CNN) that can extract the discriminative and high-level features to differentiate between 

a fake face and a real face. Our developed CNN architecture was able to extract the most 

significant features from the diffused image. We achieved the highest reported accuracy of 

99% on the widely-used NUAA dataset. In addition, we tested our method on the Replay 

Attack dataset which consists of 1200 short videos of both real-access and spoofing attacks. 

An extensive experimental analysis was conducted, and demonstrated better results when 

compared to previous static algorithms results.  

In addition, we introduced a Secure Login Service to enhance OAuth security using 

face recognition in order to authenticate the identity of the user. The Secure Login Service 

process consists of four services: an image registration service, a face liveness detection 

service, a verification service, and an access token service. We built these services in the 

authorization server to verify the user and issue the access token. The entire web services 

are built based on the RESTful architecture style. Two preprocesses occur prior to using 

Local Binary Pattern (LBP) texture method. The first preprocess localizes five landmark 

points: the outer right eye, center right eye, outer right eye, center left eye, and the center 

of nose. While the second preprocess performs the alignments. The LBP texture method is 

used to extract the image features, and then apply the correlation function to classify the 

captured image and decide whether to verify or deny the user. If the user is verified and 

authenticated, the access token is issued with a specific scope of authorization level. This 
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Secure Login Service enhances OAuth security by providing biometric authentication. This 

can be used in addition to the regular authentication.  
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CHAPTER 2: LITERATURE SURVEY 

2.1 Face Liveness Detection  

2.1.1 Introduction to Anti-Spoofing Methods 

Recently, the performance of the face recognition system has been enhanced 

significantly because of improvements found within hardware and software techniques in 

the computer vision field [5]. However, face recognition is still vulnerable to several 

attacks such as spoofing attacks. These techniques are getting more complex and hard to 

identify, especially with the advancement in printer technology such as high-definition 

laser printers. Therefore, researchers have proposed and analyzed several approaches to 

protect face recognition systems against these vulnerabilities. Based on the proposed 

techniques, face anti-spoofing methods are grouped into two main categories: hardware-

based technique and software-based technique. First, hardware-based technique requires 

an extra device to detect a particular biometric trait such as finger sweat, blood pressure, 

facial thermogram, or eye reflection [6]. This sensor device, incorporated into the 

biometrics authentication system, requires the user’s cooperation to detect the signal of the 

living body. Some auxiliary devices, such as infrared equipment, achieve higher accuracy 

when compared to simpler devices. However, auxiliary devices are expensive and difficult 

to implement [7]. Second, the software-based technique extracts the feature of the 
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biometric traits through a standard sensor to distinguish between real and fake traits. The 

feature extraction occurs after the biometric traits, such as the texture features in the facial 

image, are acquired by the sensor [8]. The software-based techniques treat both the 

acquired 3D and 2D traits as 2D to extract the information feature. Therefore, the depth 

information is utilized to differentiate between 3D live face and flat 2D fake face images 

[9]. This dissertation covers only the software-based techniques that can be categorized 

further into static-based techniques and dynamic-based techniques as described in the 

following sections.   

2.1.2 Software based techniques 

Static-based and dynamic-based techniques are less expensive and easy to 

implement compared to hardware-based techniques.  First, static techniques are based on 

the analysis of a 2D static image. It is a non-intrusive interaction which is convenient for 

many users. On other hand, dynamic techniques exploit the temporal and spatial features 

using a sequence of input frames. Some of the dynamic methods are intrusive interactions 

which force the user to follow specific instructions.  

2.1.2.1  Static technique 

A variety of proposed methods are presented to address spoofing attack problems 

that utilize a single static image. The static-based techniques are divided into two 

categories: texture analysis methods and fourier spectrum methods:   

Texture analysis methods: these methods extract the texture properties of the facial 

image based on the feature descriptor.  Maatta et al. [10] analyzed the texture of a 2D facial 
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image using multi-scale local binary pattern (LBP) to detect face liveness. The authors 

applied multi- LBP operators on the 2D face image to generate a concatenated feature 

histogram. The histogram is then fed into the Support Vector Machine (SVM) classifier in 

order to determine whether the facial image is real or fake. The Local Binary Pattern (LBP), 

introduced by Ojala et al. [11], is a nonparametric method that extracts the texture 

properties of the 2D facial image with features based on the local neighborhood [12] as 

shown in Figure 2.1. The basic LBP pattern operator for each pixel in the facial image is 

calculated by using the circular neighborhood as shown in Figure 2.1.   

  
 

 

 
Figure 2.1 The basic LBP Operator. 

 

    The intensity of the centered pixel is compared with the intensity value of the 

pixels located within its LBP 3*3 neighborhood. 

𝐿𝐵𝑃𝑃𝑜𝑖𝑛𝑡,𝑅𝑎𝑑𝑖𝑢𝑠(𝑥𝑐 + 𝑦𝑐) =  ∑ 𝑆(𝑖𝑝 − 𝑖𝑐)2𝑝                                                             (2.1)

𝑃−1

𝑃=0

 

 

Where  

xc,yc  represent the center pixel 

p represents the surrounding pixel 
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s(z) = {
1,      𝑖𝑓 𝑧 ≥ 0
0,      𝑖𝑓 𝑧 < 0

 

Then, the center pixel will be updated with the new pixel value of 63. The LBP uses a 

uniform pattern to describe the texture image. If the generated binary number contains at 

most two bitwise 0 -1 or vice versa, then the LBP is called uniform. For instance, 

(01111110), (1100 0000), and (0001 1000) are uniform, whereas (0101 000), (0001 0010), 

and (0100 0100) are non-uniform. There are 58 uniform LBP Patterns and 198 non-uniform 

LBP patterns. The authors applied three multi-scale LBP operators on the normalized face 

images: LBP 8,1 u2 , LBP 8,2 u2, and LBP 16,2 u2. 

 

 
   

 

Figure 2.2 Applying LBP operator on normalized face image. 

 

LBP 8,1 u2 was applied on a nine-block region of the normalized face, and therefore, 

generated uniform patterns with a 59 –bin histogram from each region. The entire image 

equaled to a single 531-bin histogram. The LBP 8,2 u2, and LBP 16,2 u2  operators 

generates 59-bin and 243-bin histogram, respectively. The length of the concatenated 

feature histogram is 833. The concatenated histogram is passed through a nonlinear SVM 

classifier to determine whether the input face image is present or not. However, the basic 
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LBP operator is not the only operator applied to extract the information features, other LBP 

variations might be used as well such as transitional (tLBP), direction-coded (dLBP) and 

modified (mLBP). In [13], Chingovska et al. introduced Replay-Attack Database and 

studied the effectiveness of the local Binary Pattern on three types of attacks: printed 

photographs, photos, and video displays. 

 
 

Figure 2.3 A frame of short videos from.  

 

 

The authors applied different LBP operators and studied the performance 

evaluation of the anti-spoofing algorithm. The study included tLBP, dLBP and mLBP. The 

tLBP operator is composed by comparing the two consecutive pixels’ value with their 

neighbors in a clockwise direction for all pixels apart from the central pixel value.   

𝐿𝐵𝑃𝑝,𝑅(𝑥𝑐 + 𝑦𝑐) = 𝑆(𝑖0 −  𝑖𝑝−1) + ∑ 𝑆(𝑖𝑝 − 𝑖𝑝−1)2𝑝𝑃−1
𝑃=0                                     (2.2)  

 

A direction-coded LBP operator is composed by comparing the intensity variation 

along the four base directions into two bits through the central pixel.  

Let’s assume the original LBPP, R has P =2P’ neighbors. 

 

𝑑𝐿𝐵𝑃𝑝,𝑅 = ∑ ( 𝑆(𝑖𝑝′ −  𝑖𝑐)(𝑖𝑝′ + 𝑝′ − 𝑖𝑐)22𝑝′ 𝑃′−1
𝑃=0 +  𝑆(|𝑖𝑝′ − 𝑖𝑐  | − |𝑖𝑝′ + 𝑝′ −  𝑖𝑐  |22𝑝′+1  )        (2.3)   
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The dLBP compares the intensity of each pixel value of neighbors with the average 

of the intensity value in a 3 *3 neighborhood.  

𝐿𝐵𝑃𝑃𝑜𝑖𝑛𝑡,𝑅𝑎𝑑𝑖𝑢𝑠(𝑥𝑐 + 𝑦𝑐) =  ∑ 𝑆(𝑖𝑝 −  𝑖𝑐)2𝑝

𝑃−1

𝑃=0

                                                     (2.4) 

Where  

 xc,yc  represent the center pixel 

 p represents the surrounding pixel 

 s(z) = {
1,      𝑖𝑓 𝑧 ≥ 𝐴𝑣𝑒
0,      𝑖𝑓 𝑧 < 𝐴𝑣𝑒

 

 
 

Figure 2.4 a) Modified b) Transition c) Direction LBP. 

 

 

After applying the LBP Operators on the facial images, histograms are obtained as feature 

vectors. Then the applied classifier extracts the feature and determines whether the facial 

image is real or fake.  Both linear and non-linear classifiers were examined, such as Linear 

Discriminant Analysis (LDA) and Support Vector Machine (SVM). The authors conducted 

an experiment to compare X2 statistics methods to other complex classifiers.  
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Table 2. 1 HTER (%) of the classification on different database 

 REPLAY-

ATTACK 

NUAA CASIA-

FASD 

LBP 3*3 
u2   + X2 34.01 - - 

LBP 3*3 
u2  + LDA 17.17 18.32 21.01 

LBP 3*3 
u2  + SVM 15.16 19.03 18.17 

LBP + SVM 13.87 13.17 18.21 

 

 

From Table 2.1, we observed that the LBP extracts adequate features from the 

single static image, which assists in the classification of fake or real faces.  The 

performance of the multi-scale LBP is calculated using the Half Total Error Rate (HTER). 

HTER is defined as half of the sum of the False Rejection Rate (FRR) and False Acceptance 

Rate (FAR). HTER is used to measure the performance on both the development and test 

sets. Both LDA and SVM show high performance on the development sets and low 

performance on the test sets.    

 

𝐇𝐓𝐄𝐑 =
 𝐅𝐑𝐑 +  𝐅𝐀𝐑   

2
                                                                       (2.5) 

 

 

Where, 

FRR = FR/ NR          False Rejection, and Number of Real. 

FAR = FA/ NI          False Acceptance, and Number of Imposter. 
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Table 2. 2 HTER (%) of classification with (X2) for different LBP operators on Replay-Attack Database. 

 

LBP 3*3 
u2 tLBP dLBP mLBP 

Dev Test Dev Test Dev Test Dev Test 

31.24 34.01 29.37 35.35 36.71 40.26 32.29 33.68 

 

 

     In [14] Kim et al. the authors proposed a real-time and non-intrusive method 

based on the diffusion speed of a single image to detect face liveness.  Their idea is based 

on the difference in the illumination characteristic of both live and fake faces. The additive 

operator splitting (AOS) schema is used to compute the image diffusion [15]:  

𝑢𝑘+1 =  
1

2
 ((𝐼 − 2 𝜋 𝐴𝑥(𝑢𝑘)−1 +  ((𝐼 − 2 𝜋 𝐴𝑦(𝑢𝑘)−1 )𝑢𝑘                                (2.6) 

Where 𝐴𝑥 and 𝐴𝑦 denote the diffusion matrices computed in column wise and row 

wise. The AOS schema treats every coordinate axis in the same manner, and it is 

unconditionally stable with large time step, e.g. 𝜋 = 40. 

