60,418 research outputs found

    Information-Analytical System for Design of New Inorganic Compounds

    Get PDF
    The principles of design of information-analytical system (IAS) intended for design of new inorganic compounds are considered. IAS includes the integrated system of databases on properties of inorganic substances and materials, the system of the programs of pattern recognition, the knowledge base and managing program. IAS allows a prediction of inorganic compounds not yet synthesized and estimation of their some properties

    Behaviours of natural organic matter in membrane filtration for surface water treatment : a review

    Get PDF
    Membrane application in surface water treatment provides many advantages over conventional treatment. However, this effort is hampered by the fouling issue, which restricts its widespread application due to increases in hydraulic resistances, operational and maintenance costs, deterioration of productivity and frequency of membrane regeneration problems. This paper discusses natural organic matter (NOM) and its components as the major membrane foulants that occur during the water filtration process, possible fouling mechanisms relating to reversible and irreversible of NOM fouling, current techniques used to characterize fouling mechanisms and methods to control fouling. Feed properties, membrane characteristics, operational conditions and solution chemistry were also found to strongly influence the nature and extent of NOM fouling. Findings of such studies are highlighted. The understanding of the combined roles of controlling factors and the methods used is very important in order to choose and optimize the best technique and conditions during surface water treatment. The future potential of membrane application for NOM removal is also discussed

    The Distributed System of Databases on Properties of Inorganic Substances and Materials

    Get PDF
    The principles of organization of the distributed system of databases on properties of inorganic substances and materials based on the use of a special reference database are considered. The last includes not only information on a site of the data about the certain substance in other databases but also brief information on the most widespread properties of inorganic substances. The proposed principles were successfully realized at the creation of the distributed system of databases on properties of inorganic compounds developed by A.A.Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences

    Integration Principles of Russian and Japanese Databases on Inorganic Materials

    Get PDF
    The methods and software for integration of databases (DBs) on inorganic material and substance properties have been developed. The information systems integration is based on known approaches combination: EII (Enterprise Information Integration) and EAI (Enterprise Application Integration). The metabase - special database that stores data on integrated DBs contents is an integrated system kernel. Proposed methods have been applied for DBs integrated system creation in the field of inorganic chemistry and materials science. Important developed integrated system feature is ability to include DBs that have been created by means of different DBMS using essentially various computer platforms: Sun (DB "Diagram") and Intel (other DBs) and diverse operating systems: Sun Solaris (DB "Diagram") and Microsoft Windows Server (other DBs)

    Quality requirements for reclaimed/recycled water

    Get PDF
    Water used during current and previous space missions has been either carried or made aloft. Future human space endeavors will require some form of water reclamation and recycling. There is little experience in the U.S. space program with this technology. Water reclamation and recycling constitute engineering challenges of the broadest nature that will require an intensive research and development effort if this technology is to mature in time for practical use on the proposed U.S. Space Station. In order for this to happen, reclaimed/recycled water specifications will need to be devised to guide engineering development. Present NASA Potable Water Specifications are not applicable to reclaimed or recycled water. Adequate specifications for ensuring the quality of the reclaimed or recycled potable water system is reviewed, limitations of present water specifications are examined, world experience with potable water reclamation/recycling systems and systems analogs is reviewed, and an approach to developing pertinent biomedical water specifications for spacecraft is presented. Space Station water specifications should be designed to ensure the health of all likely spacecraft inhabitants including man, animals, and plants

    Towards a breakthrough in nutrient recycling : State-of-the-art and recommendations for developing policy instruments in Finland

    Get PDF
    The report has been complemented on 11.9.2018This report describes the state-of-the-art in phosphorus and nitrogen recycling in Finland and looks at basic data on the volumes and geographical distribution of biomasses and their nutrients. Based on this data, the report makes proposals for measures aiming to promote nutrient recycling. This report was prepared collaboratively by experts at the institutions making up the Finnish Partnership for Research on Natural Resources and the Environment (LYNET) to underpin a national action plan on nutrient recycling. Of all sectors in Finland, agriculture is the largest user and recycler of phosphorus and nitrogen. Different biomasses contain an annual total of approximately 26,000 t of recyclable phosphorus, which exceeds the fertilisation needs of grasslands and cereal crops in the entire area of Finland. The volume of nitrogen contained in biomasses is approximately 95,000 t. Still, approx. 11,000 t of phosphorus and 152,000 t of nitrogen are annually used in Finland as conventional inorganic fertilisers. There is a regional imbalance between manure production and crop nutrient requirements. The breakthrough in nutrient recycling means increased implementation of manure processing, thus making manure nutrients easier to transport and reducing the use of conventional inorganic fertilisers. At minimum 20% of the entire volume of manure generated in Finland will require advanced processing to enable long-distance transport of the manure phosphorus to areas in need of it. This requires separation of water. The highest demand for advanced processing is experienced in the regions of Ostrobothnia (approx. 60% at minimum), South Ostrobothnia and Satakunta (approx. 30 %) and Southwest Finland (13%). In the agricultural sector, fertilisation is currently guided by a wide array of different policy instruments, which make up an incoherent and unstructured whole. The instruments cause considerable amounts of regulatory burden, but appear to do little to promote sustainable nutrient recycling. This report proposes a total reform of the policy instruments to boost the recycling of nutrients. All legal standards related to fertilisation should be merged into a single statute, for example by developing the Nitrate Decree. At the same time, the current policy that controls nutrient use via the EU agri-environmental scheme should be abandoned, and the role of the environmental permit for livestock installations and its relationship with general regulatory instruments be clarified. A field plot specific nutrient database should be created to support guidance. The knowledge base of nutrient recycling should be developed by creating and maintaining a comprehensive data system on the quantities, properties and locations of nutrient-rich biomasses and ashes and their current processing methods. The report also proposes setting regional processing targets for livestock manure. Key objectives should include reducing excessive fertilisation in crop production. The goal of normative guidance should be nutrient use according to the crop needs.201

    Element content and daily intake from dietary supplements (nutraceuticals) based on algae, garlic, yeast fish and krill oils—Should consumers be worried?

    Get PDF
    The authors would like to thank Agilent Technologies for the loan of the 8800 ICP-QQQ used in this study. Michael Stiboller thanks European Union’s Lifelong Learning Programme ‘Leonardo da Vinci’: “ALUMNI UNI GRAZ MOBILITY PROGRAMME 2013-2015” for financial support of his placement.Peer reviewedPostprin
    corecore