4 research outputs found

    Estudio anatómico y de los procesos de crecimiento y desarrollo del fruto de la badea (passiflora quadrangularis)

    Get PDF
    El presente trabajo se realizó para contribuir al estudio de los procesos de crecimiento y desarrollo del fruto de la Badea(Passif/ora quadrangularis L.). Para su realización se tomaron muestras de frutos de diferentes tamaños, los cuales fueron tratados mediante técnicas histológicas y analizados al microscopio. Se evaluaron ocho estadios de crecimiento correspondientes a frutos de los diámetros: 6; 10; 18; 22; 30; 40; 60 y 80 mm. En los tres primeros estadios de desarrollo del fruto, se observaron continuas divisionesen las células de la epidermis externa y del parénquima. Adicionalmente, el fruto que se ha originado de un ovario triangular, va tomando forma circular. A partir del cuartoestadio, se inicia la maduración del fruto y la placenta ernpiezaa llenar los lóculos y a rodear las semillas. En el estadio ocho, se observa el arilo cuyo origen proviene de un engrosamiento de la zona apical del funículo. Todos los procesos, que ocurren a lo largo del crecimiento del fruto, originan su forma final y le proporcionan las característicasorganolépticas.This work had been done as a contribution to the study the processes of growth and development of Badea fruit(Passiflora quadrangularis L.). Fruit samples of different sizes were taken and treated by histological techniques and analyzed under microscope. Eight stage of development ofdiameter fruits were evaluated: 6; 10; 18; 22; 30; 40; 60 y 80 mm. Continues divisions in the external epidermis cells and parenchima on the three first stages were observed.Aditionally, the fruit originated from a triangular ovary, progresively pets a circular from. From the fourth stage, fruit ripenning initiates and the placenta starts to fill the locules and sarround the seed. At the eight stage the aril, which is originated from thickening of funiculus apical zone is observed. all the proeesses, which take place duringthe fruíts growth produce their final form and establish the organoleptic caracteristics

    The begoniaceae of colombia

    Get PDF
    Begonia (§ Poecilia) semiovata / Begonia (? § Poecilia) subcostata / Begonia (§ Poecilia) filipes / Begonia (§ Poecilia) hirtella / Begonia (§ Begoniastrum) microcarpa / Begonia (? § Hydristyles) ophiogyna / Begonia (§ Huszia.) pastoensis / Begonia (§ Saueria) sulcata / Begonia (§ Regoniastrum) tovarensis / Begonia (? §) magdalenae / Begonia (? §) cryptocarpa / Begonia (§ Begoniastrum) fagopyroides / Begonia (§ Scheidweileria) parviflora / Begonia (§ Gobenia) Maurandiae / Begonia (§ Gobenia) tropaeolifolia / Begonia (§ Gobenia) spadiciflora / Begonia (§ Hydristyles) novo-granatae / Begonia (§ Begoniastrum) cucullata / Begonia (? §) tiliaefolia / Begonia (§ Pilderia) buddleiaefolia / Begonia (§ Ruizopavonia) Rossmanniae / Begonia (? § Ruizopavonia) extensa / Begonia (§ Ruizopavonia) Cuatrecasana / Begonia (§ Ruizopavonia) xylopoda / Begonia (§ Ruizopavonia) cymbalifera.Begonia (§ Poecilia) semiovata / Begonia (? § Poecilia) subcostata / Begonia (§ Poecilia) filipes / Begonia (§ Poecilia) hirtella / Begonia (§ Begoniastrum) microcarpa / Begonia (? § Hydristyles) ophiogyna / Begonia (§ Huszia.) pastoensis / Begonia (§ Saueria) sulcata / Begonia (§ Regoniastrum) tovarensis / Begonia (? §) magdalenae / Begonia (? §) cryptocarpa / Begonia (§ Begoniastrum) fagopyroides / Begonia (§ Scheidweileria) parviflora / Begonia (§ Gobenia) Maurandiae / Begonia (§ Gobenia) tropaeolifolia / Begonia (§ Gobenia) spadiciflora / Begonia (§ Hydristyles) novo-granatae / Begonia (§ Begoniastrum) cucullata / Begonia (? §) tiliaefolia / Begonia (§ Pilderia) buddleiaefolia / Begonia (§ Ruizopavonia) Rossmanniae / Begonia (? § Ruizopavonia) extensa / Begonia (§ Ruizopavonia) Cuatrecasana / Begonia (§ Ruizopavonia) xylopoda / Begonia (§ Ruizopavonia) cymbalifera

    Effect of Culturing Time and Hormonal Combinations on Organogenesis of Date Palm (Phoenix dactylifera L., CV. Khnazi) In Vitro

    Get PDF
    Date palm (Phoenix dactylifera L.) monocotyledon dioecious tree is one of the most important fruit crop trees in the Arabian Gulf region in general and in the UAE in particular. Date palm is propagated sexually by seeds or vegetative by offshoots. Seed propagation is not appropriate for commercial production because of the high genetic heterozygosity, which resulted in not true-to-type male and female seedlings. The vegetative propagation utilizing offshoots is slow and inefficient for rapidly growing demands of the date industry. Therefore, it seems essential to use plant tissue culture techniques for propagating and producing date palms. The present study included three experiments that were conducted through three successive seasons (1996- 1998). The first experiment included the effect of 18 different media developed from various combinations of different auxin and concentrations, in addition to the control (no hormones at all), on shoot bud generation from shoot tip of Khnazi cultivar. Maximum percentage of explants formed bud generative tissue were induced by the addition of 1.6mg/l lAA or 0.4mg/l of both lAA and NAA to the initiation medium. Maximum number of differentiated buds per bud generative tissue resulted from the addition of 0.8 mg/l lAA to initiation medium. The initiation medium contained Murashige and Skoog inorganic salts and supplemented with 100mg/l myo-inositol, 0.5mg/l nicotinic acid, 0.5 mg/l pyridoxine, 0.1 mg/l thiamine-HCI, 2 mg/l Glycine, 40mg/l adenine sulfate, 2g/l polyvinile pyrolidon (PVP 40000), 3mg/l activated charcoal, and 40mg/l sucrose. In the second experiment, 23 different media were developed from the combinations of different cytokines and concentrations. Maximum percentage of explants formed bud generative tissue was induced by the addition of 3.2 mg/l 2iP or 1.6 mg/l BAP. Maximum number of generated buds per explants was induced by the addition of 3.2 mg/l 2iP to initiation medium. Both auxins and cytokines proved to be essential for the induction of bud generative tissue and for differentiation of shoot buds from cultured explants. In the third experiment, shoot tips of the tested cultivar were cultured monthly beginning from September 5, and continued for successive 12 months, on two different types of medium. Maximum percentage of explants formed bud generative tissue was attained during spring season, especially in March. Similarly, maximum number of buds was produced during the spring, and in particular at the month of April regardless of medium types. The hot environment in summer inhibited the formation bud generative tissues, and the differentiation of shoot bud per generative tissue
    corecore