To compute the diffusion speed at each pixel position (x, y):  

𝑠(𝑥, 𝑦) = | log(𝑢0(𝑥, 𝑦) + 1 ) −  log(𝑢𝐿(𝑥, 𝑦) + 1 )|                                   (2.7) 

 

The features are extracted using the Local pattern of the diffusion speed, the so-

called Local Speed Pattern (LSP): 

LSP (x, y) = ∑ 2𝑖−1 𝐿𝑆𝑃𝑖  

1 ≤𝑖 ≤𝑛

(𝑥, 𝑦)                                                   (2.8) 

𝐿𝑆𝑃(𝑥 , 𝑦) = {
1,    𝑖𝑓 𝑠(𝑥, 𝑦) > (𝑥𝑖 , 𝑦𝑖)                                          (2.9)
0,      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,                                                                  
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Where n represents the number of sampling pixels. (𝑥, 𝑦) is the center pixel, and 

(𝑥𝑖 , 𝑦𝑖) denotes the position neighborhood. The extracted feature is fed into the SVM 

classifier to determine whether the input face is real or fake.  

 

Figure 2.5 Example of diffusion image u^k with different iteration number and time step equals to 10. (a) 

original image. (b) k = 5. (c) k = 10. (d) k = 20. 

 

   Yang et al. [16] proposed a component-based face recognition coding approach 

for face liveness detection. First, the holistic face (H-Face) is divided into six components: 

the counter, facial, left eye, right eye, mouth, and nose regions. Subsequently, counter, and 

facial regions are further divided into 2 * 2 grids, respectively. Moreover, the dense low-

level features such as LBP, LQP, HOG, etc. are extracted for all twelve components. 

Furthermore, component-based coding is performed to derive high-level face 

representation of each one of the twelve components from low-level features. Finally, the 

concatenating histograms from all twelve components are fed to a SVM classifier for 

identification. They achieved good accuracy compared with most of the proposed methods 

as shown in table 2.3.  
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Table 2. 3 Performance on NUAA, PRINT-ATTACK, and CASIA  

Database   Scenario Accuracy with 

Metric (5) 

NUAA  -- 0.977 

PRINT-ATTACK  Fixed(F) sub-database 0.995 

Hand (H)sub-database 0.991 

(F) and(H)sub-databases 0.988 

CASIA  Low Quality 0.987 

Low Quality 0.931 

Warped Photo 0.930 

Video Photo 0.997 

Overall test 0.898 

 

 

     To sum up, the texture analysis methods are used to extract the discriminative 

features for texture based classifications. However, they are less sensitive to noise in 

uniform regions, and their performance is degraded under changing lighting directions and 

shadowing [17]. 

Methods based on Fourier spectra: Fourier spectra is used to capture the frequency 

distribution of the input images to detect spoofing attacks. The structure texture of fake 

images are 2-D and real images are 3-D. The reflection of the light on 2D and 3D objects 

result in different frequency distribution.  Therefore, the intensity contrast of fake images 

contains a smaller frequency component. In [18]-[19], the authors analyzed the input 

images using 2D Fourier spectra to extract the feature information in order to detect 

whether the input image is real or fake. Unlike [4]-[46], which used very high frequency 

band which is too noisy, the authors applied a Difference of Gaussian (DoG) filter in which 
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two Gaussian filters with different standard deviation extract the difference of the image 

variability.  

 

Figure 2.6  (a) input image, (b) Gσ1 =0.5 ,(c) Gσ2 =0.5, (d) Difference of Gaussian. 

 

As depicted in Figure 2.6, DoG is applied to remove lighting variation in the input 

image and preserve as many features as possible without causing noise.  Gaussian function 

with standard deviation σ1 as given:  

                                              

     (2.10) 

 

Table 2. 4. Gaussian filter (3, 3) with σ1 =1.0 and 0.5 respectively. 
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Gaussian filter g (u, v) with two different standard deviations σ1 =0.5, σ2 =1.0 on 

the input image f(x, y) is defined as:  

 

DoG (x, y) =   ( Gσ1(u, v) ∗  f (x, y)) −
 ( Gσ2 (u, v)  f (x, y)                                               (2.11) 

 

 

    Peixoto et al. [19] used DoG with the Sparse Logistic Regression Model to detect 

the spoofing attack under extreme illumination. The Sparse Logistic Regression is given 

as:   

𝑃𝑟𝑜𝑏(𝑦|𝑥) =
1

1 + exp (−y(𝑤𝑇𝑥 + 𝑏))
                                                       (2.12) 

 

Where w is the weight vector, b is the intercept, and the average logistic loss is defined as:  

𝐿𝑜𝑠𝑠(𝑤, 𝑏) =
1

𝑚
∑ log (1 + exp(−𝑦𝑖  𝑤

𝑇 𝑥𝑖 + 𝑏))

𝑚

𝑖=0

                                 (2.13) 

The authors used the contrast-limited adaptive histogram equalization [20] to deal 

with the illumination changes, which affect the input image. In addition, Tan et al [18] 

applied the DoG  and the variation Retinex-based to extract the latent reflectance features. 

The authors modified the Sparse Logistic Regression to learn a “low rank” projection 

matrix.  

Table 2. 5. Experiment result for NUAA database. 

Approach Min Mean Max STD 

Tan et al “low rank” [18] 85.2% 86.6% 87.5% 0.6% 

 Peixoto et al “bad 

illumination” [19] 

92.0% 93.2% 94.5% 0.4% 
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     Table 2.5. shows that the DoG with the Sparse Logistic Regression achieved 

94.5% on the NUAA dataset. This result reflects that the Fourier spectra methods have the 

ability to capture enough feature of the input image in order to identify the spoof attack. 

Further, Zang, et al [21] used multiple difference of Gaussian (DoG) filters to extract the 

high frequency feature from the input face image. Four DoG filters are used to compute 

the inner and outer Gaussian variance.  Let σ1 represent the inner variance, σ2 the outer 

variance: 

 

σ1 =0.5, σ2 = 1; σ1 =1.0, σ2 = 1.5;  σ1 =1.5, σ2 = 2; and σ1 =1 , σ2 = 2.  

 

Then the concatenated filtered images are fed into the SVM classifier.  Moreover, 

Li et al. [22] detected the live and fake face images based on their analysis of their 2D 

Fourier Spectra on the face and [4] on the hair . The authors calculate the high frequency 

component using the high frequency descriptor equation.  The high-frequency descriptor 

of a live face should be greater than a predefined threshold Tft , and the value of Fourier 

transform is more than the predefined threshold Tf. 

  
 (2.14) 
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Where F(u, v) represents the fourier transform of the input image, fmax denotes the 

highest radius frequency of F(u, v), Tf, and Tfd are a predefined threshold. The 

denominator denotes the total energy in the frequency domain which is the sum of Fourier 

coefficients relative to the direct coefficient.    

2.1.2.2 Dynamic technique 

 Dynamic methods rely on the detection of motion over the input frames sequence 

to extract dynamic features enabling the distinction between real and fake faces.   Pereira 

et al. [23] proposed a novel countermeasure against face spoofing based on the Local 

Binary Pattern from three Orthogonal Plans (LBP-TOP) which combine both space and 

time information into a multi-resolution texture descriptor. Volume Local Binary Pattern 

(VLBP) [24], which is an extension to the Local Binary Pattern, was introduced to extract 

the features from the dynamic texture.  

𝑉𝐿𝐵𝑃𝐿,𝑃,𝑅 =  ∑ 𝑓(𝑖𝑐

3𝑃+1

𝑞=0

− 𝑖𝑞) 2𝑞                                                         (2.15) 

And f(x) is defined: 

𝑓(𝑥) =  {
0    𝑖𝑓 𝑥 < 0
1     𝑖𝑓 𝑥 ≥ 0

 

VLBP considers the frame sequence as parallel sequence planes, unlike LBP-TOP 

which considers the three orthogonal planes intersecting the pixel of the center for each 

pixel in a frame sequence. Orthogonal planes consist of an XY plane, XT plane, and YT 

plane, where T represents the time axis. Three different histograms are generated from the 

three orthogonal planes and then concatenated and fed to the classifier.  In [25] , Bharadwaj 
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et al presented a new framework for face video spoofing detection using motion 

magnification. The Eulerian motion magnification technique is applied to enhance the 

facial expressions exhibited by clients in a captured video. In the feature extraction stage, 

the authors used both multi-scale LBP (LBP 8,1 u2  , LBP 8,2 u2  , and LBPu2 16,2 ), and 

the Histogram of Oriented Optical Flows (HOOF). The optical flow is the pattern of the 

apparent motion estimation technique that computes the motion of each pixel by solving 

the optimization problem. The PCA is used to reduce the dimensionality of the HOOF 

vector. Finally, an LDA classifier is used to classify the concatenated HOOF and detect 

whether the video input is real or face access.  

  Further,  Pan et al. [26] proposed an eye-blinking behavior method to detect 

spoofing face recognition based on an unidirectional conditional graphic framework. The 

eye-blinking behavior is represented as temporal image sequences after being captured.  

The unidirectional conditional model reduces the computational cost. It is easy to extract 

the feature from the intermediate observation, where the conditional model increases the 

complexity and makes the problem more complicated. The authors developed an eye 

closity method by computing discriminative information for eye states: 

 

𝑢𝑚 (𝐼) =  ∑ (𝑙𝑜𝑔 
1

𝛽𝑖

𝑀
𝑖=1 ) ℎ𝑖(𝐼) −  

1

2
∑ 𝑙𝑜𝑔 

1

𝛽𝑖

𝑀
𝑖=1                                                 (2.16) 

Where,  

𝛽𝑖 =  𝜖𝑖/(1 − 𝜖𝑖) 

And 𝑢(𝐼) is the eye closity, and ℎ𝑖(𝐼) ∶ 𝑅𝑑(𝑖)  →  {0,1}, 𝑖 = 1, 2 , . . , 𝑀 } is a set of 

binary weak classifier. The input 𝐼 has two states, open eye: (0) and closed eye: (1) .  𝛽  
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represents a closing eye state. The Adaboost algorithm is used to classify the positive value 

as a closed eye and a negative value as an open eye. A blinking activity sequence of eye 

closity is shown in Figure 2.7. 

 

Figure 2. 1. Illustration of the closity for a blinking activity sequence. 

 

        In [27] Wen et al. proposed a face spoof detection algorithm based on Image 

Distortion Analysis (IDA).  Four different types of IDA features (specular reflection, 

blurriness, color moments, and color diversity) have been extracted from the input frame.  

The IDA features are concatenated together to produce a 121-dimentional IDA feature 

vector. The feature vector is fed into an ensemble classifier; a multiple SVM classifier to 

distinguish between real and spoof faces. Their detection algorithm is extended to the 

multi-frame face detection in the playback video using a voting-based schema. IDA 

technique is computationally expensive and consumes time when using multi-frames to 

detect the spoofing attack.   

        In [28] , Singh et al. proposed a framework to detect the face liveness using 

eye and mouth movement.  Challenge and response are randomly generated in order to 

detect and calculate the eye and mouth movements using Haar Classifier.  The eye 

openness and closeness can be measured during the time interval while the mouth is 
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measured using the teeth Hue Saturation Value (HSV). If the calculated response is equal 

to the number of the challenges, the proposed system will recognize the user as live.  

     Kim et al. [29] presented a novel method for face spoofing detection using 

camera focusing. Two sequential images were taken with two different focusing: on the 

nose (IN) and the ears (IE). SUM Modified Laplacian (SML) is used to measure the degree 

of focusing for both the nose (SN) and ears (SE).  After calculating SMLs, the SN is 

subtracted from SE to maximize the SML gap between the nose and ears regions. If the 

sum of the difference of SMLs (DoS) shows similar pattern consistently, the user is live. 

Otherwise it is fake. The difference in the patterns can be used as features to detect the face 

liveness.   

      In [30], Kim et al. segmented the video input into the foreground and 

background regions to detect the motion and similarity in order to prevent image and video 

spoofing attacks. The authors used a structural similarity index measure (SSIM) to measure 

the similarity between the initial background region and the current background region. 

The background motion index (BMI) is proposed to show the amount of motion in the 

background compared with foreground region. The motion and similarity in the 

background region should contain significant information to indicate liveness detection.  

     In [31], Tirunagari et al. used a recently-developed algorithm called Dynamic 

Mode Decomposition (DMD) to prevent replay attacks.  The DMD algorithm is a 

mathematical method developed to analyze and extract relevant modes from empirical data 

generated by non-linear complex fluid flows. The DMD algorithm can represent the 

temporal information of the entire input video as a single image with the same dimensions 
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as those images contained in the recorded video.  The authors modified the original MDM 

that uses QR-decomposition and used LU decomposition to make it more practical. The 

DMD is used to capture the dynamic visual in the input video. The feature information is 

extracted from the visual dynamic using the LBP and fed to the SVM classifier. 

         Yan et al. [32] proposed a novel liveness detection method based on three 

clues in both temporal and spatial domain. First, non-rigid motion analysis is applied to 

find the non-rigid motion in the local face regions. The non-rigid motion can be exhibited 

in the real face while many fake faces cannot. Second, in face-background consistency both 

the fake face motion and background motion are consistent and dependent. Finally, the 

banding effect is the only spatial clue that can be detected in the fake images, because the 

image quality is degraded due to the reproduction. Their techniques show a better 

generalization capability on different datasets.   

      In [33]-[34]-[35], the authors analyzed the optical flow in the input image to 

detect spoofing attacks. The optical flow fields generated by the movement of a two-

dimensional object and by a three-dimensional object are utilized to distinguish between 

real fake face images.  They calculated the difference in the pixel intensity of image frames 

to extract the motion information.  The motion information is fed to the classifier to 

determine whether the input images are real or not.  In previous studies, 2D attacks were 

performed by showing printed photos or videos to the system on a flat surface. However, 

with the advancement in 3D printing technologies, the detection of a 3D mask against a 2D 

mask has become more complex and harder to identify [34]. Since the liveness detection 
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and motion analysis fail to detect and protect the system against 3D mask attacks, the 

texture analysis method is one of the reliable approaches that can detect a 3D mask.  

     In [36]-[37]-[38], Local Binary Pattern and its variations are proposed to protect 

face recognition system against 3D mask attacks. As explained before, LBP is used to 

extract features and generate a histogram using a 3D MAD database. The LBP histogram 

matching using x2 is applied to compare test samples with a reference histogram. 

Additionally, both linear (LDA) and non-linear (SVM) classifiers are tested. Principle 

Component Analysis (PCA) is used to reduce dimensionality, while 99% of the energy is 

preserved. The Inter Session Variability (ISV), an extension of the Gaussian Mixture 

Models approach, is applied to estimate more reliable client models by modeling and 

removing within-client variation using a low-dimensional subspace [39].  Their 

experimental result shows that using LDA classification is more accurate in 3D mask 

attacks, especially in the case of a 3DMAD database.  

2.2 Open Authorization Protocol 

OAuth protocol allows the resource owner to grant permission to a third-party 

application to access the owner’s protected resource,  on their behalf, without releasing 

their credentials (e.g., username, password) [40]. OAuth has provided a mechanism where 

the third-party application role is separated from the resource owner roles. There are four 

roles in the OAuth protocol:  

 Resource Owner:  typically an end user who has the power to grant access to the 

protected resource [41]. 



 
 

25 

 Resource server: the server that hosts the protected resource owned by the resource 

owner, and has capability to accept access token. 

 Client: a third-party application that issues a request to access the protected resource.  

 Authorization server: the server that issues the access token to the third-party 

application. 

 

Yang and Manoharan [42] give an overview of the vulnerabilities of the OAuth 2.0 

protocol. The authors built an attacker model that simulates common network attacks on 

the OAuth 2.0 protocol that could be carried out to impersonate users, such as the replay 

attacks module, impersonating attack module, and phishing attack module. The attackers’ 

models were built on two assumptions: 1) the attacker has full access to the network and 

can eavesdrop on the communication between the three parties (client application, resource 

server, and authorization server), and 2) the attacker model has unlimited resources to 

launch an attack.  Replay attack module is based on the reuse of an authorization code. The 

attacker may capture the authorization code and resend it back to the client application to 

login with the account associated with the specific authorization code. The phishing attack 

module has shown the misuse of web service to manipulate the user. The attacker can 

register with any web services to gain a client ID to masquerade as a legitimate website. 

To launch a phishing attack, DNS cache records are poisoned on the user’s machine, 

therefore, the user is redirected to a malicious client site that he/she did not intend to visit. 

The impersonating attack module takes advantages of secure vulnerability where the 

communication between the user-agent and client application is not protected using TLS. 

The attacker eavesdrops on the authorization code and blocks the original request to 
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prevent the authorization code’s use.  The attacker initiates a forged request with the client 

application and send the stolen authorization code to start a new authorization flow. 

Leinonen et al. [43]  proposed a new mothed to secure OAuth using a portable 

secure memory card with NFC-enabled service. The authors implemented a software 

application prototype that shows how the secure credential storage on a user-configurable 

secure memory card can support an open authentication protocol. Proposed technique 

provides protection against copying and typing the credentials.  The card involves two 

elements: 1) a consumer key that links the provider to web service, and 2) the user token 

that links the user to the user’s account for the service.  

Gomaa [44] et al. provided a novel approach based on web camera to replace 

fingerprint biometric identifier with finger knuckles utilizing OAuth protocol. The users 

only need to show knuckles against an integrated web camera in order to capture the 

knuckles and authenticate instantly. This process requires having three gaps between the 

fingers visible. On the other hand, in a fingerprint authentication mechanism, users are 

required to scan their fingers with a certain position in order to allow the system to capture 

and scan clearly. The web camera is hosted in a cloud web service as a cost-effective 

acquisition device. The verification process consists of four phases: preprocessing, feature 

extraction, clustering and retrieving, and classification.  The preprocessing phase applies 

different image filters to improve the picture quality. The feature extraction phase extracts 

and examines the structural information in the distribution of knuckle minutiae and SURF. 

The authors used K-Means to cluster and identify groups of samples. In the next stage of 

the identification process, Naïve Bays validates the identity of the group in the cluster. In 
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the classification phase, Naïve Bayesian network classifies all data into correct class 

category. The authors did not apply the results on a large scale database and did not cover 

different case suchs as gaining and skin color.  

         Meng-Yu et al. designed an API access control architecture based on OAuth 

protocol. The authors designed a system architecture that consists of three components: the 

APIs management platform, API provider, and API consumer. The APIs management 

platform is used to distribute, discover, and consume API. The API provider contacts the 

APIs management platform to register and publish API information such as capabilities, 

version, library, etc. After registration, the API Provider gets an API key that can be used 

to validate the source of the token publication. An API consumer can send a request to the 

APIs management platform to discover the published APIs and sign a Service Level 

Agreement. Further, the API provider obtains a client key. The authors are forcing the API 

consumer to follow the token based Access Control Model. The API consumer requests a 

temporary token from the APIs management platform, and then presents it to the API 

provider to validate it with the APIs management platform [3].  

2.3 Conclusion  

Face liveness detection is an important precursor to online facial recognition. We 

provide a comprehensive review of the techniques for liveness detection which are 

categorized into static and dynamic groups. Most static techniques use either texture 

analysis methods such as Local Binary Pattern operators or Fourier spectra methods such 

as high frequency descriptor. The texture analysis is more powerful in extracting 

discriminative features such as the MLBP operator. However, its performance degrades 
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under changing lighting directions and shadowing. The Fourier spectra have the ability to 

capture high and low frequencies from the input face to detect a spoofing attack. The 

Difference of Gaussian with Sparse Logistic Regression has achieved a 94% on the NUAA 

dataset, where the MLBP only achieved a 92%. The Fourier spectra are sensitive to 

brightness effect, which causes the DoG to fail at detecting the border.  

       The dynamic techniques are based on the detection of motion over the input 

frames sequence to differentiate between real and fake faces. Since dynamic techniques 

utilize more than one frame, dynamic techniques achieve better performance compared 

with static techniques. Thus, dynamic techniques are slow and difficult to implement. 

Further, some of the dynamic techniques require users to follow instructions to validate 

their presence, but not all users may cooperate in this respect. This makes the dynamic 

methods an unfavorable technique to use in the face liveness methods. There are many 

different factors that might affect the performance of some of the proposed static and 

dynamic techniques such as media quality, illuminations and user cooperation. Some 

studies trained their proposed methods using low quality media, making their technique 

vulnerable to the use of high-quality media. 
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CHAPTER 3: FACE LIVENESS DETECTION 

3.1 Introduction to biometric authentication  

Biometric authentication is an automated method that identifies or verifies a 

person’s identity based on his/her physiological and/or behavioral characteristics or traits.  

The biometric authentication method is favored over traditional credentials (username / 

password) for three reasons: first, the user must be physically present in front of the sensor 

for it to acquire the data. Second, the user does not need to memorize login credentials. 

Third, the user is free from carrying any identification such as an access token. An additional 

advantage of biometric systems is that they are less susceptible to brute force attacks. 

Biometric authentication can be based on the physiological and/or behavior characteristics 

of an individual. Physiological characteristics may include, iris, palm print, face, hand 

geometry, odor, fingerprint, and retina etc. Behaviorial characteristics are related to a user’s 

behavior: e.g., typing rhythm, voice, and gait.  

The ideal biometric characteristics to use in a particular authentication should have 

five qualities[4]: robustness, distinctiveness, availability, accessibility and acceptability.  

Robustness refers to the lack of change of a user characteristic over time. Distinctiveness 

refers to a variation of the data over the population so that an individual can be uniquely 

identified. Availability indicates that all users possess this trait.  Accessibility refers to the 
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ease in acquiring the characteristic using electronic sensors. Acceptability refers to the 

acceptance of collecting the characteristic from the user.  The features that provide these 

five attributes are then used in a biometric authentication or verification system. Verification 

is defined as the matching of an individual’s information to a stored identity, whereas 

identification refers to whether an incoming user’s data matches any user in the stored 

dataset.  Prior to authentication (verification or identification), an enrollment of allowed 

individuals is required. 

In the enrollment mode, the users are instructed to show their 

behavioral/physiological characteristics to the sensor. This characteristic data is acquired 

and passed through one of used algorithms that checks whether the acquired data is real or 

fake. Moreover, it ensures the quality of the image.   The next step is to register the acquired 

data by performing localization and alignment.   The acquired data is processed into a 

template that is a collection of numbers stored in the database.  

In the authentication phase, the biometric system includes four steps before making 

the final decision: Data Acquisition, Preprocessing, Feature Extraction, and Classification 

[45] [46].  

1) Data acquisition:  it is a sensor, such as a fingerprint sensor and web camera, which 

captures the biometrics data with three different qualities: low, normal, and high-

quality.  

2) Preprocessing: its duty is to reduce data variation in order to produce a consistent set of 

data by applying noise filters, smoothing filters, or normalization techniques.   
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3) Feature extraction: it extracts the relevant information from the acquired data before 

classifying it. 

4) Classification:  it is a method that uses the extracted features as input and assigns it to 

one of the output labels.  

 

The verification mode extracts the relevant information and passes it to the classifier 

to compare the captured acquired data with the template stored into the database to 

determine the match[45]. In the identification mode, the acquired data is compared with all 

users’ template in the database to the user [46]-[47]. Figure 3. 1. is a simple description of 

these three modes. 
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Figure 3.1 Face Recognition System. 

For biometric systems based on face recognition, adding a face liveness detection 

layer to the face recognition system prevents the spoofing attacks. Before proceeding to 

recognize or verify the user, the face liveness check eliminates the possibility that a picture 

of the person is presented to the camera instead of the person him/herself.  
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3.2 Nonlinear Diffusion  

The motivation behind our approach is to address spoofing attacks using a nonlinear 

diffusion based on an AOS scheme with a large time interval to obtain the sharp edges and 

preserve the boundary locations of the input image. Moreover, we propose a specialized 

deep convolution neural network architecture that can extract complex and high-level 

features to distinguish the diffused image, as explained in the next subsection.  

3.3.1 Additive Operator Splitting 

Nonlinear diffusion is used in our face liveness detection to obtain the sharp edges 

and preserve the boundary locations that help to distinguish a fake image from a real image 

by diffusing the input image quickly. Thus, the edges obtained from a flat image will fade 

out, whereas those from a real face will remain clear. In early computer vision, noise 

reduction and edge localization in multiscale descriptions of images was developed and 

explored in the field of image processing [48]. The Gaussian smoothing kernel, a low-pass 

filter, was used to smooth out image noise—particularly with a multiscale representation 

using a scale-space parameter (t).  

𝐼(𝑥, 𝑦, 𝑡) =  𝐼𝑂𝑟𝑔𝑖𝑛𝑎𝑙 𝐼𝑚𝑎𝑔𝑒(𝑥, 𝑦) ∗ 𝐺 (𝑥, 𝑦; 𝑡).                                  (3.1) 

Koenderink [49] later noted that convoluting the image with a Gaussian at each scale 

is equivalent to linear diffusion solutions, such as heat equations. 

𝐼𝑡 = (𝐼𝑥𝑥 +  𝐼𝑦𝑦)                                                          (3.2) 
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The general diffusion equation is given as 

𝜕𝐼 = 𝑑𝑖𝑣(𝑔 𝛻𝐼)                                                                (3.3) 

Where the diffusivity g is a constant number ∊ ℝ that refers to the speed of the 

diffusion process. Linear diffusion has some limitations, such as blurring important features, 

including edges, and dislocating the edges as it smooths a finer scale to a coarser scale [15] 

[50]. Perona and Malik [51] proposed a nonlinear diffusion method based on a partial 

differential equation (PDE). They named this approach anisotropic diffusion; this approach 

avoids the blurring and localization issues that affect linear diffusion as follows:  

𝜕𝐼 = 𝜕𝑥(𝑔(|𝛻𝐼|)𝜕𝑥) + 𝜕𝑦(𝑔(|𝛻𝐼|)𝜕𝑦)                                      (3.4) 

Here, the diffusivity g(.) is  

𝑔(𝑠2) =
1

1 +
𝑠2

𝜆2

                                                       (3.5) 

The nonlinear diffusion filter detects the edges and preserves their locations during the 

diffusion process using explicit schemes. However, this schema suffers from regularization. 

Weickert [52] presented a semi-implicit scheme to address this problem. The scheme works 

with any time step size using an AOS scheme that treats the coordinates of all axes equally, 

as shown below:  

(𝐼𝑘)𝑡+1 = ∑(𝑚 𝐼 −  𝜏 𝑑2 𝐴𝑙)−1 𝐼𝑘
𝑡

𝑑

𝑙=1

                                        (3.6) 
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Where k represents the number of channels and d denotes the input dimension. I is 

the identity matrix, and 𝐴𝑙 is the diffusion in the vertical or horizontal direction. In a case 

where l = 2 (2D), the equation would be [53] : 

 

(𝐼𝑘)𝑡+1 =  (2 𝐼 −  𝜏4 𝐴𝑥 )−1𝐼𝑘
𝑡 +  (2 𝐼 −  𝜏4 𝐴𝑦 )

−1
𝐼𝑘

𝑡                             (3.7)  

The AOS scheme enables fast diffusion even with a large time-step size value (e.g., 

100) and can distinguish between edges in flat and rounded surfaces. As shown in Figure 

3.2., the edges in printed fake images fade out from the smoothing of the surface texture, 

whereas the real image preserves its edges and prevents the diffusion from spreading. 

 

Figure 3.2 a) The top image is a real face; the bottom image is a fake. b) A normalized face with a size of 

64 × 64 pixels. c) A diffused image using AOS with a time-step size of 100 and 5 iterations. 
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a)                b)                    c)                d) 

Figure 3.3 The top row images (a) and (c) are real faces, whereas the bottom row images (a) and (c) are 

fake. In both rows, images (b) and (d) represent diffused surfaces scaled from [0, 255]. 

We extract the information features from the image surface by calculating the diffusion 

speed as given in [14] [54]:  

𝐼(𝑥, 𝑦) = |log(𝐼0 (𝑥, 𝑦) + 1) − log(𝐼𝑙(𝑥, 𝑦) + 1)|                                     (3.8) 

Where 𝐼0 represents the original image and 𝐼𝑙 denotes the diffused image. As shown 

in Figure 3.3, the real image surface has relatively sharp edges (e.g., nose and cheek). In 

contrast, the surface of the fake images have smoother edges. All previous approaches used 

hand-crafted features, such as the LBP, to extract the information features. That approach 

has some limitations, such as a limited ability to extract complex features. Therefore, this 

work uses deep learning with gradient descent to extract the discriminative and higher-level 

features from the diffused image. We developed a specialized deep convolution neural 

network architecture to extract the most significant features, which leads to better 

classification, as explained in the next section. 

3.3.2 Convolution Neural network  

Machine learning has been successfully applied in many different applications, such 

as object detection [55], handwriting recognition [56] face detection [57], and face 

recognition [58]. The convolution neural network (CNN) was first introduced by LeCun et 

al. [55] [56] and is predominantly a biologically-inspired hierarchical multilayered neural 

network approach that simulates the human visual cortex and detects translation invariance 

features [59]. CNNs are designed to extract the local features by  
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Figure 3.4. Our proposed convolution neural network architecture

combining three architectural concepts that perform some degree of shift, scale, distortion 

invariance, local receptive fields, shared weight, and subsampling. The ability of both 

convolution and subsampling layers to learn distinctive features from the diffused image 

helps in extracting features and achieving the best classification for face liveness detection. 

Our developed deep convolution consists of six layers. The first five layers are 

convolutional and subsampling layers, and the last layer is the output layer, as shown in 

Figure 3.4. The input image, not counted in the CNN layer, has a size of 64 × 64 pixels. 

Layer C1 is the first convolution layer and consists of twelve feature maps. Each unit in the 

feature map is a result of connecting a 9 × 9 neighbor in the input image. The new size of 
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the feature map is 56 × 56 pixels. Layer S2 is a subsampling layer with twelve feature maps 

of 28 × 28 pixels. Each feature map in the subsampling layer is connected to an average 

kernel 2 × 2 neighborhood from the previous corresponding feature map in C1. The average 

2 × 2 kernel is non-overlapping. Therefore, the size of the feature map in S2 is half the size 

of the feature map in C1. C3 is a convolution layer composed of eighteen feature maps of 

22 × 22 pixels. Each feature map takes inputs from four random feature maps from the 

previous S2 subsampling layer. All four feature maps from subsampling are connected to 

only one 7 × 7 kernel. Layer S4 is a subsampling layer with eighteen feature maps of 11 × 

11 pixels. Each feature map in the subsampling is connected to an average 2 × 2 kernel 

neighborhood from the previous corresponding feature map in C3. The 2 × 2 kernel is non-

overlapping over the input and reduces the subsampling to half the size of the input. C5 

consists of 124 feature maps of 9 × 9 pixels. Each unit in the feature map is a result of 

connecting the 3 × 3 neighbor in the input. Each feature map takes one random feature map 

from the previous S4 subsampling layer. Finally, the last layer is the output layer, a fully-

connected layer. The proposed CNN was trained using the standard backpropagation 

algorithm, as shown in Table 4.1. We trained our network using the stochastic gradient 

descent method to calculate the true gradient at each iteration, which is considered faster 

than batch learning. CNNs learn faster from the unexpected input; thus, we shuffle the data 

randomly at each iteration. The value of the input image pixels is normalized between zero 

and one, setting the mean close to zero and the variance close to one. The output of each 

feature map is normalized or squashed between 1 and -1 using a hyperbolic tangent 

activation function called Tanh, which helps with the backpropagation learning. All weights 

(w) and biases (b) are randomly initialized between -1 and 1. We used a small learning rate 
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with a value of 0.005 to help the network learn quickly, especially to update the weight in 

the backpropagation. The last layer is the fully connected layer; we used the softmax 

activation function as a classifier to approximate the expected output to be-between 0 and 1 

in our binary classification [60]. 

Table 3.1. Forward and Backpropagation algorithm. 

Algorithm 1. Forward and backpropagation algorithms for our proposed convolution neural 

network  

 All weights (w) and biases (b) are initialized to a value between -1 and 1, and the learning rate 

λ is set to 0.005 

 Input (I) of size 64 × 64 

 For i =1 to I do  

 Forward  

     For layers l=1 to L do  

         For FeatureMap f =1 to F do 

             If layer l is C layer then  

                 𝒊𝒇 
(𝒍)

(𝒙, 𝒚) =  ∅ ((∑ ∑  𝒘𝒇
(𝒍)

(𝒎,𝒏)𝒌 ∊𝑲 (𝒎, 𝒏). 𝒊 𝒌
(𝒍−𝟏)

 (𝒙 + 𝒎, 𝒚 + 𝒏)) + 𝒃𝒇
(𝒍)

 (𝒙, 𝒚)) 

             Else If layer l is S layer then 

                 𝒊𝒇 
(𝒍)(𝒙, 𝒚) =  ∅ (( 𝒘𝒇 

(𝒍)
∗  ∑  𝒊 𝒇

(𝒍)
(𝒎,𝒏) (𝟐𝒙 + 𝒎, 𝟐𝒚 + 𝒏)) + 𝒃𝒇

(𝒍)
 (𝒙, 𝒚)) 

             Else If layer is fully connected then  

                𝒊𝒇 
(𝒍)

= ∅ ((∑ (𝒘𝒌𝒇
(𝒍)𝑲

𝒌=𝟏 . 𝒊 𝒌𝒇
(𝒍−𝟏)

 )) + 𝒃𝒇
(𝒍)

) 

             End if  

         End for  

     End for 

 Backpropagation 

     For layer l=L-1 to 1 do  

         If layer l= L then  

             𝛅𝒌 
(𝒍)

= ( 𝑶𝒌 
(𝒍)

−  𝑬𝒌
(𝒍)

) 
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         Else if layer l+1 is fully connected then 

             𝛅𝒌 
(𝒍)(𝒙, 𝒚) = (∑  ∑ 𝛅𝒌 

(𝒍+𝟏)
(𝒙,𝒚)  𝑲

𝒌=𝟏 𝒘𝒌𝒇
(𝒍+𝟏)(𝒙, 𝒚)) ∅′(𝑨(𝒌)

(𝒍)
)  

         Else if layer l+1 is C then 

            𝛅𝒇 
(𝒍)(𝒙, 𝒚) = (∑ ∑ 𝛅𝒌 

(𝒍+𝟏)
 (𝒊, 𝒋) 𝒘𝒌

(𝒍+𝟏)(𝒎, 𝒏) (𝒎+𝒊,𝒏+𝒋)𝒌=𝑲𝒍 (𝑪𝒐𝒏𝒗𝒐𝒍𝒖𝒕𝒊𝒐𝒏)
) ∅′(𝑨(𝒌)

(𝒍)
) 

         Else if layer l+1 is S then 

             𝛅𝒇 
(𝒍)(𝒙, 𝒚) = ( 𝛅𝒌 

(𝒍+𝟏)
 (𝟐𝒙 + 𝒎, 𝟐𝒚 + 𝒏)/ 𝒘𝒇

(𝒍+𝟏)
(𝒎, 𝒏))∅′(𝑨(𝒌)

(𝒍)
)    

        End if 

     End for 

     For layer l=1 to L do  

        If layer l is C then 

            𝒘𝒇
(𝒍)(𝒎, 𝒏) = 𝒘𝒇

(𝒐𝒍𝒅 )(𝒎, 𝒏) +  (−𝝀 ∑ ∑ (𝛅𝒇 
(𝒍)(𝒙, 𝒚) 𝒊𝒌

(𝒍−𝟏)(𝒙 + 𝒎, 𝒚 + 𝒏))(𝒙,𝒚)𝒌∊𝑲  )        

        Else If layer l is S then 

            𝒘𝒇
(𝒍)(𝒎, 𝒏) =  𝒘𝒇

(𝒍)
(𝒎, 𝒏) 

         Else If layer is fully connected, then  

             𝒘𝒇
(𝒍)(𝒎, 𝒏) =  𝒘𝒇

(𝒐𝒍𝒅 )(𝒎, 𝒏) + (−𝝀 ∑ 𝒊𝒌
(𝒍−𝟏)

𝒌∊𝑲 . 𝛅𝒇 
(𝒍)

 ) 

         End if  

         If layer is C then 

             𝒃𝒇
(𝒍)

(𝒙, 𝒚) =  𝒃𝒇
(𝒐𝒍𝒅)

(𝒙, 𝒚) + ( −𝝀 . 𝛅𝒇 
(𝒍)(𝒙, 𝒚))   

         Else If layer is S then 

             𝒃𝒇
(𝒍)

(𝒙, 𝒚) =  𝒃𝒇
(𝒐𝒍𝒅)

(𝒙, 𝒚) +  (−𝝀 . 𝛅𝒇 
(𝒍)(𝒙, 𝒚)) 

         Else if layer is fully connected then 

             𝒃𝒇
(𝒍)

(𝒙, 𝒚) =  𝒃𝒇
(𝒐𝒍𝒅)

(𝒙, 𝒚) +  (−𝝀 . 𝛅𝒇 
(𝒍)(𝒙, 𝒚)) 

         End if  

     End for 

 Until Convergence  
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3.3 Auto-encoder 

3.3.1 Introduction 

An auto-encoder is conceptually an artificial neural network used for learning useful 

data representation from unlabeled data through an unsupervised learning method [61]. The 

auto-encoder consists of an encoder and a decoder that remove the data redundancies and 

preserve significant data features as shown in Figure 3.5 . The encoder extracts the hidden 

representation 𝑦𝑖 ∈  𝑅𝑑𝑎𝑡𝑒 𝑦   from the raw data 𝑥𝑖 ∈  𝑅𝑑𝑎𝑡𝑒 𝑥 using a function 𝑔(): 

 𝑦𝑖 =  𝑔(𝑊𝑥𝑖) + 𝑏   

Where g() is the sigmoid function and W, x and b represent the weight, the input value and 

the bias respectively.  

      The decoder reproduces the initial data 𝑥′
𝑖 ∈  𝑅𝑑𝑎𝑡𝑒 𝑥 from the hidden representation 

𝑦𝑖 ∈  𝑅𝑑𝑎𝑡𝑒 𝑦: 

 𝑥′
𝑖 =  𝑔(𝑊′𝑦𝑖) + 𝑏 

 

Figure 3.5. Single Layer Autoencoder 
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3.3.2 Motivation   

The successful use of non-linear diffusion followed by deep learning to detect face 

spoofing attacks in the previous section, motivated us to explore a new method to extract 

ideal diffused image. We applied the non-linear diffusion based on an additive operator 

splitting (AOS) equation to extract the diffused image. We tried various numbers of 

number of iterations and different time steps parameters, which were chosen randomly and 

tested individually, to obtain the most distinguished diffused image. We proposed a 

specialized deep convolution neural network to extract complex and higher-level 

dimensional features. Therefore, we designed a spoofing detection system that utilizes the 

auto-encoder to automatically discover the ideal nonlinear diffusion’s parameters and to 

extract the complex and high-dimensional features.  

3.3.3 Proposed method 

We propose a novel multi-model deep learning framework to extract the ideal 

diffused image along with the significant features to detect the spoofing attack. This multi-

model deep learning consists of three stages: The first stage involves an auto-encoder that 

is pre-trained to produce the diffused image without employing an additive operator 

splitting (AOS) scheme equation. In the second stage, the output of the auto-encoder is 

used as input to pre-train the convolution neural network. In the final stage, the entire 

network both the auto-encoder and the convolution neural network are trained jointly as a 

single model to adopt the ideal diffused image parameters and weight to enhance the 

spoofing detection performance.  
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The auto-encoder is pre-trained to produce a diffused image without applying the 

nonlinear diffusion question. The input image is the captured web cam image where the 

output image is a diffused image generated through the non-linear equation setting the 

number of iteration to 5 and the time step to 100. The auto-encoder architecture consists of 

three layers. The first layer is the input layer that has 4096 neurons. The second layer is the 

hidden layer and it is composed of 600 neurons. The last layer is the output layer that has 

4096 neurons as shown in Figure 3.6.  

 

Figure 3.6. Diffused image obtained through auto-encoder 

The output of the auto-encoder will be converted to a 2D diffused image. In order to extract 

the discriminative and higher-level features from the diffused image, a specialized deep 

convolution neural network architecture is proposed as explained in the next section. 

3.3.4 Fine tuning 

The entire architecture consists of auto-encoder and convolution neural network 

which is pre-trained first and then is fine-tuned end-to-end, without hand-craft components 

to extract the significant features. The entire architecture is trained jointly as single model 

to adopt the ideal diffused image parameters and the ideal weight to detect the spoofing 

attack. 
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Figure 3.7. Fine tuning 

The proposed CNN was pre-trained using the output of the auto-encoder. The standard 

backpropagation algorithm using the stochastic gradient descent method is used to 

calculate the true gradient at each iteration, as shown in Table 3.1 . We randomly shuffle 

the subset data at each iteration which helps the CNNs to learn faster. All weights (w) and 

biases (b) are randomly initialized between -1 and 1. A small learning rate with a value of 

0.005 is used to help the network learn quickly, especially to update the weight in the 

backpropagation. The output of each feature map is squashed between -1 and 1 using a 

hyperbolic tangent activation function (Tanh). In the last layer softmax activation function 

is used as a classifier to approximate the expected output to between 0 and 1 in our binary 

classification.  The input image has a size of 64 × 64 pixels. First convolution layer (C1) 

consists of 12 feature maps. Each unit in the Convolutional layer  is a result of connecting 

9 × 9 kernel . Second layer is a subsampling layer (S2) with 12 feature maps. Each feature 

map in the subsampling layer is connected to an average kernel (2 × 2) neighborhood from 

the previous corresponding feature map in convolutional layer.  Third layer is a convolution 

layer (C3) composed of 18 feature maps of 22 × 22 pixels. Each feature map takes inputs 
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from 4 random feature maps from the previous subsampling layer. Each unit in the 

subsampling is connected to 7 × 7 kernel. Fourth layer is a subsampling layer (S4) with 18 

feature maps of 11 × 11 pixels. Each unit in the subsampling layer is connected to an 

average 2 × 2 kernel. Fifth layer is convolutional layer (C5) consists of 124 feature maps. 

Each unit in C5 is a result of connecting the 3 × 3 neighbor in the input. Each feature map 

in C5 takes one random feature map from the previous S4 subsampling layer. Finally, the 

last layer is the fully connected layer, output layer. 

3.3.5 Analysis 

         In this subsection, we discuss and analyze our approach using the autoencoder to 

detect the face spoofing attacks utilizing a static image. We initially pre-trained the auto-

encoder to produce the diffused image, which is similar to the one obtained through 

Additive Operator Splitting (AOS). When training the entire network jointly, the auto-

encoder’s weights are updated through the backpropagation algorithm that affects the 

output of the auto-encoder as shown in Figure 3.7. The auto-encoder is able to extract better 

depth information and texture surface for real images when compared to the nonlinear 

diffusion as shown in figure 3.8. In contrast, the nonlinear diffusion obtains more flat 

surface for spoofing attacks when compared with the auto-encoder.  Thus, the trained auto-

encoder destroys the edges and texture of some images in the test set, which affects our 

multi-model deep learning algorithms performance. 
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a)                    b)                     c)  

Figure 3.8.  Example of the NUAA database, a) The top image is a real face from Test set; the bottom 

image is a fake face. b)  diffused images obtained through the Auto-encoder. c)  diffused images obtained 

through AOS with a time-step size of 100 and 5 iterations. 

3.4 Conclusion 

In this chapter, an effective and robust approach was proposed to address the 

problem of face spoofing attacks using a static image. We used an AOS-based schema with 

a large time-step size to generate the speed-diffused image. The AOS-based scheme was 

able to detect sharp edges and texture features in the input image. Fake face images had 

fewer edges and flattened surfaces around the eyes, nose, lips and cheek regions when we 

recaptured the input image twice, which destroyed the sharp edges and changed the pixel 

locations. In contrast, real face images had sharp edges and rounded surfaces, especially 

around the nose and lips. Previous approaches used handcrafted features, such as the LBP 

algorithm, to extract information features from the diffused image. In contrast, this work 

used a deep learning algorithm with gradient descent. Our proposed CNN architecture was 

able to extract the most significant features from the diffused image.  
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CHAPTER 4: IMPLEMENTATION AND PRELIMINARY 

RESULTS 

4.1 Single image Attack (Picture of a Picture) 

5.3.1 NUAA dataset 

The NUAA Photograph Imposter Database [18], released in 2010, is publicly 

available and widely used for evaluating static face liveness detection. The NUAA database 

consists of 12,614 images of both live and photographed faces that have been captured in 

three different sessions with an approximately two-week interval between any two sessions. 

The database images consist of 15 subjects. Specifically, each subject in each session was 

asked to face the web camera with the goal of capturing a series of facial images with a 

natural expression and no apparent movement (capturing 20 frames at 20 fps and 500 images 

for each subject). 
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Figure 4.1. Example of the NUAA database (Top: Live photograph, Bottom: Fake photograph) 

 

Table 4.1. NUAA Database 

 

 Training Set 

 Session 

1 

Session 

2 

Session 

3 

Total 

Client 889 854 0 1743 

Imposter 855 893 0 1748 

Total 1744 1747 0 3491 

 Test Set 

 Session 

1 

Session 

2 

Session 

3 

Total 

Client 0 0 3362 3362 

Imposter 0 0 5761 5761 

Total 0 0 9123 9123 

 

The database images were converted into a gray-scale representation and resized to 

64 × 64 pixels, as shown in Figure 4.1. The database is divided into a training set with a 

total of 3,491 images and a test set with a total of 9,123 images, as shown in more detail in 

Table 4.1. The training set consists of images collected from the first and second sessions, 
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whereas the images in the test set were collected only from the third session. There is no 

overlap between the training and test sets. 

5.3.2 Discussion and analysis 

In this subsection, we discuss and analyze the efficiency and robustness of our 

approach for detecting face spoofing attacks utilizing only one input image. The input image 

is normalized to 64 × 64 pixels. This normalized image has no background, which reduces 

the time required for processing—particularly when passing the input image through our 

deep convolution neural network. Some dynamic techniques utilize the background to 

extract features that increase the time required for processing; however, our approach 

focuses on extracting sharp edges from the input surface rather than detecting other features 

from the background. We apply the AOS-based diffusion scheme to extract sharp edges and 

surface textures, such as the nose, eyes, lips, and cheek. These characteristics form most 

edges and textures in faces that can help distinguish 2D from 3D images when applying a 

large time-step value. Re-capturing the input image twice destroys the sharp edges and 

changes the pixel locations as shown in Figure 4.2.  
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Figure 4.2. Process of our proposed approach. 

 

After conducting many experiments with different time-step values, we determined 

that a time step of (𝜏 = 100) yields the best result when iterating five times (L =5), as shown 

in Figure 4.6. Using a larger time step (one greater than 𝜏 = 100) causes the most important 

features, such as the edges and location, to fade out, as shown in Figure 4.3. Applying the 

AOS-based scheme with a time step of 𝜏 = 200 blurs and fades out the edges, thus making 

it difficult to extract features from either fake or real faces. Moreover, we also tested the 

impact of the number of iterations on the classification result. We conducted four 

experiments using four different iterations (5, 10, 15, and 20) while holding the time step 

constant at 𝜏 = 100. Increasing the number of iterations from 5 to 10 blurs the face and 

consumes additional time, as shown in Figure 4.7. The iteration 𝐿 = 5 yields an accuracy of 

99%, whereas iterations of 𝐿 = 10 and 𝐿 = 20 yield accuracy rates of 93% and 92%, 
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respectively. Our proposed feature extraction, CNN, has proven to be powerful in extracting 

not only the edges but also the textures of the faces as shown in Figure 4.2. The trained 

kernels are able to detect features that help in distinguishing the speed-diffused images. 

After visualizing the first convolution layer, there is a clear difference in the real and fake 

diffused images (e.g., the eye, nose, lips, and cheek regions). The real face has more edges 

and distinct corners around the eyes and lips, where the fake face has fewer edges and flat 

surfaces.  

 

Figure 4. 3. a) Normalized image, b) diffused image with 𝜏 = 50, c) diffused image with 𝜏 = 100, and d) 

diffused image with 𝜏 = 200 

 

5.3.3 Result    

 To evaluate the performance of our approach, we conducted many experiments with 

different time step size values (𝜏) and different iteration numbers (L) using the images in 

the NUAA dataset, as shown in Table 4.4. The best detection accuracy achieved using the 

NUAA dataset was 99% using values of 𝜏 = 100 and L=5. Using a larger time step value 

and a larger number of iterations does not always yield higher accuracy, as shown in Table 
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4.2. For example, experiments where 𝜏 = 120 and L=5 resulted in an accuracy of 98.21%, 

and experiments where 𝜏 = 120 and L=10 resulted in an accuracy of 93.97%. Thus, 

increasing the iteration number not only fails to improve the accuracy rate of our proposed 

deep convolution neural network, as shown in Figure 4.7, but also requires more 

computational time. 

Table 4.2. Performance with different parameters using the NUAA dataset. 

𝝉 L Accuracy  𝝉 L Accuracy  

40 5 90.23 40 10 97.56 

60 5 94.03 60 10 93.29 

80 5 93.31 80 10 97.36 

100 5 98.99 100 10 95.99 

120 5 98.21 120 10 93.97 

140 5 97.96 140 10 94.11 

160 5 97.15 160 10 97.01 

180 5 96.74 180 10 94.74 

200 5 94.10 200 10 94.60 

 

Table 4.3. Performance evaluation for different numbers of iterations. The time step is fixed at a value of 

100. 

𝝉 L 
Accura

cy  
𝝉 L 

Accura

cy  

100 1 86.41 100 6 96.30 

100 2 90.57 100 7 96.43 

100 3 95.20 100 8 95.74 

100 4 98.02 100 9 97.00 

100 5 98.99 100 10 95.99 
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Table 4.4. Performance comparison using the NUAA dataset. 

Methods Accuracy 

M-DoG [21] 81.8% 

HDF [22] 84.5% 

DoG-LRBLR [18] 87.5% 

M-LBP [10] 92.7% 

DoG-S L [19] 94.5% 

CDD [16] 97.7% 

DS-LSP [14] 98.5% 

Auto-encoder -CNN 97% 

Our proposed approach 99.0% 

 

To prove the efficiency and effectiveness of our approach, we compared the 

performance of our proposed deep convolution neural network using the NUAA dataset 

with all previously proposed approaches, as shown in Figure 4.4. The compared approaches 

were: multiple difference of Gaussian (M-DoG) [21], high descriptor frequency [22], DoG 

sparse low-rank bilinear logistic regression (DoG-LRBLR) [18], multiple local binary 

pattern (M-LBP) [10], DoG-sparse logistic (DoG-SL) [19], component dependent 

descriptor (CDD) [16], and the diffused speed-local speed pattern (DS-LSP) [14]. As shown 

in Table 4, our proposed approach achieves the best performance with an accuracy of 99%. 
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Figure 4.4. Performance comparison using the NUAA dataset. 

 

Figure 4.5. Performance comparison between 5 and 10 iterations. 
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Figure 4.6. Performance evaluation for different numbers of iterations with different time step. 

 

 

Figure 4.7. Performance evaluation for different numbers of iterations. The time step is fixed at a value of 

100. 

 

We computed the half total error rate (HTER) to assess the statistical significance 

of the performance of our proposed approach [62]. The HTER is half of the sum of the false 

rejection rate (FRR) and false acceptance rate (FAR), as shown below:  

𝐇𝐓𝐄𝐑 =
 𝐅𝐑𝐑 +  𝐅𝐀𝐑 

2
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Where FRR is the number of false rejections divided by the total number of clients and FAR 

is the number of false acceptances divided by the total number of imposters. 

Table 4.5. HTER (%) of classification for the NUAA dataset 

Method HTER 

Our Proposed CNN 0.98% 

LBP 3*3 
u2 + LDA 17.08% 

LBP 3*3 
u2 + SVM 19.03% 

LBP [10] + SVM 13.17% 

 

Table 4.5 provides a summary of the HTER, showing the classification result of our 

proposed approach compared with different approaches. The FRR is 0.47%, and the FAR 

is 1.31%. Our HTER is 0.98%. Analysis of the misclassified face images indicated that 

over-exposures, blurring, and reflections affected our proposed approach’s ability to detect 

spoofing attacks, as shown in Figure 4.8. 

 

Figure 4.8. Examples of misclassified face images. The top face images are rejected clients, and the bottom 

face images are accepted printed images. 
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5.3.4 Statistical Power Analysis 

In this section, the power analysis is used to validate the sample size for the 

experiment and test of the alternative hypothesis. The power of a statistical test can be 

defined as the probability that the test rejects the null hypothesis (Ho) when the alternative 

hypothesis is true [73]. Two opposing hypotheses are:   

 Null Hypothesis Ho (same, equal, no diff, and no change).  

  Alternate Hypothesis Ha (complement of Ha). 

The sample size(n) = 
𝑛∗p (p−1)

(𝑛−1)∗(𝑑2/ 𝑧2)+𝑝(𝑝−1)
 

Where; 

N=12614 , P=80%, d=5, and z=1.96, based on the parameters the sample size (n) = 241 

To make the decision of the hypothesis: 

Mean (𝑋)̅̅ ̅ = 0.989 , Standard deviation (σ) = 0.01094 , Confidence level (1- α) = 95%,  

Critical t (α, d.f) = 1.653, Standard Error (SX) = 0.000704 , t value = 694.6 

Both t value and Critical values are used to make the decision. t value > critical t as 694.6 

> 1.653 therefore, it rejects Ho and accepts Ha. 
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5.3.5 Processing Time 

In this subsection, we analyze the computational time required by our method in 

further detail. We divided the processing of our approach to detect spoofing attacks into 

three steps: the diffusion process, CNN-based feature extraction, and classification. The 

total time required for the framework of the proposed approach to detect the spoofing attack 

is approximately 0.076 sec/per person, as shown in Table 4.6. The proposed approach was 

implemented on a PC with an Intel® Core (TM i7-4500U CPU running at 1.80 GHz and 8 

GB RAM without parallel processing. The application was written using Visual Studio 2013 

and the C# language. As shown in Table 5.6, the feature extraction using the convolution 

neural network consumes the bulk of the detection time.  

 

Table 4.6 Time Processing 

Diffusion 

Process 

Our 

CNN 

Classification Total 

0.023 0.052 0.01 0.076 (per 

sec) 

 

 

4.2 Replay Video Attack 

5.4.1 Replay Attack dataset 

Replay-Attack Database [13] consists of 1200 short videos of both real-access and 

spoofing attacks of 50 different subjects. Each person recorded a number of videos with a 

resolution of 320 x 240 pixels under two different conditions: (1) the controlled condition 
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contained a uniform background fluorescence lamp illumination; and (2) the adverse 

condition contained a non-uniform background and day-light illumination. The spoof 

attacks were generated by using one of the following scenarios: (1) a hard copy of 

photograph, (2) on a phone using an iPhone screen, and (3) on a tablet using an iPad screen. 

Each spoof attack video was captured in two different attack modes: hand-based attacks and 

fixed support attacks [32].  The Replay-Attack database is divided into three subsets: 

training, development, and testing. 

 Controlled scenario  Adverse scenario 

Real 

  

Fake 

(Print) 

  

Fake 

(Mobile) 

  

Fake 

(HighDef) 

Tablet 
  

Figure 4. 9. Examples of Replay Attack Dataset (Controlled and Adverse scenario) 
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Table 4.7. Replay-Attack Database 

 
 

 

 

 

 

 

 

5.4.2 Implementation  

Our proposed method utilizes only one frame from sequenced frames of replayed 

video attacks to detect a spoofing attack. The single frame is captured from different 

medium such as print photographs, mobile screens and high definition (Tablet) screens that 

requires less processing times. Due to the recent success reported in [14], we applied a non-

linear diffusion to extract shape edges and corners contained in the input frames. Then we 

used a specialized deep convolution network to detect the texture surface and the edges in 

order to distinguish a fake image from a real image. We applied nonlinear diffusion to obtain 

the sharp edges and preserve the boundary locations unlike linear diffusion which blurs 

important features, including edges, and dislocates the edges as it smooths a finer scale to a 

coarser scale [15] [50]. 

Type Training 

Fixed |hand 

Development 

Fixed | hand 

Test 

Fixed | 

hand 

Total 

Genuine face 60 60 80 200 

Print-attack 30 + 30 30 + 30 40 + 40 100 + 100 

Phone-attack 60 + 60 60 + 60 80 + 80 200 + 200 

Tablet-attack 60 + 60 60 + 60 80 + 80 200 + 200 

Total 360 360 480 1200 
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Figure 4.10 . (a) and (b) Original face of real access – Controlled scenario (c) (d) Diffusion speed map 

scaled from [0, 255]. 

 

Our proposed deep convolution network consists of six layers. The first five layers 

are convolutional and subsampling layers, and the last layer is the output layer. The input 

image, not counted in the CNN layer, has a size of 320 × 240 pixels. Layer C1 is the first 

convolution layer and consists of twelve feature maps. Each unit in the feature map is a 

result of connecting a 9 × 9 neighbor in the input image. The new size of the feature map is 

312 × 232 pixels. Layer S2 is a subsampling layer with twelve feature maps of 156 × 116 

pixels. Each feature map in the subsampling layer is connected to an average kernel 2 × 2 

neighborhood from the previous corresponding feature map in C1. The average 2 × 2 kernel 

is non-overlapping. Therefore, the size of the feature map in S2 is half the size of the feature 

map in C1. C3 is a convolution layer composed of eighteen feature maps of 148 × 108 

pixels. Each feature map takes inputs from two random feature maps from the previous S2 

subsampling layer. All two feature maps from subsampling are connected to only one 9 × 9 

kernel. Layer S4 is a subsampling layer with eighteen feature maps of 74 × 54 pixels. Each 

feature map in the subsampling is connected to an average 2 × 2 kernel neighborhood from 

the previous corresponding feature map in C3. The 2 × 2 kernel is non-overlapping over the 
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input and reduces the subsampling to half the size of the input. C5 consists of 124 feature 

maps of 66 × 46 pixels. Each unit in the feature map is a result of connecting the 9 × 9 

neighbor in the input. Each feature map takes two random feature maps from the previous 

S4 subsampling layer. Finally, the last layer is the output layer, a fully-connected layer. The 

output of each feature map is normalized or squashed between 1 and -1 using a hyperbolic 

tangent activation function called Tanh, which helps with backpropagation learning. All 

weights (w) and biases (b) are randomly initialized between -1 and 1. We used a small 

learning rate with a value of 0.005 to help the network learn quickly, especially to update 

the weight in the backpropagation. The last layer is the fully connected layer; we used the 

softmax activation function as a classifier. 

5.4.3 Discussion and analysis 

In this subsection, we discuss and analyze our approach for detecting replay video 

attacks utilizing only one frame of a single video as shown in figure 4. 11. Utilizing one 

frame instead of 375 frames from a single video reduces the time required for processing 

which in the users’ experience is convenient. When we apply the AOS-based diffusion 

scheme to obtain sharp edges and surface textures, such as the nose, eyes, lips, and cheek, 

we found that the real access frame and the high definition (Tablet) frame have similar edges 

and texture which makes it hard for our specialized convolution neural network to 

distinguish between them. Re-capturing the replay video twice destroys the sharp edges and 

changes the pixel locations. After conducting several experiments with different time step 

values, we determined that a time step of (𝜏 = 100) yields the best result when iterating five 

times (L =5), as shown in Table 4.9. Using a larger time step (one greater than 𝜏 = 100) 
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fades out the most important features, such as the edges and location. Moreover, we also 

tested the impact of the number of iterations on the classification result. We conducted four 

experiments using four different iterations (5, 10, 15, and 20) while holding the time step 

constant at 𝜏 = 100. Increasing the number of iterations from 5 to 10 blurs the face and 

consumes additional time. The iteration 𝐿 = 5 yields a HTER of 10%, whereas iterations of 

𝐿 = 10 and 𝐿 = 20 yield accuracy rates of 14.625% and 17.375%, respectively as shown in 

Figure 4.10. Our proposed specialized CNN has proven to be powerful in extracting not 

only the sharp edges but also the texture information of a single frame.  The trained kernels 

are able to detect features that help in distinguishing the speed-diffused frame. After 

visualizing the first convolution layer, there is a clear difference in the real and fake diffused 

frames (e.g., in the eye, nose, lips, and cheek regions). The real face has more edges and 

distinct corners around the eyes and lips, where the fake face has fewer edges and flat 

surfaces [63].  

 

Figure 4.11 . One frame of a short video of real access.  
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5.4.4 Result 

We computed the half total error rate (HTER) to measure the performance of our 

proposed approach [62].  

 

Table 4.8 . HTER (%) of classification for the Replay Attack dataset 

Algorithms test 

LBP 3*3 
u2  + 𝑥2 34.01% 

LBP 3*3 
u2  + LDA 17.17% 

LBP 3*3 
u2  + SVM 15.16% 

DS-Local Speed Pattern 12.50% 

Our proposed approach 10% 

 

 

 

Table 4.9. HTER (%) of classification with different parameters using the Replay Attack dataset 

𝝉 L Accuracy  𝝉 L Accuracy  

40 5 17.125 100 5 10.00 

60 5 13.125 120 5 15.875 

80 5 13.75 140 5 14.625 
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Table 4.10. Performance evaluation for different numbers of iterations. The time step is fixed at a value of 

100. 

𝝉 L 

Accura

cy  

𝝉 L 

Accura

cy  

100 1 16.5 100 6 11.875 

100 2 13.5 100 7 11.875 

100 3 15.75 100 8 12.625 

100 4 14.875 100 9 11 

100 5 10.00 100 10 14.625 

 

Figure 4. 12 Performance evaluation for different numbers of iterations. The time step is fixed at a value of 

100. 
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CHAPTER 5: ENHANCING OAUTH SECURITY USING 

FACE RECOGNITION 

6.3 Introduction to Open Authorization Protocol 

In the traditional authentication mechanism, the client provides his/her credentials 

to the host server to access its protected resource. With the growing number of third-party 

applications seek to access the end-user resource, the user shares his/her credentials 

(username, password) with the third-party.  The third-party application knows the 

credentials, and thus may obtain an overly-broad access to the protected resource [3]. For 

instance, a third-party web application using Google sign-in can access other google APIs 

and create entries to the google user’s calendar[42]. The main issues with sharing the 

credentials are [64]: 

 The third-party application owns the owner’s resource credentials, and has broad 

access to the online resource with no restrictions.  

 A resource owner may revoke access from third-party applications only by changing 

his/her credentials, so all third-party applications cannot access the resource by using 

pervious credentials. 

To solve the above problems, Open Authorization (OAuth) protocol has been 

proposed. OAuth does not require the resource owners to reveal their credentials with third-
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party applications; instead the third-party obtains an access token issued by the authorization 

server with the approval of the resource owner[65]. An access token is a string that denotes 

a specific scope of permission and a duration of lifetime access. The OAuth 2.0 has not 

defined how the access token should be structured, and how it should be validated: OAuth 

2.0 has left that up to the authorization and resource server. The access token can be created 

as: a Security Assertion Markup Language (SAML) token, Simple Web Token (SWT), or 

JSON Web Token (JWT).   

OAuth 2.0 specifications have defined four authorization grant flows: authorization 

code grant flows, implicit grant flows, resource owner password grant flows, and client 

credentials grant flows.  A protected resource hosted by the server uses the authorization 

code grant, while a user agent-based application such as JavaScript uses implicit grant flows 

[7].  This dissertation focuses only on authorization code grant flows that requires two major 

steps to grant access:  

 After the third-party application initiates the request by redirecting the resource 

owner to the authorization server to grant the scope of permissions, the authorization 

server authenticates the resource owner and returns an authorization code to the end-

user. 

 The third-party application exchanges the authorization code and the client secret for 

the access token with the authorization server.  

 

As depicted in Figure 5. 3, OAuth specifications are trying to prevent the access 

token from leaking into the browser, and into the resource owner. Therefore, for exchanging 
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the authorization code for an access token, both the client ID and Client secret are required 

as depicted in Figure 5.1.  Since the resource owner does not know the client secret, he/she 

cannot obtain the access token.   

Figure 5. 1. shows a POST request in the HTTP header request to exchange the code for 

the access token: 

 

Figure 5. 1. Access token request 

 

6.4 Introduction to Biometrics System  

Biometric authentication is the automatic authentication that identifies a person by 

analyzing their physiological and/or behavioral features. Both physiological and behavioral 

characteristics have been used in biometric authentication systems for the past twenty years. 

Physiological characteristics are related to the shape of the person’s body: hand geometry, 

palm print, face recognition, DNA, iris recognition, retina, fingerprint, iris recognition, and 

odor. Behavioral characteristics are related to the person’s behavior: typing rhythm, gait, 

and voice [46]. Using the biometric authentication method to verify the identity of a user is 

preferred over traditional authentication (user / password) for different reasons: firstly, the 
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user is required to be physically present. Secondly, the user is not required to remember 

credentials or carry an access token.   

The selection of best specific biometric characteristics for a particular application 

comprises of five qualities: robustness, distinctiveness, availability, accessibility, and 

acceptability.  Robustness means this individual trait will not change over time. 

Distinctiveness means having a variation over the population. Availability means the whole 

population should ideally possess this measure in multiples.  Accessibility means it is easy 

to observe the trait using electronic sensors. Acceptability means people do not have an 

issue with this measurement being taken [66].   

All biometric authentication systems follow the same procedures to authenticate 

individuals: the first step is called enrollment, where the new user is registered into a 

database. After that, one of behavioral/physiological characteristics of the person is captured 

and passed through one of the used algorithms that turns the data into a template. The 

template is a collection of numbers that represents the original biometrics into the database. 

In order to recognize the person, new measurements need to be captured and translated into 

a template using the same algorithm that the original template was passed through, and then 

the new template needs to be compared with the stored template to determine if they match 

or not [46]. Figure 5. 2 shows the biometric authentication process: 
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Figure 5. 2. Biometric authentication system 

 

6.5 Login Services  

We presented a Secure Login Service using face recognition that authenticates the 

identity of the user.  We created four services to verify the user, and issue the access token; 

an image registration service, verification service, and an access token service in the 

authorization server [47].  In OAuth 2.0, the authorization server uses the traditional 

credentials mechanism to authenticate the resource’s owner as shown in Figure 5. 3, step 3.  
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Figure 5. 3.  OAuth 2.0 using Authorization code 

 Our approach has four services to authenticate the user and issue the access token 

as shown below:  
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Figure 5. 4.  Our proposed Authentication Service 

 

6.5.1 Image registration service: 

      The main goal of the image registration service is to resize, shift, and rotate the 

incoming image to reflect the same image size in the database: we assume that when the 

user’s account has been created, the user’s identification image has been processed by Image 

registration service. After capturing the photo and converting it to a one dimensional array 

[ 255, 23, 25, …., n],  the array passes through the image registration service. Since the user 

might capture the image from different distance and different alignments, preprocessing is 

needed to perform a face recognition.   

Two preprocessing occurs prior to the authentication of the user. The first preprocess 

locates landmarks in both images (the captured image and the referenced image in the 

database) using the active shape model algorithm. The second preprocess computes the 

transformation.  
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The Active Shape Model (ASM) Algorithm is a statistical model that represents the 

shape as landmarks points. We use ASM to locate the five landmarks in the face: the outer 

right eye, center right eye, outer right eye, center left eye, and the center of the nose.   

Once the ASM is applied, the nose landmark coordination in the captured image is 

(113, 173), and the referenced image is (49, 93). Transformation (T) will be applied to the 

captured image (I1), so the difference between (x1, y1) in the referenced image (Io) and the 

captured image (x2, y2) is as small as possible.  

 

Where;  

 a,b, rotate the image  

 b and c resize the image 

 t1 and t2 shift the image 

To optimize the Cost = (Io – T(I1))2.  

C = (x1-(ax2 + by2)+ t1)2 + (y1-(-bx2+ay2)+t2)2.  

In order to find the rotation for the five landmarks, we find partial derivatives respect to 

∂c/∂a=0. 

 

∂c/∂a =  a(2x2
2 +2y2

2) + 0 + (-2x2)+ (-2y2) = 2x1x2  + 2y1y2.  
∂c/∂b = b(0) + (2x2

2 +2y2
2 )+(- 2y2

2)+  (-2x2) = 2x1y2 – 2x2y1  

 

- 

http://en.wikipedia.org/wiki/%E2%88%82
http://en.wikipedia.org/wiki/%E2%88%82
http://en.wikipedia.org/wiki/%E2%88%82
http://en.wikipedia.org/wiki/%E2%88%82
http://en.wikipedia.org/wiki/%E2%88%82
http://en.wikipedia.org/wiki/%E2%88%82
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∂c/∂t1 = t1(2x2) + (2y2) + (-2) + 0 = -2x1 

∂c/∂t2 = t2(2y2) + (-2x2) + 0 + (-2) = -2y1 

 

The five landmarks of captured and referenced images are calculated to find a, b, t1, 

t2 values using the transformation method. Then we need to update the new location (x2, 

y2) for the captured image using:  

𝐿( 𝑥2, 𝑦2) = ∑ (𝑎 ∗ 𝑥1 + 𝑏 ∗ 𝑦1 + 𝑡1

0

𝑥1,𝑦1

, (−𝑏) ∗  𝑥1 + 𝑎 ∗ 𝑦1 + 𝑡2                                                (5.1) 

6.5.2 Face liveness detection service  

Face liveness detection service is used to prevent the spoofing attacks. We applied 

nonlinear diffusion followed by a specialized convolution neural network to detect the 

liveness of the input image. The steps to detect the spoofing attack are explained in chapter 

3. 

6.5.3 Verification service 

 

Verification service is an applied method that verifies or denies the user from the 

registered image using the Local Binary Pattern (LBP), which is a nonparametric method.  

This service consists of feature extraction and classification. LBP is used to extract features 

by summarizing local structures of the registered image.  

LBP Methodology:  

The registered image is converted to gray- scale and then divided into a 5 by 5 block. 

Each pixel in the block is compared with its eight neighborhoods.  

http://en.wikipedia.org/wiki/%E2%88%82
http://en.wikipedia.org/wiki/%E2%88%82
http://en.wikipedia.org/wiki/%E2%88%82
http://en.wikipedia.org/wiki/%E2%88%82
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Figure 5. 5.  Example of basic LBP codes 

𝐿𝐵𝑃𝑃𝑜𝑖𝑛𝑡,𝑅𝑎𝑑𝑖𝑢𝑠(𝑥𝑐 + 𝑦
𝑐
) =  ∑ 𝑆(𝑖𝑝 −  𝑖𝑐)2𝑝

𝑃−1

𝑃=0

                                                (5.2) 

Where; 

 xc,yc  represent the center pixel 

 p represents the surrounding pixel 

 s(z) = {
1,      𝑖𝑓 𝑧 ≥ 0
0,      𝑖𝑓 𝑧 < 0

 

The new value for the center pixel is calculated by concatenating all new binary 

values in a clockwise direction. The generated binary number is 01111110, equals to 126 as 

a decimal value [67]. 

So the center value will be updated with the new value 126, and iterate through the 

entire block updating each pixel.   LBP uses a uniform pattern to describe the texture image. 

If the generated binary number contains at most two bitwise 0 -1 or vice versa transaction, 

then the LBP is called uniform. For instance, (01111110), (1100 0000), and (0001 1000) are 

uniform where (0101 000), (0001 0010), and (0100 0100) are non-uniform. There are 58 

uniform LBP Pattern and 198 non-uniform LBP patterns. Each region or block uses one 

histogram with 58 uniform patterns to provide a distribution description of the local block.  
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                Figure 5. 6. LBP Histogram for one block. 

The registered image has 1450 features: 5 * 5 * 58. After calculating the features of 

the registered image, we apply the LBP uniform patterns to the user’s identification image 

in the database, and obtain 1450 features.  Both features are stored in one vector array and 

passed through a correlation method to find the relationship.  

𝑅(𝑥, 𝑦) =
∑(x − 𝑥̅)(𝑦 − 𝑦̅)

√∑((x − 𝑥̅)2(𝑦−𝑦̅)2
                                                                    (3.3) 

If the correlation result shows an adequate percentage, the verification service will 

verify the resource owner. 

6.5.4 Access token service  

The access token service is responsible for issuing a signed access token as JSON 

Web Token (JWT) with a thirty second duration and a specific scope of permission. The 

access token is made up of name-value pairs based on JSON format. For instance,  

[“expiration”: “1427131712”, “role”: “Admin” , .. ].  
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The access token is transmitted using HTTP over TLS. Also, it is protected from 

being tampered with using the HMAC-SHA 256 algorithm which combines a hash message 

with a key. HMAC-SHA 256 name-value pairs are used to ensure the integrity and 

authenticity of the token. Once the verification service returns with true/verified, the access 

token service issue the access token and sends it to the user (requester) in Base64 URL 

encoded format. The resource owner has to send the access token to the third-party 

application before the expiration duration. 

6.5.5 Implementation 

We have designed and developed a real-time software application that implements 

OAuth 2.0. This login service authenticates the identity of the user through a web camera, 

and issues an access token using HTML 5 and web API technologies. All four services are 

based on Representational State Transfer (REST) architecture style.  The resource’s owner 

will be redirected to a web page that captures an image as shown in Figure 5.3 by using 

HTML 5 technology, which then convert the image into a one-dimensional array. The 

registration service uses the ASM algorithm to locate the targeted points in the captured 

image, and then retrieves the referenced image from the database. We computed a, b, t1, t2 

values by using the transformation method. Image registration performs the alignment. 

After the user is verified, the access token is issued as shown in Figure 5.7:  

 

                         Figure 5.7.  Access token string 
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The resource owner verifies the access token with the authorization server, and then 

authenticates the user as shown in figure 5. 8:    

 

Figure 5. 8.  After validating the access token, the user is authenticated  

 

 

 

 

 

 

 

 

 

 

 



 
 

79 

 

CHAPTER 6: CONCLUSION 

We introduced an efficient and non-intrusive method to detect the face spoofing 

attacks utilizing only a single image. We applied a nonlinear diffusion based on an additive 

operator splitting (AOS) scheme to reveal the edges and surface texture in the input image. 

Previous approaches used handcrafted features, such as the LBP algorithm, to extract the 

information features from the input image. In contrast, this work proposes a specialized deep 

convolution neural network that can extract the complex features of the input diffused image 

to differentiate between a fake and real face. Our CNN has proven to be powerful in 

extracting not only the edges, but also the textures of the faces. We have achieved the highest 

reported accuracy of 99% on the widely used NUAA dataset. Our analysis of the 

misclassified faces indicated that over-exposures, blurring, and reflections affected our 

proposed approach’s ability to detect spoofing attacks. In addition, we tested our method on 

the Replay Attack dataset utilizing only one frame of a replay video attack and achieved a 

HTER of 10% which is a better result when compared to previous static algorithms results 

a 10% HTER. Moreover, we developed a biometric authentication system based on web 

services to enhance OAuth authentication security. We built a Secure Login Service to 

authenticate the identity of the user that consists of four layers: an image registration service, 

a face liveness detection service, a verification service, and an access token service. These 

services are developed in the authorization server to verify the user and issue the access 
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token. The entire web services are built based on RESTful architecture style. If the user is 

verified and authenticated, the access token is issued with a specific scope of authorization 

level.  
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